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Distribution of normal and shearing stresses 
satisfies ( from equilibrium)

Transverse loading applied to beam results in 
normal and shearing stresses in transverse 
sections.

Longitudinal shearing stresses must exist in 
any member subjected to transverse 
loading.

When shearing stresses are exerted on  
vertical faces of an element, equal stresses 
exerted on horizontal faces
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Vertical and Horizontal Shear Stresses
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Shear Stress in Beams

Two beams glued together 
along horizontal surface

When loaded, horizontal 
shear stress must develop 
along glued surface in 
order to prevent sliding 
between the beams.
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Shear on Horizontal Face of Beam Element

Consider prismatic beam

Equilibrium of element CDC’D’
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Shear on Horizontal Face of Beam Element
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Example 6.1

Beam made of three planks, nailed 
together. Spacing between nails is 25 
mm. Vertical shear in beam is 
V = 500 N. Find shear force in each 
nail.
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Example 6.1

  

  

  

  
46

2

3
12
1

3
12
1

36

m1020.16

]m060.0m100.0m020.0

m020.0m100.0[2

m100.0m020.0

m10120

m060.0m100.0m020.0


















I

yAQ

SOLUTION:
Find horizontal force per unit length or 

shear flow q on lower surface of  
upper plank.
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Calculate corresponding shear force in 
each nail for nail spacing of 25 mm.
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Determination of Shearing Stress
Average shearing stress on horizontal face of 

element is shearing force on horizontal face 
divided by area of horzontal face.
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If width of beam is comparable or large relative to 
depth, the shearing stresses at D’1 and D’2 are 
significantly higher than at D, i.e., the above 
averaging is not good.

Note averaging is across dimension t (width) 
which is assumed much less than the depth, so 
this averaging is allowed. 

On upper and lower surfaces of beam, tyx= 0.  It 
follows that txy= 0 on upper and lower edges of 
transverse sections.
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Shearing Stresses txy in Common Types of Beams

For a narrow rectangular beam,
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Example 6.2

Timber beam supports three 
concentrated loads. 

MPa8.0MPa12  allall 

Find minimum required depth d of 
beam.
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Example 6.2
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Example 6.2
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Determine depth based on allowable shear stress.
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Longitudinal Shear Element of Arbitrary Shape

Have examined distribution of  vertical 
components txy on transverse section.  
Now consider horizontal components 
txz .

So only the integration area is different, 
hence result same as before, i.e., 

Will use this for thin walled members 
also
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Consider element defined by curved 
surface CDD’C’.
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Example 6.3

Square box beam constructed from four 
planks.  Spacing between nails is 44 
mm. Vertical shear force V = 2.5 kN. 
Find shearing force in each nail.
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Example 6.3
SOLUTION:

Determine the shear force per unit 
length along each edge of the upper 
plank.
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Based on the spacing between nails, 
determine the shear force in each 
nail.
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Shearing Stresses in Thin-Walled Members

Consider I-beam with vertical shear V.

Longitudinal shear force on element is
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Corresponding shear stress is

NOTE: 0xy
0xz

in the flanges
in the web

Previously had similar expression for 
shearing stress web

It
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Shear stress assumed constant through 
thickness t, i.e., due to thinnness our 
averaging is now accurate/exact.
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Shearing Stresses in Thin-Walled Members

The variation of shear flow across the 
section depends only on the variation of 
the first moment.

I
VQtq 

For a box beam, q grows smoothly from 
zero at A to a maximum at C and C’ and 
then decreases back to zero at E.

The sense of q in the horizontal portions 
of the section may be deduced from the 
sense in the vertical portions or the 
sense of the shear V.
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Shearing Stresses in Thin-Walled Members

For wide-flange beam, shear flow q
increases symmetrically from zero at A
and A’, reaches a maximum at C and 
then decreases to zero at E and E’. 

The continuity of the variation in q and 
the merging of q from section branches 
suggests an analogy to fluid flow.
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Example 6.4

Vertical shear is 200 kN in a 
W250x101 rolled-steel beam. Find  
horizontal shearing stress at a.
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Work out this example of a wide flange beam (Doubly symmetric)



MECHANICS OF MATERIALS

6- 22

Unsymmetric Loading of Thin-Walled Members

Beam loaded in vertical plane of 
symmetry, deforms in 
symmetry plane without 
twisting.
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Beam without vertical plane of 
symmetry bends and twists 
under loading.
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Bending+Torsion
effect

Bending+Torsion
effect

Pure 
Bending
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Unsymmetric Loading of Thin-Walled Members

Point O is shear center of the beam section.

If shear load applied such that beam does not twist, then 
shear stress distribution satisfies

FdsqdsqFdsqV
It

VQ E

D

B

A

D

B
ave 

F and F’ form a couple Fh. Thus we have a torque as 
well as shear load. Static equivalence yields, 

VehF 

Thus if force P applied at distance e to left of web 
centerline, the member bends in vertical plane 
without twisting. Net torsional moment is 
Fh-Ve = 0, so shear stresses due to bending shear 
only, and not due to torsional shear.

If load not applied thru shear center then net torsional 
moment exists, so total shear stress due to bending 
shear & torsional shear (ref. open thin walled torsion) 
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Facts about Shear Center

When force applied at shear center, it causes pure bending & no torsion.

Its location depends on cross-sectional geometry only.

If cross-section has axis of symmetry, then shear center lies on the axis of 
symmetry (but it may not be at centroid itself). 

If cross section has two axes of symmetry, then shear center is located at 
their intersection. This is the only case where shear center and 
centroid coincide. 
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Want to find shear flow and shear center of thin-walled open 
cross-sections.

For I and Z -sections s.c. at centroid.

For L and T -sections s.c. at intersection of the two straight 
limbs, i.e., where bending shear stresses cause zero 
torsional moment. 

Thin-walled cross sections are very weak in torsion, 
therefore load must be applied through shear center to 
avoid excessive twisting
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Example 6.5
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Determine location of shear center of channel section with 
b = 100 mm, h = 150 mm, and t = 4 mm
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Example 6.6
Determine shear stress distribution for 

V = 10 kN
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Shear center of a thin walled semicircular cross-section

(a) Find shear stress ( xq ) at an angle , i.e., at section bb

Find the first moment of the cross-sectional area between point a and section bb
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(b) Find the shear center (S)

Moment about geometric center of circle O, due to the 
shear force is Ve

Shear stress acting on element dA

Corresponding force is xq dA and moment due to this force is 
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