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Introduction

» General state of stress at a point represented by
6 components,
Ox,0y,0;,  normalstresses

Tyys Tyz» Tzx  Shearing stresses

(Note : Ty =Tyxs Tyz = Tzys Tox = Tyz)

o If axis are rotated, the same state of stress is
represented by a different set of components,
I.e., the stress components get transformed.

G100, normal stresses
shearing stresses

(Note: 7, =T,y Tyy =Ty Tpne = Typr)

T T T

x'y'ry'zty Pz

» First we consider transformation of stress
components, due to rotation of coordinate
axes. Then we consider a similar
transformation of strain components.




\/ 1A N
Plane Stress

* Plane Stress - state of stress in which two faces of
the cubic element are free of stress. Example,

O,, Oy, Ty

1 Oy: T, ~arenonzero, o,=t, =1, =0.

z

» For example, state of plane stress occurs in thin
plate subjected to forces acting in midplane of plate.

« Another example of plane stress is on free surface,
I.e., unloaded point on surface.
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Transformation of Plane Stress

» Consider equilibrium of prismatic element with
o faces perpendicular to X, y, and x” axes.

I !
x'y

()j.-AA/lJ
o, (A cos 0) || \0 . XF¢=0=0,AA-0y(AACOSO)cosd — 7y, (AACOSH )sing

7y (AA cos 6) —oy(AAsInG)sing -z, (AAsin 0 )cosd
| > Fyr =0=ryyAA+ 0y (AACOSO)sin G — 7y (AACOSO)COS O
—oy(AAsING)cosd + 1,y (AAsin 6 )sind

T (AA sin 0)

o, (AA sin 0)

» Solving for transformed stress components,
_o,t0, -0

X

+ Y c0s260 +71. sin260
2 Xy

— O

*-C0s 26 —7,,Sin 20

o,—0, .
Tysm 20 +1,, 0526
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Principal Stresses

Ty « Eliminating g this yields equation of a
circle,

Tinin (o) —Cave )2 "‘T)%y’ =R’

where

Ox+0Oy
Cave =
2

* Principal stresses occur on principal planes
on which there exist zero shearing stresses.

2
_ _ox+0,  |[o,-0, )
min | Gmaximin — T T —2 + 'Z'Xy

2T
tan20, =———, fromz,,. =0
o,—0,

Note: defines two anglesseparated by 90°

Tnin

7-6
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Maximum Shearing Stress

Maximum shearing stress occurs for oy =oaye

Dhnin
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Mohr’s Circle for Plane Stress

» Used to graphically find principal stresses and
planes and maximum shear stresses and planes

e For known ox.oy.7xy plot points X and Y
and construct circle centered at C.

v oy +o Oy —0O 2
. X Yy X Yy 2
T min Gave = T R - (Tj + Txy

 Principal stresses obtained at A and B.

Omax,min = Oave TR

2
tan26, = oy
Oy —Oy
Direction of rotation of Ox to Oa (ie.,
In physical plane) is same as CX to CA

(ie., iIn Mohr plane)

O nin




\Yi m JAYAY OF MA =|A
Mohr’s Circle for Plane Stress

 From Mohr’s circle we can find state of stress
at other axes orientations.

 For state of stress at angle g with respect to
the xy axes, construct a new diametral line
X’Y” at angle 2g with respect to XY.

e Coordinates of X’, Y’ are the
transformed normal and shear stresses.
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Proof of Mohr’s Circle construction

T

T '
@l T_)\g)Y A o Ej‘ f‘ﬁ : Q__:j
(pom s . ST TN [Ty
o i Py : ! X > ‘
Z5, e pj'\b@x -’ U):
k 20 X@U:’Tx‘j‘)
160':\1\'\ 1 XSG;U’ x‘j)
' Thnax '
O, =0, +RC0s(20, —20) =0, +R(C0s20, €0Os 20 +5sIn 20, sin 20)
O, —O T ) O, +O O, —O )
=Oge R( X2R 4 c0529+%sm 20) =— ; L= 5 *-€0520 +1,, 5in 20

B _o,+o, o0,-0, :
O, =0, —RC0S(20, —20) = — c0s 20 —7,, sin 20
2 2

7., = Rsin(26, —20) = R(sin 20, cos 20 —cos 20, sin 26) So we get same formulae

as before

. c,—0, .
smzej:rxycosze— - Ysin 260

O —Gy

TX X
= R| -2 c0s20 —
R 2R
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Mohr’s Circle for Plane Stress

* Mohr’s circle for centric axial loading:

P
’ Gy:T)(y:O O. =0. =71

Oy = X y xy:ﬁ:z-max

P
A

on 45° element (plane)
» Mohr’s circle for torsional loading:

T nin

o-x:o-y:T:o-max ;

on 45° element (plane
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Points to note when drawing stress block.

Formulae for principal stresses yield their magnitude and
sense/sign (+Vve or —ve), and the principal planes on which
they act (6. » O min » 0,,). HOwever, they do not identify
which principal stress acts on which plane.

So once you find principal stresseso .., , ., and
assoclated angles 6, put the anglesin the transformation

relations to identify which principal stress acts on which
plane.
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Points to note when drawing stress block.

Formulae for maximum shear stress yield only magnitude
of z .. and planes 6, on which they act. However, they do

not yield the sense/sign (+veor-ve)of z__. .

So once you find 6, , put it in the transformation relations
to find correct sense/sign (+veor-ve)of

So you can just find 6, and 6, and use them in transformation

relationsto find associated o, ,o with correct sense/sign

min ? ~ max ’Tmax
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Points to note when drawing stress block.

Alternately, you can use Mohr circle which gives correct
magnitudes and sense of o and the planes 6, , 6

Gmin y T S

max ? max !

on which they act.
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Examplel

10 MPa

50 MPa

Fig. 7.13 |

For state of plane stress shown,
find (a) principal planes, (b)
principal stresses, (¢) maximum
shearing stress and corresponding
normal stress.
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Example 1

10 MPa

Find element orientation for principal
stresses:

2
an20, = 9 = 20+40) ;4

I 260, =53.1°, 233.1°
Fig. 7.13

0p =26.6°,116.6°

o,=+50MPa 7, =+40MPa
o, =—10MPa  Find principal stresses:

2

o = SN Omax,min = 5 T Txy

min

o... = 170 MPa

max

— 20++/(30)% + (40)?

Omax = OMPa
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Example 1

10 MPa

50 MPa

Fig. 7.13 I

o, =+50MPa t,, =+40MPa
o, = —-10MPa

o' =20 MPa

Tmax = 20 MPa

max

o'= 20 MPa

Find maximum shearing stress:

2
Tmax = L—j * Txy

2
— (30)% + (40)?
Ty = 50MPa

Os =0, —45
0, =—18.4°, 71.6°

 Find corresponding normal stress:
_o,+0, 50-10

2 2
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Example 2

100 mm

y
~

Horizontal force P = 600 N
magnitude applied to end D of lever
ABD. Find (a) normal and shearing
stresses on element at H having sides
parallel to x and y axes, (b) principal
planes and principal stresses at H.
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Example 2

Find equivalent force-couple system at
center of transverse section passing
through H.

P=600N
T =(600N)0.45m)=270Nm
M, =(600N)0.25m) =150 Nm

Find normal and shearing stresses at H.

Mc  (150Nm)0.015m)
=+ =+ n
| 17(0.015m)

Tc  (270Nm)0.015m)

T, =+—=+

J 17(0.015m)’

o,=0 o,=+56.6MPa 7, =+50.9MPa

Note: €, due to bending is zero at H

7-19
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Example 2

Ta,/ = 56.6 MPa

— 7 =509 MPa

xyy

— e

g....= 86.5 MPa

max

a

\\/ﬁp = — 30.5°

Onin = 29.9 MPa

min

b

Find principal stresses and planes.

2
O, —0O
— X y 2
o) = J +Txy

max,min
2

2
0_2’6'6J +(50.9)°

O =186.5MPa
o, =—29.9MPa

2ty _2(50.9) _
o,-o, 0-56.6
20, =—61.0°,119°

tan 29p =

0p =—30.5% 59.5°
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Example 3

10 MPa

40 MPa

Fig. 7.13

For state of plane stress shown, (a)

construct Mohr’s circle, find (b)

principal planes, (c) principal

stresses, (d) maximum shearing stress . construct Mohr’s circle

and corresponding normal stress. oy +0y  (50)+(~10)
OCave = 5 =

CF =50-20=30MPa FX =40MPa
R=CX =+/(30)% + (40)2 =50MPa

=20MPa
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Example 3

7(MPa))

 Principal planes and stresses

O max = OA=0C + CA = 20+50
Omax = (0MPa
O max = OB =0C — BC =20-50

FX 40

tan zep = =—
CF 30
zep =53.1°

Onax — 70 MPa Qp == 2660
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Example 3

7(MPa))

ag(MPa)
[~20,=53,1°

... = — 30

min

)

e Maximum shear stress

Bs =0, +45° Tmax = R

0, = 71.6° Tmax =50 MPa

&

o’'= 20 MPa

J T

/(,

o'= 20 MPa

max

= 50 MPa

o= 70 MPa

o... = 30 MPa

min
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Example 4

Y|
f 60 MPa

—

l 100 MPa

48 MPa

For state of plane stress shown, find
(a) principal planes and the principal
stresses, (b) stress components on
element obtained by rotating given
element counterclockwise through

7 (MPa) )

0o = 80 MPa

O B

X(100, 48)

Oin =
28 MPa lJ

Y(60, —48)

-
UHIQL\R

= 132 MPa—

30 degrees.  Construct Mohr’s circle

Oy +Gy _100+60

=80MPa

Cave =
ave
2

R=+(CF )2 +(FX )% = /(20)? + (48)2 = 52MPa

7-24




\/ AN
Example 4
T (MPa) )

O

Oin = 28 MPa

T min ]

28 MPa | " ... = 139 MPa

max

Y (60, —48)

0. .. = 132 MPa—

max

 Principal planes and stresses
_XF_48_,, Omax =OA=0C+CA oy =0A=0C -BC
CF 20 =80+52 =80—-52

20p =67.4° &y, = +132MPa & min = +28MPa
0 =33.7° clockwise
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Example 4

29p = 67.4°
o (MPa)

Stress components after
counterclockwise rotation by 30°

Points X’ and Y’ on Mohr’s circle, that
correspond to stress components on
rotated element, are obtained by
rotating XY ccw through 20 =60°

ay,=\i11.6 MPa/l"

0. = 48.4 MPa

7 Ty = 41.3 MPa

¢ =180°—60° — 67.4° = 52.6°
oy = 0K =0C — KC =80—52¢0552.6°
oy =0L =0C +CL =80 +52¢0552.6°
Tyy = KX’ =525in52.6°

oy = +48.4MPa
oy =+111.6MPa
Tyy = 41.3MPa

7 -26
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Transformation of Plane Strain

y » Plane strain - deformations of the material
take place in parallel planes and are the

= }\\\H et same in each of those planes.

Sa
= a

o

 Plane strain occurs in a plate subjected
along its edges to a uniformly distributed
(in z-direction) load and restrained from
expanding or contracting laterally by

el sl smooth, rigid and fixed supports

components of strain :
€x €y Vxy (‘92 =Vx =Yy = O)

o Example: Long bar subjected to
uniformly distributed transverse loads (ie.,
normal to z-axis). State of plane strain
exists in any transverse section not located
too close to the ends of the bar.
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Transformation of Plane Strain

o State of strain at point Q results in
different strain components with respect
to the xy and x’y’ coordinate systems.

- » We get strain transformation relations
2 My similar to those for stress transformation
. (see details in next two slides)
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Transformation of Plane Strain
Use cosine rule, neglecting quadratics in strains,

(AS)’(A+&,)° =(AX)*(L+¢&,)° +(Ay) (1 + gy)2
—2MX(+¢&,)Ay(L+e¢,)cos(m/2+y,,)

(AS)’ (1+2¢,) = (AX)° (1+2¢,) + (Ay)* (1 + 2¢,) —2AXAY (-7, )

Use (As)® = (AX)* + (Ay)?, Ax/As=cosé, Ay/As=siné,

£, =¢€(0)=¢,08° 0 +¢,sin’ O+, sindcosb A

!

E,TE E, —¢&
g, =——+——2c0s20 + "9 sin 26
2 2 2

put@ ->0+n/2 in g,

"y sin 20
2

Y cos 260 —
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Transformation of Plane Strain
For 0=r/4,

Eop = Ex(m14) :%(gx TEy +7/Xy)

yxy = 2808 - (gx + gy)

where OB is bisector of Ox and Oy

Thus, In X'y' system,

Yy = 2808 — (gx. + gy.)z 2E0g — (gx + gy)

where OB' is bisector of Ox' and Oy'. Thus,
ete, &,—¢€

fop = (0 +714) == Zysin20+7/£y

Y sin20 + 7/;, c0s 20
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»
adl

Mohr’s Circle for Plane Strain

Since strain transformation relations are of
same form as stress transformation, for
plane problems, Mohr’s circle techniques

apply.

Abscissa for center C, and radius R , are

2 2
-2 Y  R= MEeSE

Principal axes of strain and principal strains,

tan zep = 7xy

€max = €ave T R Emin = €ave — R
Maximum in-plane shearing strain,

Ymax = 2R :\/(gx _gy)2 +7>%y
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Drawing strain block.

PosiAive  convenhivn OLUV ij} g,
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Drawing strain block.
sdution G = —60° and !b’m%] = 0-062,
o 6D° N Ffra«-\&&(mq}t'd}\ ,__@(Q;é*w/ .

L SRR ——OO”L
or dY\S‘V\ M sl CA—-'r(j«'l/ <€ 2"’—} b/)fj 05\ |
e =By Dosdli L pen Steain dlock (s

L

e Jhim

Fﬂ),&‘f’ C
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Measurements of Strain: Strain Rosette

B

o Strain gages indicate normal strain through
changes in resistance.

* With a 45°rosette, g, and g, are measured
directly. g, Is obtained indirectly with,

Vxy = 2€0B ~ (gx T gy)

* Normal and shearing strains may be
obtained from normal strains in any three
directions,

£ = &y cos? O + &y sin® 01 + ¥y Sin6G; cos6y

£9 = &y cos? 0) +éey sin2492 + ¥ xy Sin6, C0S O,

£3 = &y cos? 03+ ¢y sin’ 03 + ¥ xy SIN 63 €003
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Stresses in Thin-Walled Cylindrical Pressure Vessels

» Cylindrical vessel with principal stresses
Sq=S; = hoop_stre_ss
S, = S, = longitudinal stress

* Hoop stress:
> F, =0=0,(2t Ax)- p(2r Ax)

pr
t
 Longitudinal stress:

Z F.=0=0,(27rt)- p(ﬂrz)

O dA r
2t

GQZGl:

o, =20,
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Stresses in Thin-Walled Cylindrical Pressure Vessels

Points A and B correspond to hoop stress, s;,
and longitudinal stress, s,

‘lll,l = (r_)

—  Maximum in-plane shearing stress:
1 pr

Tmax(in—plane) = 5‘72 ~ 4t

Maximum out-of-plane shearing stress
corresponds to a 45° rotation of the plane
stress element around a longitudinal axis

pr
Tmax =02 :2_,[

Note: Plane stress Mohr’s circle is only ADBE. The remaining is due to 3-D state
of stress with third principal stress being zero. 3-D state of stress is also used in
finding maximum out-of-plane shearing stress by using third principal stress as

zero. This Is not covered in this course.
Only maximum in-plane shearing stress is covered in this course.
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Stresses in Thin-Walled Spherical Pressure Vessels

o, dA

Spherical pressure vessel:
o,2nrt)=prr?
_pr
> ot
Mohr’s circle for in-plane
transformations reduces to a point

o,=0C

O = 01 = 09 = constant

Tmax(in-plane) = 0

Maximum out-of-plane shearing
stress

1 _pr

Tmax = 251—4_,[

Note: Plane stress Mohr’s circle is only AB, i.e., circle with zero radius, i.e., a point.

The dotted circle is due to 3-D state of stress with third principal stress being zero.

3-D state of stress is also used in finding maximum out-of-plane shearing stress, by using third
principal stress as zero. This is not covered in this course.

Only maximum in-plane shearing stress is covered in this course.
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adl

Principle Stresses in a Beam

w

HH HH For beam subjected to transverse loading

B
vQ
Ty

Can the maximum normal stress within
the cross-section be larger than
_Mc
I

Om
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Principle Stresses in a Rectangular section Beam

for

m

/o

/U m

i

lo

m

a,

min Yy

max 0,

min a,

max

0 ~—}— 1000 0  ——f}—= 1.000

—0.010’::46,— 0.810 ”‘:—’[1]—-— 0.801

\
—0.040’:6/' 0.640 —’::['}_, 0.603
\ ]

\
~0.090 /o/’ 0.490 0407
\

—0.160

\
b
\ \
! X
\ :
—0.250 0.250 0.063
X X

—0.360 ™~ 0.160 0.017
g

—0490 N 0.090 - 0.007
\ ——

—0.640 \¢:: 0.040 _..55::_\ 0.003

~0.810 -—-55:.\___\ 0.010 —_.[:j:_\ 0.001

0.360 0.217

-1.000 =— }— 0 —| J=——0
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Principle Stresses in a Beam

(I.

b

I Cross-section shape results in large values of 7., near
the surface where o 1s also large.

o,.. may be greater than o

max

(since 7, 1s large)

7?’!
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Example 5

W?200x52 rolled-steel beam.

Neglect effects stress
concentrations at fillets,
determine whether normal
stresses at section A-A’ satisfy
S, =150 MPa
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Example 5

Determine shear and bending moment in

160 kN Section A-A’
0.375 m—>

M A =(160kN)(0.375m) = 60kN - m
Vp =160kN

Calculate normal stress at top surface and at

12.6 mm

‘f ; 4 o —Ma_ BOKN-m

: '.._ 204 mm - flange-web junction.

a

a

(:*= 103 mm ? m =*.90.4 mm = 5. g 512><10_6m3

206 mm ’ =117.2MPa

+ — <79 mm

== ) Y 90.4mm
I =527 X 10°5m* % = %a c (117'2 MPa) 103mm

S =512 X 105m?
=102.9MPa
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Example 5

204 mm Calculate shear stress at flange-web junction.
12.6 mm ’.‘7 *‘
1' Q=(204x12.6)96.7 = 248.6 x10°mm®
: b I

103 mm 96.7 mm = 248.6x10°m°

¢ : VaQ (160kN)(248 6x10°m 3)

Th =
"1t~ (52.7x10°m?J0.0079m)
~95.5MPa

Calculate principal stresses at
— ﬁ‘ flange-web junction

2
_1 1 2
Gmax—iab +\/(§Gb) +Tb

2
Z 3 =159.9MPa  (>150 MPa)

Bo 2
: 1029 \/(10;9) (6557
I}

Design specification not
satisfied.
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Example 6

90 kN

~—2.7 m—=

48 kN/m

KU
S, = 165 Mpa, t,;; = 100 Mpa.
Select wide-flange beam to be
used.

B
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Example 6

90 kN

Reactions at A and D.

TETTETY >M,=0 = R,=2655kN

Af . - dM_ =0 = R,=1845kN
1845 kN '

[«—2.7 m —

48 kN/m

\% . .
184.5 kN Maximum shear and bending moment from

SFD, BMD.

1934 kN M| =323.2kNm with V =54.9kN

\ i V| =193.4kN
|
|

/ X
323.2 kN-m ‘—S?kN ‘m

Calculate required section modulus,

3 . .
i S (mm’) select appropriate beam section.
W610 X 101 2530
W530 X 92 2070 323x10° Nm
W460 X 113 2400 S, :‘ s _ 9oo% —— =1959mm°
W410 X 114 2200 ou  165x10"Pa

W360 X 122 2010 select W53 0x 92 beam section
W310 X 143 2150
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Example 6

t, = 10.2 mm
T W530 X 92

d = 533 mm N S = 2.07 X 10°mm® _
| Ayep = td = 5436.6 mm>

web

tp= 15.6 mm o, = 156.1 MPa

Y La '
26615 mm TR é_m, — 147 MPa
A
250.9 mm é

-7, = 10.1 MPa
_.,? ‘..._0'/) = 147 MPa

—_—

| o), =147 MPa

7, = 10.1 MPa |

o = 147.1 MPa

max

Find maximum shearing stress.
Assume uniform shearing stress in web
(conservative, see shallow parabolic

variation, slide 10, shear stresses chapter)

V 193.4x10° N

— Vomax — =35.6 MPa <100MPa
5436.6x10° m

T = =

ma;
" A\Neb

Find maximum normal stress.

M,  323200Nm

TS 207x10°m
o, = o, Yo — (156.1MPa) 2220 MM.
C 266.5mm

T, = v >4900N =10.1MPa

" A 5436.6x10°m’
2
_ 147'2\/'Pa +\/£147'2V'Paj +(10.1MPaY

=147.1MPa <165MPa

=156.1MPa

=147 MPa
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Design of Transmission Shaft

If power is transferred to and from shaft
by gears or sprocket wheels, the shaft
IS subjected to transverse loading (due
to forces in mating gears) as well as
shear loading (due to torque from
these forces).

Normal stresses due to transverse loads
may be large, should be included in
determination of maximum shearing

stress.

Shearing stresses due to transverse loads
are usually small and their
contribution to maximum shear stress

may be neglected.

B.
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Design of a Transmission Shaft

At any section,

amzﬁ’lIE where M2 =M +M?

Maximum shearing stress,

2 2 2
y) Mc TC
_nr + — - + | —
J(zj (7m) J(znj (Jj
for a circular or annular cross - section, 21 = J

T = M2 4 T2
J

Shaft section requirement,
(VM2+T2)

Zall

max
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nle 7

200200 —|~200 =
2 2 i Il =t r’.“ — 160

P g 4
—-—
- ! S
y -
d
i

Dimensions in mm

Shaft rotates at 480 rpm,
transmits 30 kW from motor to
gears G and H; 20 kW is taken
off at gear G and 10 kW at gear
H. s, = 50 Mpa. Find smallest
permissible diameter for shaft.

M q't\'nj’ jecus.

bb‘-}, wh

Q /?Z F

Kinemalbioa=> T W)= nW,
AG}C(HA > .z;actm = E:F:_

e Pa (W)
X3 \Dmﬁrw

oo i (s FW
(g’iga( (rj 3&@/7,_.
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Example 7

+200T200a1+ 200 ->}=-200
cu H Gl |

Fc = 6.63 kN

A C

re = 0.060 m
rp = 0.080 m

Tp=19N.-m

F. = 3.73kN
\
E

4
= 2.49 kN \ N
Tp=597TN-m
F. = 6.63 kN

Find gear torques and corresponding tangential

forces. Use, T @ =P.=P, =T,a,

Teoe =R =F; =T,

Too, =P, =R, =T, 0,
- P _ 30kW _597N-m
27f 27 (8Hz)
Te 597N-m

Fe =& =
= re  0.16m

Te = 20kW
27 (8Hz)

_10kw
0 27 (8Hz)

=3.73kN

=398N-m  Fc =6.63kN

=199N-m  Fp = 2.49kN

Find reactions at A and B.

Ay =0.932kN A, =6.22kN
By =2.80kN B, =2.90kN
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Example 7

Identify critical shaft section from torque and bending
moment diagrams. D comes out as critical section.

[([MZeMZ472) = \11607 + 373 + 597
~ 3 =3 1. max
F; = 3.73 kN —1357N-m
At Citis 1319 N.m. At E itis 1003 N.m

Tp=199N-m

¢ ]
Fj, = 2.49 kN \

Tp=597TN-m

Te=398N-.-m
’l“” — lL)L) \ - m

o

0.932 kN ik Tp=597TN-m

l-'— 0.6 m —'-‘—-l

0.2m 398 N .- m 597N -m
M. :3?:3 .\] - 11 560 V .m T d
“1186 N - m\ S
\ Al
° ' . -

1160 N - m

1244 N - m
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Example 7

.f/|

M

p

v,

/ \
£
=

Find minimum allowable shaft diameter.

] \/M>2,+M22+T2
c Tall

_ATN-M o 41078 m?3

50MPa

For solid circular shaft,

J T3 2714%x105m3
c 2

c =0.02585m = 25.85m

d=2c=51.7mm
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Stresses Under Combined Loadings

Fs

Wish to find stresses in slender structural
members subjected to arbitrary
loadings.

Pass section through points of interest.
Determine force-couple system at
centroid of section required to maintain
equilibrium.

System of internal forces consist of
three force components and three
couple vectors.

Determine stress distribution by applying
the superposition principle.
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Stresses Under Combined Loadings

Axial force and bending moments vyield
normal stresses.

Shear forces and twisting couple yield
shearing stresses.

Find principal stresses,
maximum shearing
stress.
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Example 8

40 mm 20 mm 140 mm

Find principle stresses, principal
planes, maximum shearing
stress, at H.
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Example 8

Internal forces in Section EFG.
130 mm

V, =-30kN P =50kN V, =-75kN

M, = (50kN)0.130m)—(75kN)(0.200m)
=—8.5kN-m

My =0 M, =(30kN)(0.100m)=3kN-m

X
40 .:m%;o nm. Section properties,

Y| P =50kN A=(0.040m)(0.140m)=5.6x10">m?
V= 30N Ly 75k
g TS |
e X
M, =85kN -m

/EQ I, = L (0.140m)0.040m)? = 0.747x10~°m’*
F ;

M. =3kN-m

1(0.040m)(0.140m)* =9.15x10 °m*
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Example 8
a = 0.020 m--l

HJ
M. =@ EN. ‘ b =0.025m T
' ’ ‘IL( ¢ L 0.140 m

~M. =3kN.-m l __ 50kN _ (3kN-m)0.020m)
56x10°m2  0.747x10 %m?
(8.5kN - m)(0.025m)
9.15x10 °%m*

=(8.93+80.3—23.2)MPa = 66.0MPa

0.025 m

0.045 m el = .
}: 1 tyl = 0.0475 m Shearing stresses at H.

Q=AY, =[(0.040m)0.045m)](0.0475m)
=85.5x10"°m®
_V,Q _ (75kN)85.5x10°m’)

Note: 2-D (i.e., plane) state of ™~ 1t ~ [9.15x10°m* )0.040m)
stress only at H. In interior it =17.52MPa
Is 3-D state of stress 7, =0

|~
~
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Example 8

Principal stresses and maximum, shearing

7(MPa)) .. stress, principal planes.
g, = 66.0 MPa |

TN Tmax = R =V/33.02 +17.52% = 37.4MPa

-

/ | omax = OC + R =33.0+37.4=70.4MPa

& pmin =OC —R =33.0-37.4 = -7.4MPa
O C S

. tan 29p _ CY _ 17.52

CD 330

T nax Qp :13980

13.98°
O min N B
~——_

/ Fth Tmax = 37-4MPa

o max = 70.4MPa
omin =—7.4MPa
6, =13.98°

—
-

26, = 27.96°




