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Introduction
• General state of stress at a point represented by 

6 components,
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• If axis are rotated, the same state of stress is 
represented by a different set of components, 
i.e., the stress components get transformed. 

• First we consider transformation of stress 
components, due to rotation of coordinate 
axes.  Then we consider a similar 
transformation of strain components.
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Plane Stress

• Plane Stress - state of stress in which two faces of 
the cubic element are free of stress.  Example, 

.0nonzero, are,,       xy  zyzxzyx 

• For example, state of plane stress occurs in thin 
plate subjected to forces acting in midplane of plate.

• Another example of plane stress is on free surface, 
i.e., unloaded point on surface.
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Transformation of Plane Stress
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• Consider equilibrium of prismatic element with 
faces perpendicular to x, y, and x’ axes.
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• Solving for transformed stress components,
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Principal Stresses
• Eliminating q , this yields equation of a 

circle,
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• Principal stresses occur on principal planes 
on which there exist zero shearing stresses.
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Maximum Shearing Stress
Maximum shearing stress occurs for avex  
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Mohr’s Circle for Plane Stress

• Used to graphically find principal stresses and 
planes and maximum shear stresses and planes

• For known                 plot points X and Y
and construct circle centered at C. 

xyyx  ,,

2
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22 xy
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• Principal stresses obtained at A and B.
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Direction of rotation of Ox to Oa (ie., 
in physical plane) is  same as CX to CA
(ie., in Mohr plane)
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Mohr’s Circle for Plane Stress

• From Mohr’s circle we can find state of stress 
at other axes orientations.

• For state of stress at angle q with respect to 
the xy axes, construct a new diametral line 
X’Y’ at angle 2q with respect to XY.

• Coordinates of X’, Y’  are the 
transformed normal and shear stresses.
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So we get same formulae 
as before
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Mohr’s Circle for Plane Stress
• Mohr’s circle for centric axial loading:

0,  xyyx A
P 

(plane)element45on
2
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max 
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• Mohr’s circle for torsional loading:
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Example1

For state of plane stress shown, 
find (a) principal planes, (b)  
principal stresses, (c) maximum 
shearing stress and corresponding 
normal stress.
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Example 1

• Find element orientation for principal 
stresses: 

 
 


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
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

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• Find principal stresses:
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Example 1

MPa10
MPa40MPa50
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• Find corresponding normal stress:
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• Find maximum shearing stress:
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Example 2

Horizontal force P = 600 N 
magnitude applied to end D of lever 
ABD. Find (a) normal and shearing 
stresses on element at H having sides 
parallel to x and y axes, (b) principal 
planes and principal stresses at H.
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Example 2

Find equivalent force-couple system at  
center of transverse section passing 
through H.

  
   Nm150m25.0N600

Nm270m45.0N600
N600






xM
T
P

Find normal and shearing stresses at H.
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 
  

 42
1

4
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1

m015.0
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
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
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y
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Note: tyz due to bending is zero at H
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Example 2
Find principal stresses and planes.

 




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 
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
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Example 3

For state of plane stress shown, (a) 
construct Mohr’s circle, find (b) 
principal planes, (c) principal 
stresses, (d) maximum shearing stress 
and corresponding normal stress.

• Construct Mohr’s circle
   

    MPa504030

MPa40MPa302050

MPa20
2

1050
2

22 











CXR

FXCF
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
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Example 3
• Principal planes and stresses

5020max  CAOCOA

MPa70max 

5020max  BCOCOB

MPa30max 





1.532
30
402tan

p

p CF
FX





 6.26p
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Example 3

• Maximum shear stress

 45ps 

 6.71s

Rmax

MPa 50max 

ave 

MPa 20 
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Example 4

For state of plane stress shown, find 
(a) principal planes and the principal 
stresses, (b) stress components on 
element obtained by rotating given 
element counterclockwise through 
30 degrees. • Construct Mohr’s circle

        MPa524820

MPa80
2

60100
2

2222 
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Example 4

• Principal planes and stresses





4.672

4.2
20
482tan

p

p CF
XF





clockwise7.33 p

5280
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

 CAOCOA
5280
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

 BCOCOA

MPa132max  MPa28min 
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Example 4














6.52sin52

6.52cos5280
6.52cos5280

6.524.6760180

XK

CLOCOL
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yx

y

x







• Stress components after 
counterclockwise rotation by 30o

Points X’ and Y’ on Mohr’s circle, that 
correspond to stress components on 
rotated element, are obtained by 
rotating XY ccw through  602

MPa3.41

MPa6.111
MPa4.48
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
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Transformation of Plane Strain
• Plane strain - deformations of the material 

take place in parallel planes and are the 
same in each of those planes.

• Example:  Long bar subjected to 
uniformly distributed transverse loads (ie., 
normal to z-axis).  State of plane strain 
exists in any transverse section not located 
too close to the ends of the bar.

• Plane strain occurs in a plate subjected 
along its edges to a uniformly distributed 
(in z-direction) load and restrained from 
expanding or contracting laterally by 
smooth, rigid and fixed supports

 0

  :strain of components

x  zyzxzxyy 
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Transformation of Plane Strain
• State of strain at point Q results in 

different strain components with respect 
to the xy and x’y’ coordinate systems.

• We get strain transformation relations 
similar to those for stress transformation 
(see details in next two slides)
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

2cos
2

2sin
22

'' xyyxyx 




 xyyxxOB 





2
1

' )4/(
,4/For 

 
OyOxOB

yxOBxy

andofbisectoriswhere

2  

   











2cos
2

2sin
22

)4/(

Thus,'.and'ofbisectoris'where

22
system,inThus,

''

''''''

xyyxyx
xOB

yxOByxOByx

OyOxOB

x'y'



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
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Mohr’s Circle for Plane Strain
• Since strain transformation relations are of 

same form as stress transformation, for 
plane problems, Mohr’s circle techniques 
apply.

• Abscissa for center C, and radius R , are
22

222 















 



 xyyxyx

ave R




• Principal axes of strain and principal strains,

RR aveave

yx

xy
p













minmax

2tan

  22
max 2 xyyxR  

• Maximum in-plane shearing strain,
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Measurements of Strain: Strain Rosette

• Strain gages indicate normal strain through 
changes in resistance.

 yxOBxy   2

• With a 45o rosette, ex and ey are measured 
directly.  gxy is obtained indirectly with,

333
2

3
2

3

222
2

2
2

2

111
2

1
2

1

cossinsincos

cossinsincos

cossinsincos







xyyx

xyyx

xyyx







• Normal and shearing strains may be 
obtained from normal strains in any three 
directions,
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Stresses in Thin-Walled Cylindrical Pressure Vessels

• Cylindrical vessel with principal stresses
sq=s1 = hoop stress
sx = s2 = longitudinal stress

   

t
pr

xrpxtFz




1

1 220







• Hoop stress:

   

21

2

2
2

2
2

20













t
pr

rprtF

x

x

• Longitudinal stress:
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Stresses in Thin-Walled Cylindrical Pressure Vessels

Maximum in-plane shearing stress:

t
pr
42

1
2)planeinmax(  

Maximum out-of-plane shearing stress 
corresponds to a 45o rotation of the plane 
stress element around a longitudinal axis

t
pr
22max 

Points A and B correspond to hoop stress, s1, 
and longitudinal stress, s2

Note: Plane stress Mohr’s circle is only ADBE. The remaining is due to 3-D state 
of stress with third principal stress being zero. 3-D state of stress is also used in 
finding maximum out-of-plane shearing stress by using third principal stress as 
zero. This is not covered in this course. 
Only maximum in-plane shearing stress is covered in this course. 
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Stresses in Thin-Walled Spherical Pressure Vessels

Spherical pressure vessel:

t
pr

rptr

2

)2(

21

2
2









Maximum out-of-plane shearing 
stress

t
pr
412

1
max  

Mohr’s circle for in-plane 
transformations reduces to a point

0
constant

plane)-max(in

21






Note: Plane stress Mohr’s circle is only AB, i.e., circle with zero radius, i.e., a point. 
The dotted circle is due to 3-D state of stress with third principal stress being zero. 
3-D state of stress is also used in finding maximum out-of-plane shearing stress, by using third 
principal stress as zero. This is not covered in this course. 
Only maximum in-plane shearing stress is covered in this course. 
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Principle Stresses in a Beam

For beam subjected to transverse loading

It
VQ

It
VQ

I
Mc

I
My

mxy

mx









Can the maximum normal stress within 
the cross-section be larger than

I
Mc

m 
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Principle Stresses in a Rectangular section Beam
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Principle Stresses in a Beam

Cross-section shape results in large values of txy near 
the surface where sx is also large.

smax may be greater than sm (since tb is large) 
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Example 5

160-kN force applied at tip of 
W200x52 rolled-steel beam.  

Neglect effects stress 
concentrations at fillets, 
determine whether normal 
stresses at section A-A’ satisfy 
sall =150 MPa
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Example 5
Determine shear and bending moment in 

Section A-A’

  
kN160

m-kN60m375.0kN160




A

A
V
M

Calculate normal stress at top surface and at 
flange-web junction.

 

MPa9.102
mm103
mm4.90MPa2.117

MPa2.117
m10512

mkN60
36









 

c
yσ

S
M

b
ab

A
a




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Example 5

Calculate principal stresses at 
flange-web junction

 

 

 MPa 150MPa9.159

5.95
2

9.102
2

9.102 2
2

22
2
1

2
1

max











 bbb 

Design specification not 
satisfied.

Calculate shear stress at flange-web junction.

 

  
  

MPa5.95
m0079.0m107.52

m106.248kN160

m106.248

mm106.2487.966.12204

46

36

36

33

















It
QV

Q

A
b
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Example 6

sall = 165 Mpa, tall = 100 Mpa. 
Select wide-flange beam to be 
used.
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Example 6

Calculate required section modulus, 
select appropriate beam section.

section beam 920select W53

mm1959
Pa10651
Nm10323 3

6

3
max

min








all

M
S



Maximum shear and bending moment from 
SFD, BMD.

kN4.193

kN 9.54withkNm2.323

max

max





V

VM

Reactions at A and D.

kN5.1840

kN5.2650








AD

DA

RM

RM

323.2
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Example 6
Find maximum shearing stress.

Assume uniform shearing stress in web 
(conservative, see shallow parabolic 
variation, slide 10, shear stresses chapter)

MPa100MPa 6.35
m 105436.6
N 104.193

26-

3
max

max 




webA

V

Find maximum normal stress.

 

MPa1.10
m106.4365

N 54900

MPa147
mm5.266
mm9.250MPa1.156

MPa1.156
m1007.2

Nm323200

26b

36
max

















web

b
ab

a

A
V

c
yσ

S
M







 

MPa165MPa1.147

MPa1.10
2
MPa147

2
MPa147 2

2

max










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Design of Transmission Shaft

If power is transferred to and from shaft 
by gears or sprocket wheels, the shaft 
is subjected to transverse loading (due 
to forces in mating gears) as well as 
shear loading (due to torque from 
these forces).

Normal stresses due to transverse loads 
may be large, should be included in 
determination of maximum shearing 
stress.

Shearing stresses due to transverse loads 
are usually small and their 
contribution to maximum shear stress 
may be neglected.
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Design of a Transmission Shaft

Shaft section requirement,

all

TM

c
J


max

22

min






 









Maximum shearing stress,

 

22
max

22
2

2

max

2 section,-crossannular or circular  afor 

22

TM
J
c

JI

J
Tc

I
Mc

m
m































At any section,

J
Tc

MMM
I

Mc

m

zym







 222where



MECHANICS OF MATERIALS

8- 49

Example 7

Shaft rotates at 480 rpm, 
transmits 30 kW from motor to 
gears G and H;  20 kW is taken 
off at gear G and 10 kW at gear 
H. sall = 50 Mpa. Find smallest 
permissible diameter for shaft.
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Example 7
Find gear torques and corresponding tangential 

forces. Use,

 

 

  kN49.2mN199
Hz82

kW10

kN63.6mN398
Hz82

kW20

kN73.3
m0.16

mN597

mN597
Hz82

kW30
2












DD

CC

E

E
E

E

FT

FT

r
TF

f
PT







Find reactions at A and B.

kN90.2kN80.2

kN22.6kN932.0





zy

zy

BB

AA

HHHDDD

GGGCCC

MMMEEE

TPPT
TPPT
TPPT








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Example 7
Identify critical shaft section from torque and bending 

moment diagrams. D comes out as critical section.

 
mN1357

5973731160 222
max

222



 TMM zy

At C it is 1319 N.m. At E it is 1003 N.m
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Example 7
Find minimum allowable shaft diameter.

36

222

m1014.27
MPa50

mN 1357 







all

zy TMM
c
J



mm 7.512  cd

m25.85m02585.0

m1014.27
2

363



 

c

c
c
J 

For solid circular shaft,



MECHANICS OF MATERIALS

8- 53

Stresses Under Combined Loadings

Wish to find stresses in slender structural 
members subjected to arbitrary 
loadings.

Pass section through points of interest.  
Determine force-couple system at 
centroid of section required to maintain 
equilibrium.

System of internal forces consist of 
three force components and three 
couple vectors.

Determine stress distribution by applying 
the superposition principle.
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Stresses Under Combined Loadings
Axial force and bending moments yield 

normal stresses.
Shear forces and twisting couple yield 

shearing stresses.

Find principal stresses, 
maximum shearing 
stress.
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Example 8

Find principle stresses, principal 
planes, maximum shearing 
stress, at H.
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Example 8
Internal forces in Section EFG.

     

   mkN3m100.0kN300

mkN5.8

m200.0kN75m130.0kN50

kN75kN50kN 30









zy

x

zx

MM

M

VPV

Section properties,

  

  

   463
12
1

463
12
1

23

m10747.0m040.0m140.0

m1015.9m140.0m040.0

m106.5m140.0m040.0













z

x

I

I

A



MECHANICS OF MATERIALS

8- 57

Example 8
Normal stress at H.

  

  

  MPa66.0MPa2.233.8093.8
m1015.9

m025.0mkN5.8
m10747.0

m020.0mkN3
m105.6

kN50

46

4623-






















x

x

z

z
y I

bM
I

aM
A
P

Shearing stresses at H.
    

  
  

0
MPa52.17

m040.0m1015.9
m105.85kN75

m105.85

m0475.0m045.0m040.0

46

36

36
11



















yx

x

z
yz tI

QV

yAQ



Note: 2-D (i.e., plane) state of 
stress only at H. In interior it 
is 3-D state of stress 
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Example 8
Principal stresses and maximum, shearing 

stress, principal planes.











98.13

96.272
0.33

52.172tan

MPa4.74.370.33

MPa4.704.370.33

MPa4.3752.170.33

pp

min

max

22
max

p

CD
CY

ROC

ROC

R



















98.13

MPa4.7

MPa4.70

MPa4.37

min

max

max

p








