CE-221 SOLID MECHANICS

End-Sem Exam
07/11/16
Note: Write your name \& roll no. on answerbook and on summary-answer-sheet provided with the question paper.
You must submit the summary-answer-sheet along with the answerbook.
Closed book, closed notes exam. No formula sheet allowed. No mobile phones allowed in the exam hall.
All questions carry equal marks. Assume suitable data if required and state the same clearly.
Use formulae from provided table, if applicable.

Problem 1

A hollow circular steel tube \boldsymbol{A} fits over the end of a solid circular steel rod \boldsymbol{B} as shown in Fig. 1. The far ends of the tube and the rod are fixed. A hole through rod \boldsymbol{B} makes an angle $\boldsymbol{\beta}=\pi / 6$ radians with a line through two holes in tube \boldsymbol{A} as shown. Rod \boldsymbol{B} is twisted until the holes in tube \boldsymbol{A} and $\operatorname{rod} \boldsymbol{B}$ are aligned and then a pin is placed through the holes and the system is left to deform. Determine the final angles of twist of the tube \boldsymbol{A} and the $\operatorname{rod} \boldsymbol{B}$. For tube \boldsymbol{A} and $\operatorname{rod} \boldsymbol{B}$ use data: polar moment of inertia $\boldsymbol{J}_{\boldsymbol{a}}=\mathbf{5} \times \mathbf{1 0}^{-4} \mathbf{m}^{4}, \boldsymbol{J}_{\boldsymbol{b}}=\mathbf{2 . 5 \times 1 0 ^ { - 4 }} \mathbf{~ m}$; lengths $L_{a}=\mathbf{2 0 0 0} \mathbf{~ m m}, \boldsymbol{L}_{b}=\mathbf{1 5 0 0} \mathbf{~ m m}$.

Fig. 1

Problem 2

The cross-section of a perfectly bonded composite beam is made up of aluminum and steel as shown in Fig.2. Young's modulus of aluminum and steel are 35 GPa and 70 GPa respectively. Calculate the maximum tensile bending stresses in steel and aluminum.

Problem 3

The composite beam shown in Fig. $\mathbf{3}$ is made by welding C200 x $\mathbf{1 7 . 1}$ rolled steel channels (C-sections) to the flanges of a $\mathbf{W} \mathbf{2 5 0} \mathbf{x} \mathbf{8 0}$ wide-flange rolled-steel I-section. The beam is subjected to a vertical shear of $\mathbf{2 0 0} \mathbf{~ k N}$. Determine (a) the horizontal shear force per meter at each weld, (b) the horizontal shearing stress at point \boldsymbol{a} on the flange of the wide-flange section.

Section	d (mm)	b_{f} (mm)	t_{f} (mm)	t_{w} (mm)	Area $\left(\mathrm{mm}^{2}\right)$	\bar{x} $(\mathrm{~mm})$	I_{XX} $\left(\mathrm{x} 10^{6} \mathrm{~mm}^{4}\right)$	I_{YY} $\left(\mathrm{x} 10^{6} \mathrm{~mm}^{4}\right)$
C 200 x 17.1	203	57.4	9.91	5.59	2170	14.5	13.5	0.545
W 250 X 80	257	254	15.6	9.40	10200	-	126.0	42.9

Fig. 3

Problem 4

A semicircular bar $\boldsymbol{A B}$ lying in a horizontal plane is supported at \boldsymbol{B} as shown in Fig. 4. Thus the self-weight of the bar acts into the plane of the paper. The bar has centerline radius $\boldsymbol{R}=\mathbf{5 0 0} \mathbf{~ m m}$ and self-weight $\boldsymbol{q}=\mathbf{4 0} \mathbf{N} / \mathbf{m}$. The cross-section of the bar is circular with diameter $\boldsymbol{d}=\mathbf{2 5} \mathbf{m m}$. Determine the maximum tensile stress σ_{t}, the maximum compressive stress σ_{c}, and the maximum shear stress $\tau_{\max }$ at point \boldsymbol{P} lying on the top of the bar at the support as shown in the cross-section figure. Also show the original stress element (block), the principal stress element and the maximum shear stress element, with proper relative orientations. The center of gravity of the bar is at point \boldsymbol{C} at a distance $\boldsymbol{c}=2 R / \pi$.

cross-section

Fig. 4

Problem 5

Two cantilever beams are interconnected by a linear spring having a spring constant $K=\mathbf{9 x 1 0} \mathbf{N} / \mathrm{m}$ as shown in Fig. 5. Determine the force in the spring due to an applied load of $\boldsymbol{P}=\mathbf{4 5 , 0 0 0} \mathrm{N}$. Moment of inertia is $I=1.4 \times 10^{-4} \mathbf{m}^{4}$, length is $L=3 \mathrm{~m}$, modulus of elasticity is $\boldsymbol{E}=\mathbf{2 x 1 0} \mathbf{1 1}^{\mathbf{1 1}} \mathbf{P a}$, for each beam.

Fig. 5

Problem 6

Determine the characteristic equation whose solution gives the critical buckling load for the system shown in Fig.6. Bar $\boldsymbol{A B}$ is flexible with constant $\boldsymbol{E I}$ and bar $\boldsymbol{B C}$ is rigid. You do not have to solve the characteristic equation. Use $\boldsymbol{L}=\mathbf{2 a}$.
(Note that the characteristic equation is the transcendental algebraic-trignometric equation which is obtained as the condition for a non-trivial (non-zero) solution of the second order differential equation of moment equilibrium).

Fig. 6

SUMMARY ANSWER SHEET

PAPER CODE: D
Name:
Roll no:

Problem 1

$$
\begin{aligned}
& \phi_{\mathrm{A}}= \\
& \phi_{\mathrm{B}}=
\end{aligned}
$$

Problem 2

Max bending tensile stress in steel =

Max bending tensile stress in aluminum =

Problem 3

(a) Horizontal shear force per meter at each weld =
(b)Horizontal shear stress at point $a=$

Problem 4

$$
\begin{aligned}
& \sigma_{t}= \\
& \sigma_{\mathrm{c}}= \\
& \tau_{\max }=
\end{aligned}
$$

Problem 5

Spring force =

Problem 6
Characteristic equation is:

$$
C E 221 \text { - } 2016 \text { ENS SEM. }
$$

$$
\frac{T L_{A}}{G J_{A}}=\theta_{A} ; \quad \frac{T L_{B}}{G J_{B}}=\frac{\pi}{6}-\theta_{A}
$$

chimisiate T / G

$$
\begin{aligned}
\Rightarrow \theta_{A} & =\left[\frac{J_{B}}{L_{B}} /\left(\frac{J_{A}}{L_{A}}+\frac{J_{B}}{L_{B}}\right)\right] \frac{\pi}{6}=\frac{\pi}{15} \\
\theta_{B} & =\frac{\pi}{6}-\frac{\pi}{15}=\frac{\pi}{10}
\end{aligned}
$$

P2 Transform to AL section.

$$
\begin{aligned}
I_{\text {comp }} & =(60)^{3} \frac{\left(60^{2}+100^{2}+4.60 .100\right)}{36(60+100)}+\frac{1}{2}(160)(60)(43.488-32.5)^{2} \\
& +(30)^{3} \frac{\left(58^{2}+60^{2}+4.50 .60\right)}{36(50+60)}+\frac{1}{2}(110)(30)(60-43.488+15.4545)^{2} \\
& =\left(379.901 * 10^{4} \mathrm{~mm}^{4}\right. \\
I_{A L} & ={ }^{372.341 * 10^{4} \mathrm{~mm}^{4}} \begin{array}{l}
E_{S t}=2 \\
E_{A C}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
M_{1 L} & =1350 * 5.3 ; M_{2}
\end{aligned}=1350 * 2.4 \mathrm{~N} \cdot \mathrm{~m} .
$$

Fixed end: $\left(\sigma_{A L}\right)_{\max T}=\frac{M_{1}(90-43.5)}{I_{\text {comp }}}=89.23 \mathrm{MPa}$.

$$
\left(T_{\text {St }}\right)_{\max } T=\frac{M_{1}(60-43.5)}{I_{\text {comp }}} * y^{\bar{j}^{2}}=63.32 \mathrm{MPa}
$$

Af Junction: $\left(\sigma_{A_{L}}\right)_{\text {Max }}=\frac{M_{2}(30-15.45)}{I_{A_{L}}}=381.99 \mathrm{MPa}$

$$
\begin{aligned}
& \bar{y}_{\text {comp }}=\overbrace{\frac{1}{2}(160)(60) \frac{(60+200)(60)}{3(60+100)}+\frac{1}{2}}^{\text {for } \bar{y}_{s t}} \overbrace{(110)(30))\left(\frac{50+120)(30)}{3(50+60)}\right.}^{\text {for } \bar{y}_{A L}} \\
& +60\} \\
& \frac{1}{2}[\frac{160)(60)}{\left(\frac{160}{\text { for } \overline{y s t}}\right)}+\underbrace{(110)(30)}_{\text {for }}]_{\text {yAh }} \\
& =43.488=43.5 \text { for } y_{A L} \\
& \bar{y}_{A L}=15.4545 ; \quad \bar{y}_{S t}=32.5 \\
& \begin{array}{l}
+\frac{(30)^{3} \cdot \frac{\left(58^{2}+60^{2}+4.50 .60\right)}{36(50+60)}+\frac{1}{2}\left((100)(30)(60-43.488+15.4545)^{2}\right.}{=379.901 * 10^{4} 4}
\end{array} \\
& n=\frac{E_{s t}}{E_{A c}}=2 .
\end{aligned}
$$

$P 3$ (i) $Q_{1}=(2170)\left(\frac{257}{2}+57.4-14.5\right)=371938$

$$
\begin{aligned}
& I=\left\{126 E 6+2\left(0.545 E 6+2170\left[\frac{257}{2}+57.4-14.5\right]^{2}\right)\right\} \\
& =254590346.4 \mathrm{~mm}^{4} \\
& \Delta H=\frac{1}{2}(200) \frac{Q_{1}}{I}=0.1461 \mathrm{kN} / \mathrm{mm}=146.1 \mathrm{kN} / \mathrm{m} .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& Q_{2}=371938+2(112)(15.6)\left(\frac{257}{2}-\frac{15.6}{2}\right)=793712.08 \\
& T_{x z}=\frac{200 E 3}{2} \frac{Q_{2}}{I \mathrm{~m}^{3}}=19.985 \mathrm{MiPa} \\
& \text { NHo Horizolal shear at: }
\end{aligned}
$$

2 (iii) Extra - notregiiced

$$
\begin{aligned}
a_{3}=371938+(254)\left(\frac{15.6}{2}\right)\left(\frac{257}{2}-\frac{15-6}{4}\right)=618795.52 \\
\mathrm{~mm}^{3}
\end{aligned}
$$

\rightarrow vertical shear at ' a '

$$
M=(40)(\pi * 0.5)\left(\frac{2 * 0.5}{\pi}\right)=20 \mathrm{~N} . \mathrm{m} ; \quad T=(40)(\pi * 0.5)(0.5)=10 \pi \mathrm{N.m}
$$

AtA: $\sigma_{x}=\frac{M_{r}}{\pi r^{4 / 4}}=\frac{(4)(20) * 10^{3}}{\pi(25 / 2)^{3}}=13.04 \mathrm{MPa}, \sigma_{z}=0, \underbrace{\sigma_{y}=\sigma_{y z}=\sigma_{y x}=0}_{\text {tractim free }}$

$$
\tau_{x z}=\frac{\pi_{r}}{\pi_{r} 4 / 2}=\frac{(2)(10 \pi) * 10^{3}}{\pi(25 / 2)^{3}}=10.24 \mathrm{MPa}
$$

tractingree surfice

$$
\begin{aligned}
\sigma_{t}, \sigma_{c} & =\frac{13.04}{2} \pm \frac{1}{2} \sqrt{13.01^{2}+20.48^{2}} \\
& =18.66,-5.62 \mathrm{MPa}
\end{aligned}
$$

$\tau_{\text {max }}=12.14 \mathrm{MRa}$

$$
\theta_{p}=\frac{1}{2} \cos ^{-1}\left(\frac{13.04 / 2}{12.14}\right)=28.75^{\circ}
$$

p5

$$
\begin{aligned}
& y_{1}=\frac{P L^{3}}{24 E I}+\frac{L}{2} \frac{P L^{2}}{8 E I}=\frac{5}{48} \frac{P L^{3}}{E I} ; y_{2}=\frac{F L^{3}}{3 E I}=y_{3} \\
& F=k\left(y_{1}-y_{2}-y_{3}\right)=\frac{k L^{3}}{E I}\left(\frac{5}{48} P-\frac{F}{3}-\frac{F}{3}\right) \Rightarrow F=\frac{(5 / 48) P}{\left(\frac{E I}{R L^{3}}+\frac{2}{3}\right)}=2577
\end{aligned}
$$ guith

$P 6$

Equil of $B C$

$$
\Rightarrow R=P_{y_{l}} / a
$$

$F B D$ of element $A D$.
Equil of $A D \Rightarrow E I y^{\prime \prime}+P_{y}+R_{x}-M_{0}=0$

$$
\begin{aligned}
& I y^{\prime \prime}+r_{y}+k x+k^{2} y_{L}(x-L)-k^{2} y_{L}=0 \\
& y^{\prime \prime}+k^{2} y+\frac{k^{2}}{a}(x-L-a)=0 \\
& y^{\prime \prime}+k^{2} y+k^{a}
\end{aligned}
$$

Soution is $\rightarrow y=A_{1} \cos k x+A_{2} \sin k x+\frac{y_{2}}{a}(L+a-x)$
B

$$
\begin{aligned}
& y(0)=0 \rightarrow\left[\begin{array}{ccc}
1 & 0 & (L+a) \\
0 & k & -1 \\
y^{\prime}(0)=0 \rightarrow\left[\begin{array}{l}
A_{1} \\
A_{2} \\
y_{L} / a
\end{array}\right\}=0 \\
\left(()=y_{L} \rightarrow[\cos k L\right. & \sin k L & 0
\end{array}\right]=0 \tan k L=R(L+a)=\frac{3}{2} k L \\
& \operatorname{det}=0 \Rightarrow \tan
\end{aligned}
$$

