Note: Assume suitable data if not given.

Problem 1

(a) (3 marks)

A force $\boldsymbol{P}=750 \mathrm{~N}$ is applied to the pedal $\boldsymbol{B C D}$ as shown. Find:
(i) the diameter of the pin at \boldsymbol{C} for which the shearing stress in the pin is 40 MPa .
(ii) the corresponding bearing stress in the pedal at \boldsymbol{C}.
(iii) the corresponding bearing stress in each support bracket at \boldsymbol{C}.

(b) (4 marks):

A steel shaft consists of a hollow shaft 2 m long, with an outside diameter of 100 mm and an inside diameter of 70 mm , rigidly attached to a solid shaft of 1.5 m length and 70 mm diameter. Determine the maximum power that can be transmitted by the shaft at a speed of 100 rpm without exceeding a shear stress of 50 MPa and a twist of 5^{0} in the 3.5 m length. Use $\boldsymbol{G}=80 \mathrm{GPa}$.

Problem 2 (8 marks):

A rigid bar $\boldsymbol{A} \boldsymbol{B}$ is connected to flexible cylindrical rods $\boldsymbol{G H}$ and $\boldsymbol{J M}$ (diameter \boldsymbol{D}) which are connected to linear springs with stiffness \boldsymbol{K}_{1} and \boldsymbol{K}_{2}, respectively. The bar $\boldsymbol{A B}$ is horizontal when the system is unstressed and at room temperature. A force $\boldsymbol{F}=100 \mathrm{kN}$ is applied and simultaneously the rod $\boldsymbol{J M}$ is heated by $50^{\circ} \mathrm{C}$ and the $\operatorname{rod} \boldsymbol{G H}$ is cooled by $50^{\circ} \mathrm{C}$ with respect to room temperature. Find the angle of rotation of $\operatorname{bar} \boldsymbol{A B}$. Use data $\boldsymbol{K}_{1}=0.15 \times 10^{9} \mathrm{~N} / \mathrm{m}, \boldsymbol{K}_{2}=0.2 \times$ $10^{9} \mathrm{~N} / \mathrm{m}, \boldsymbol{E}=200 \mathrm{GPa}, \boldsymbol{D}=100 \mathrm{~mm}, \boldsymbol{\alpha}=12 \times 10^{-6} /{ }^{0} \mathrm{C}$. All dimensions shown are in meters.

Problem 3 (7 marks):

A solid circular shaft $\boldsymbol{A B C D}$ with fixed supports at ends \boldsymbol{A} and \boldsymbol{D} is acted upon by two equal and oppositely directed torques $\boldsymbol{T}_{\mathbf{0}}$ applied at points \boldsymbol{B} and \boldsymbol{C} as shown. Find:
(i) the distance \boldsymbol{x} for which the maximum angle of twist occurs at points \boldsymbol{B} and \boldsymbol{C}.
(ii) the corresponding maximum angle of twist at \boldsymbol{B} and \boldsymbol{C}.

Problem 4 (8 marks):

The structure shown comprises beams $\boldsymbol{C A}$ and $\boldsymbol{A B}$ connected together by a pin at \boldsymbol{A}, with fixed support at \boldsymbol{C}, and roller support at \boldsymbol{D}, and loading as shown. The load at \boldsymbol{B} is a clockwise couple moment. Draw the shear force and bending moment diagrams. You must show all the key values, proper shapes (indicate whether linear, quadratic, cubic, etc), location of zero shear force, maximum shear force, zero bending moment, maximum bending moment, etc.

PI
(a)

$$
\begin{aligned}
& C_{y}=P=750, C_{x}=F_{A B}=P \cdot \frac{300}{125}=1800 \\
& C=\sqrt{C_{x}^{2}+C_{y}^{2}}=1950 \mathrm{~N} \\
& L_{\mathrm{N} / \mathrm{mm}^{2}}=\frac{1950}{2 * \frac{\pi}{4}\left(d^{2}\right)} \Rightarrow d=5.571 \mathrm{~mm} \\
& \sigma_{\text {heanig }}=\frac{1950}{9 * 5.571}=38.89 \mathrm{MPa} \\
& \text { pedai } \\
& \sigma_{\text {beanig }}=\frac{1950}{2 * 5 * 5.571}=35.003 \mathrm{MPa} \\
& \text { suppiket } \\
& \text { brapke }
\end{aligned}
$$

(b) $P_{\max }=T_{\max }\left(\frac{100 * 2 \pi}{60}\right)$
$50 \mathrm{Mpa}=\tau_{\text {max }}=\frac{T r}{J}$ so shaff with higher $\frac{r}{J}$ is
$\left.\overline{\left(\frac{r}{J}\right.}\right)_{\text {ssid }}=\frac{70 / 2}{\frac{\pi}{32} \cdot 70^{4}}$ critical for $\tau_{m a x}$ coteria

$$
\begin{aligned}
& \text { so }\left(\frac{r}{I}\right) \text { ssidid } \frac{\text { dminates }}{\frac{5 \pi}{180}}=\theta_{\max }=\sum \frac{T L}{G J}=\frac{T}{80 E 9}\left(\frac{2}{\left(0.1^{4}-0.07^{4}\right)}+\frac{1.5}{0.07^{4}}\right) \frac{32}{\pi} \\
& \Rightarrow T=7719 \mathrm{~N} . \mathrm{m} \text { from dmax criteria. }
\end{aligned}
$$

Choise lower $\Rightarrow T_{\text {max }}=3367.4 \mathrm{~N} . \mathrm{m}$.

P2 Equilibrium $\rightarrow 5 F_{1}+9 F_{2}=12 * 100 E 3 \rightarrow$ (1) Tensile, expansion, positive. $F_{1}=F_{G H}, F_{2}=F_{J M}$ Compatibility $\rightarrow \frac{F_{1}}{K_{1}}+\frac{F_{1} L_{1}}{A E}+\alpha \Delta T_{1} L_{1}=\frac{\frac{F_{2}}{K_{2}}+\frac{F_{2} L_{2}}{A E}+\alpha \Delta T_{2} L_{2}}{5}$
Solve (1), (2),

$$
\Rightarrow F_{1}=\frac{\frac{5}{9}\left[F_{2}\left(\frac{1}{K_{2}}+\frac{L_{2}}{A E}\right)+\alpha \Delta T_{2} L_{2}\right]-\alpha \Delta T_{1} L_{1}}{\left(\frac{1}{K_{1}}+\frac{L_{1}}{A E}\right)}
$$

Put $K_{1}=0.15 E 9, K_{2}=0.2 E 9, L_{1}=4 \mathrm{~m}, L_{2}=3 \mathrm{~m}, E=200 \mathrm{GPa}$

$$
A=\frac{\pi}{4}(100 \mathrm{E}-3)^{2}, \alpha=12 \mathrm{E}-6, \Delta T_{1}=-50^{\circ} \mathrm{C}, \Delta T_{2}=50^{\circ} \mathrm{C}
$$

get $F_{2}=-58213 \mathrm{~N}, F_{1}=344783 \mathrm{~N}$

$$
\theta=\frac{\frac{F_{2}}{K_{2}}+\frac{F_{2} L_{2}}{A E}+\alpha \Delta T_{2} L_{2}}{9}=1.5531 E-4 \text { radians }
$$

P3

Equilibrium: $T_{A}=T_{D}$.
Compatilility: $\theta_{D}=\frac{T_{A} x}{G J}+\frac{\left(T_{A}-T_{0}\right)(L-2 x)}{G J}+\frac{T_{A} x}{G J}=0$

$$
\begin{aligned}
\Rightarrow T_{A} & =\frac{T_{0}(L-2 x)}{L} \\
G \theta_{B} & =\frac{T_{A} x}{G J}=\frac{T_{0}}{G J} \frac{x(L-2 x)}{L}=\theta_{C} C \\
\frac{d \theta_{B}}{d x} & =0 \Rightarrow L-4 x=0 \Rightarrow x=\frac{L}{4} \\
\frac{d^{2} \theta_{B}}{d x} & =-4<0 \Rightarrow \text { maxima. } \\
\theta_{B}=\theta_{C} & =\frac{T_{0}}{G J} \frac{L / 4(L-2 L / 4)}{L}=\frac{1}{8} \frac{T_{0} L}{G J}
\end{aligned}
$$

P4

$$
\begin{aligned}
&=-130000 / 3 \\
& V_{C}=V_{A}+1000 \cdot 10=\frac{28000}{3} \\
& X_{E}=\frac{28000 / 3}{28000 / 3}+\frac{2000}{3} * 10=\frac{14}{15} * 10 \\
&c\}=9.333 \\
& M_{A}=M_{D}+\frac{2000}{3} \cdot 3=0 \\
& 2000=M_{A}+\frac{1}{2} \cdot \frac{2000}{3}(10-9.333) \\
&=222 \cdot 2 \cdot \\
& M_{C}=M_{E}-\frac{1}{2} \cdot \frac{28000}{3}=9.3333 \\
& \hline
\end{aligned}
$$

