Note: Assume suitable data if not given.

Problem 1 (7.5 Marks):

A block A weighs $\mathbf{9 0 , 0 0 0} \mathbf{N}$ and is to be supported by three elastic steel members DC, CE and EF as shown in Fig 1. Take the block \mathbf{A} as rigid and the modulus of elasticity of the three elastic steel members as $\mathbf{1 . 9 3 \times 1 0 { } ^ { 1 1 } \mathbf { P a } \text { . Neglect the self weight of the three elastic } { } ^ { \text { a } } \text { . }}$ steel members. Assume small displacements and rotations.
Calculate the vertical and horizontal displacements of pins C and F due to the weight of the block.

Fig. 1

Problem 2 (7.5 Marks):

Two solid shafts $\mathbf{1}$ and $\mathbf{2}$ are rigidly connected to a hollow shaft $\mathbf{3}$ as shown in Fig. 2. Shaft $\mathbf{2}$ is fixed at the right end while shaft $\mathbf{3}$ is fixed at the left end. A torque $\boldsymbol{T}=\mathbf{5 0 0} \mathbf{N}$-mm is applied to the free end of shaft $\mathbf{1}$. The shear modulus of all the three shafts is $\mathbf{G}=\mathbf{9 0} \mathbf{~ G P a}$.
(i) Calculate the torques at the supports of shafts 2 and 3,
(ii) Calculate the rotation at the point of application of torque T.

Fig. 2

Problem 3 (7.5 Marks):

Three shafts and four gears are used to form a gear train that will transmit power from the motor at \boldsymbol{A} to a machine tool at \boldsymbol{F} as shown in Fig. 3. The radii of the four gears are shown in Fig.3. Bearings supporting the shafts are not shown in Fig. 3 for clarity. The diameter of each shaft is as follows: $\boldsymbol{d}_{A B}=\mathbf{1 6} \mathbf{~ m m}, \boldsymbol{d}_{C D}=\mathbf{2 0} \mathbf{~ m m}$ and $\boldsymbol{d}_{E F}=\mathbf{2 8} \mathbf{~ m m}$. The motor operates at $\mathbf{1 4 4 0} \mathbf{~ r p m}$ and the allowable stress for each shaft is $\mathbf{7 5} \mathbf{~ M P a}$. Determine the maximum power that can be transmitted at 1440 rpm.

Fig. 3

Problem 4 (7.5 Marks):

The bending moment diagram for a beam of length $5 \boldsymbol{a}$ which is supported by a pin support at \mathbf{A} and a roller support at \mathbf{B} is shown in Fig. 4. The beam has an overhanging portion to the left of support A and to the right of support B.
(a) Draw the shear force diagram.
(b)Draw the loading diagram, showing the supports also.

Fig. 4

CE221 MODEM 2015.

Equil: $\Rightarrow C_{X}=0=F_{C E}$

$$
\begin{aligned}
C y & =F_{C D} \\
F_{C E}=(90000)\left(\frac{4-5}{3}\right) & =135000, F_{C D}=-45000
\end{aligned}
$$

Kinematics: $\because F_{C E}=0$, it doesent deform, it only "rigid body" rotates.

see prof below. Assume small displ\& rotations.
$\Delta_{C V} \cong$ change in beng th of $C D$

$$
=\frac{F_{C D} L_{C D}}{(A E)_{C D}}=0.1119 \mathrm{~mm}
$$

$$
\begin{gathered}
\Delta C_{H}=\Delta_{C V}=0.1119 \mathrm{~mm} \leftarrow \\
\left(\because O C C^{\prime} \text { is isoceles }\right) .
\end{gathered}
$$

$\Delta_{F V}{ }^{N}=$ change in length of $E F$

$$
=\frac{F_{E F} L_{E F}}{(A E)_{E F}}=\downarrow 0.6715 \mathrm{MM}
$$

$\Delta_{\text {EH }}=\Delta_{C H}=0.1119 \mathrm{~mm} \longleftarrow$
Prof:

$$
\begin{aligned}
& \overline{\left(D C^{\prime}\right.}=\sqrt{\left(D C-\Delta_{C V}\right)^{2}+\Delta_{C H}^{2}} \cong \sqrt{D C^{2}-2 \Delta_{C V} D C}=D C-\Delta_{C V} \\
& \left\{D C-\frac{F_{C D} L_{C D}}{(A E)_{C D}} \Rightarrow \Delta_{C V}=\frac{F_{C D} L_{C D}}{(A E)_{C D}}\right. \\
& \text { similarly, } E F^{\prime}=A F+\frac{F_{E F} L_{E F}}{\left(A E J_{E F}\right.}=E F+D_{F V} \\
& \text { Similarly, } \quad C F=C^{\prime} F^{\prime}\left(\because \text { Block } A^{\prime} A^{\prime} \text { is rigid }\right) \\
& =\sqrt{\left(x_{C^{\prime}}-x_{F \prime}\right)^{2}+\left(y_{c^{\prime}}-y_{F^{\prime}}\right)^{2}}=\sqrt{\left(x_{C}+\Delta_{C H}-x_{F}-\Delta_{F H}\right)^{2}+\left(y_{C V}+\Delta_{F H}\right)^{2}} \\
& \simeq \sqrt{C F^{2}+2 C F\left(\Delta_{C H}-\Delta_{F H}\right)}=C F\left[1+\frac{1}{2}\left\{\frac{\Delta_{C H}-\Delta_{F H}}{C F}\right\}\right]
\end{aligned}
$$

 CHANG F IN LENGTH.

PL
$T_{3 / 2} \ll$

$$
\begin{equation*}
\text { Equil }=T+T_{2}=T_{3} \tag{1}
\end{equation*}
$$

$T_{3} / 2$
Result:

$$
\gg T_{2}
$$

compatibility:

$$
\begin{equation*}
\frac{T_{2} \cdot 12}{G \frac{\pi}{32}(3)^{4}}=-\frac{T_{3} \cdot 10}{G \frac{\pi}{32}\left[6^{4}-4^{4}\right]} \rightarrow \tag{2}
\end{equation*}
$$

(1), (2) $\rightarrow T_{3}=469.53 \mathrm{~N} \cdot \mathrm{~mm}$
$T_{2}=-30.47 \mathrm{~N} . \mathrm{mm}$ Rotation of free end, where Tapolied:

\leftrightarrows Use $T=500, G=90$

Pl

$$
\begin{aligned}
& \left.\tau_{A B}=\frac{T_{A B}(8)}{\frac{\pi}{32} \cdot 16^{4}} ; \tau_{C i}=\frac{150}{\frac{60}{\frac{\pi}{32}} \cdot 20^{4}} ; \tau_{E F}=\frac{(100}{60}\right)^{2} T_{A B}(14) \\
& =1.22 E-4 \frac{T_{A B}}{(\pi / 32)} ; \quad=1.5625 E-4 \frac{T A B}{(\pi / 32)} ; \quad=1.4236 E-4 \\
& \Rightarrow 75=1.5625 E-\frac{\left(T_{A B}\right)_{\text {max }}}{(\pi / 32)} \Rightarrow\left(T_{A B}\right)_{\text {max }}=47123.9 \\
& \begin{aligned}
P_{\text {max }}=\frac{47123.9}{1000} * 1440\left(\frac{2 \pi}{60}\right) & =7.11 * 10^{3} \mathrm{~W} \\
& =7.11 \mathrm{~kW}
\end{aligned} \\
& =7.11 \mathrm{~kW} \text {. }
\end{aligned}
$$

P4

$$
\text { Chect: } \begin{aligned}
A_{y} & =\frac{4 P a-2 P \cdot 2 a+3 P a-2 P a+P P a}{3 a}=2 P \\
B_{y} & =P+3 P+2 P-2 P-A_{y}=2 P .
\end{aligned}
$$

