Mid-Sem Exam

06/09/16
PAPER CODE: A
Note: Write your name \& roll no. on answerbook and on summary-answer-sheet provided with the question paper.
You must submit the summary-answer-sheet along with the answerbook.
Closed book, closed notes exam. No formula sheet allowed. No mobile phones allowed in the exam hall.
All questions carry equal marks. Assume suitable data if required and state the same clearly.
Use formulae from provided tables, if applicable.

Problem 1

A symmetric bimetallic bar consisting of an inner copper layer securely bonded to two outer steel layers (Fig. 1) is heated uniformly to increase its temperature by $\mathbf{1 0 0}^{\circ} \mathrm{C}$. Assuming that the width of the bar is $\mathbf{3 0} \mathbf{~ m m}$, the length is $\mathbf{5 0 0} \mathbf{~ m m}$, and the thickness of each of the three layers is $\mathbf{1 0} \mathbf{~ m m}$, determine the normal stresses σ_{s} and σ_{c} in steel and copper, respectively. Coefficient of thermal expansion of steel is $\mathbf{1 8} \times \mathbf{1 0}^{-6} /{ }^{\circ} \mathrm{C}$ and copper is $25 \times 10^{-6} / /^{\circ} \mathrm{C}$. Modulus of elasticity of steel is $\mathbf{1 9 0} \mathbf{~ G P a}$ and copper is 75 GPa.

Fig. 1

Problem 2

The movement of a $\mathbf{1 0 0} \mathbf{~ m m} \times \mathbf{5 0} \mathbf{~ m m}$ plate is restrained along the x -direction by supports along two edges as shown in Fig. 2. There is no restraint to the movement of the plate in the y and z directions at the supports. The coefficient of thermal expansion is $25 \mathrm{x} \mathrm{10} \mathbf{1 0}^{\mathbf{- 6}}{ }^{\circ} \mathrm{C}$, modulus of elasticity is 200 GPa , and Poisson's ratio is $\mathbf{0 . 2 5}$. Calculate the change in length of the plate along the y direction (δ_{y}) due to a temperature change of $100{ }^{\circ} \mathrm{C}$.
Note that the normal strains in the plate along any direction is the summation of strains due to mechanical stresses and thermal changes, i.e. $\varepsilon_{x}=\sigma_{x} / E-v \sigma_{y} / E-v \sigma_{z} / E+\alpha \Delta T$ and similarly for ε_{y} and ε_{z}.

Fig. 2

Problem 3

A system of two concentric torsion members connected at their ends by rigid disks \boldsymbol{G} is shown in Fig. 3. The outside member \boldsymbol{C} is a tube with outside diameter $\mathbf{3 0 0} \mathbf{m m}$ and thickness $\mathbf{1 0} \mathbf{~ m m}$. The inside member consists of solid shafts \boldsymbol{A} of diameter $\mathbf{1 0 0} \mathbf{~ m m}$ and \boldsymbol{B} of diameter $\mathbf{2 0 0} \mathbf{~ m m}$. Shafts \boldsymbol{A} and \boldsymbol{B} and tube \boldsymbol{C} are made of the same material having shear modulus $\mathbf{1 0 0} \mathbf{G P a}$. At the right end the rigid disk is fixed in support \boldsymbol{D}. A torque of $\mathbf{2 0 0} \mathbf{~ k N}$ \mathbf{m} is applied to the outside tube as shown in Fig. 3. Determine the maximum shear stress in tube $C\left(\tau_{C, \max }\right)$ and the rotation of the left end rigid disk $\left(\phi_{G}\right)$.

Fig. 3

Problem 4

Draw the shear force and bending moment diagrams of the $\mathbf{8} \mathbf{~ m}$ long lower continuous beam that has an internal hinge/pin as shown in Fig. 4. The BMD and SFD for the upper simply supported beam is not required.

Fig. 4

SUMMARY ANSWER SHEET

PAPER CODE: A
Name:
Roll no:

Problem 1

$$
\begin{aligned}
& \sigma_{\mathrm{s}}= \\
& \sigma_{\mathrm{c}}=
\end{aligned}
$$

Problem 2

$$
\delta_{y}=
$$

Problem 3

$$
\tau_{C, \max }=
$$

$$
\phi_{G}=
$$

Note: Write your name \& roll no. on answerbook and on summary-answer-sheet provided with the question paper. You must submit the summary-answer-sheet along with the answerbook.
Closed book, closed notes exam. No formula sheet allowed. No mobile phones allowed in the exam hall.
All questions carry equal marks. Assume suitable data if required and state the same clearly.
Use formulae from provided tables, if applicable.

Problem 1

A symmetric bimetallic bar consisting of an inner copper layer securely bonded to two outer steel layers (Fig. 1) is heated uniformly to increase its temperature by $150^{\circ} \mathrm{C}$. Assuming that the width of the bar is $\mathbf{3 5} \mathbf{~ m m}$, the length is $\mathbf{6 0 0} \mathbf{~ m m}$, and the thickness of each of the three layers is $\mathbf{1 5 ~ m m}$, determine the normal stresses σ_{s} and σ_{c} in steel and copper, respectively. Coefficient of thermal expansion of steel is $22 \times 10^{-6} / /^{\circ} \mathrm{C}$ and copper is $28 \times 1 \mathbf{1 0}^{-6} / /^{\circ} \mathrm{C}$. Modulus of elasticity of steel is $\mathbf{1 9 5} \mathbf{~ G P a}$ and copper is $\mathbf{8 0} \mathbf{~ G P a}$.

Fig. 1

Problem 2

The movement of a $\mathbf{1 5 0} \mathbf{~ m m ~ x ~} \mathbf{7 5} \mathbf{~ m m}$ plate is restrained along the x-direction by supports along two edges as shown in Fig. 2. There is no restraint to the movement of the plate in the y and z directions at the supports. The coefficient of thermal expansion is $\mathbf{3 0} \mathbf{x 1 0} \mathbf{1 0}^{\mathbf{6}} \mathbf{}^{\circ} \mathbf{C}$, modulus of elasticity is $\mathbf{2 1 0} \mathbf{~ G P a}$, and Poisson's ratio is $\mathbf{0 . 3 0}$. Calculate the change in length of the plate along the y direction (δ_{y}) due to a temperature change of $125^{\circ} \mathrm{C}$.
Note that the normal strains in the plate along any direction is the summation of strains due to mechanical stresses and thermal changes, i.e. $\varepsilon_{x}=\sigma_{x} / E-v \sigma_{y} / E-v \sigma_{z} / E+\alpha \Delta T$ and similarly for ε_{y} and ε_{z}.

Fig. 2

Problem 3

A system of two concentric torsion members connected at their ends by rigid disks \boldsymbol{G} is shown in Fig. 3. The outside member C is a tube with outside diameter $\mathbf{4 0 0} \mathbf{~ m m}$ and thickness $\mathbf{1 5 ~ \mathbf { ~ m m }}$. The inside member consists of solid shafts \boldsymbol{A} of diameter $\mathbf{1 2 5} \mathbf{~ m m}$ and \boldsymbol{B} of diameter $\mathbf{2 5 0} \mathbf{~ m m}$. Shafts \boldsymbol{A} and \boldsymbol{B} and tube \boldsymbol{C} are made of the same material having shear modulus $\mathbf{1 1 0} \mathbf{G P a}$. At the right end the rigid disk is fixed in support \boldsymbol{D}. A torque of $\mathbf{2 5 0} \mathbf{~ k N}$ \mathbf{m} is applied to the outside tube as shown in Fig. 3. Determine the maximum shear stress in tube $C\left(\tau_{C, \max }\right)$ and the rotation of the left end rigid disk (ϕ_{G}).

Fig. 3

Problem 4

Draw the shear force and bending moment diagrams of the $\mathbf{1 2} \mathbf{~ m}$ long lower continuous beam that has an internal hinge/pin as shown in Fig. 4. The BMD and SFD for the upper simply supported beam is not required.

Fig. 4

PAPER CODE: B
Name:
Roll no:

Problem 1

$$
\begin{aligned}
& \sigma_{\mathrm{s}}= \\
& \sigma_{\mathrm{c}}=
\end{aligned}
$$

Problem 2

$$
\delta_{\mathrm{y}}=
$$

Problem 3
$\tau_{A, \max }=$
$\tau_{B, \max }=$
$\tau_{C, \text { max }}=$

$$
\phi_{G}=
$$

Note: Write your name \& roll no. on answerbook and on summary-answer-sheet provided with the question paper. You must submit the summary-answer-sheet along with the answerbook.
Closed book, closed notes exam. No formula sheet allowed. No mobile phones allowed in the exam hall.
All questions carry equal marks. Assume suitable data if required and state the same clearly.
Use formulae from provided tables, if applicable.

Problem 1

A symmetric bimetallic bar consisting of an inner copper layer securely bonded to two outer steel layers (Fig. 1) is heated uniformly to increase its temperature by $200^{\circ} \mathrm{C}$. Assuming that the width of the bar is $\mathbf{4 0} \mathbf{~ m m}$, the length is $\mathbf{7 0 0} \mathbf{~ m m}$, and the thickness of each of the three layers is $\mathbf{2 0} \mathbf{~ m m}$, determine the normal stresses σ_{s} and σ_{c} in steel and copper, respectively. Coefficient of thermal expansion of steel is $26 \times 10^{-6} / /^{\circ} \mathrm{C}$ and copper is $32 \times 1 \mathbf{1 0}^{-6} / /^{\circ} \mathrm{C}$. Modulus of elasticity of steel is $\mathbf{2 0 0} \mathbf{~ G P a}$ and copper is $\mathbf{8 5} \mathbf{~ G P a}$.

Fig. 1

Problem 2

The movement of a $\mathbf{2 0 0} \mathbf{~ m m ~ x ~} \mathbf{1 0 0} \mathbf{~ m m}$ plate is restrained along the x -direction by supports along two edges as shown in Fig. 2. There is no restraint to the movement of the plate in the y and z directions at the supports. The coefficient of thermal expansion is $35 \times 10^{-6} \mathbf{/ b}^{\circ} \mathrm{C}$, modulus of elasticity is $\mathbf{2 2 0} \mathbf{G P a}$, and Poisson's ratio is $\mathbf{0 . 3 5}$. Calculate the change in length of the plate along the y direction (δ_{y}) due to a temperature change of $150{ }^{\circ} \mathrm{C}$.
Note that the normal strains in the plate along any direction is the summation of strains due to mechanical stresses and thermal changes, i.e. $\varepsilon_{x}=\sigma_{x} / E-v \sigma_{y} / E-v \sigma_{z} / E+\alpha \Delta T$ and similarly for ε_{y} and ε_{z}.

Fig. 2

Problem 3

A system of two concentric torsion members connected at their ends by rigid disks \boldsymbol{G} is shown in Fig. 3. The outside member \boldsymbol{C} is a tube with outside diameter $\mathbf{5 0 0} \mathbf{~ m m}$ and thickness $\mathbf{2 0} \mathbf{~ m m}$. The inside member consists of solid shafts \boldsymbol{A} of diameter $\mathbf{1 5 0} \mathbf{~ m m}$ and \boldsymbol{B} of diameter $\mathbf{3 0 0} \mathbf{~ m m}$. Shafts \boldsymbol{A} and \boldsymbol{B} and tube \boldsymbol{C} are made of the same material having shear modulus 120 GPa . At the right end the rigid disk is fixed in support \boldsymbol{D}. A torque of $\mathbf{3 0 0} \mathbf{~ k N}$ \mathbf{m} is applied to the outside tube as shown in Fig. 3. Determine the maximum shear stress in tube $C\left(\tau_{C, \max }\right)$ and the rotation of the left end rigid disk (ϕ_{G}).

Fig. 3

Problem 4

Draw the shear force and bending moment diagrams of the 16 m long lower continuous beam that has an internal hinge/pin as shown in Fig. 4. The BMD and SFD for the upper simply supported beam is not required.

Fig. 4

SUMMARY ANSWER SHEET

PAPER CODE: C
Name:
Roll no:

Problem 1

$$
\begin{aligned}
& \sigma_{\mathrm{s}}= \\
& \sigma_{\mathrm{c}}=
\end{aligned}
$$

Problem 2

$$
\delta_{\mathrm{y}}=
$$

Problem 3

$$
\begin{aligned}
& \tau_{A, \max }= \\
& \tau_{B, \max }= \\
& \tau_{C, \max }= \\
& \phi_{G}=
\end{aligned}
$$

Note: Write your name \& roll no. on answerbook and on summary-answer-sheet provided with the question paper.
You must submit the summary-answer-sheet along with the answerbook.
Closed book, closed notes exam. No formula sheet allowed. No mobile phones allowed in the exam hall.
All questions carry equal marks. Assume suitable data if required and state the same clearly.
Use formulae from provided tables, if applicable.

Problem 1

A symmetric bimetallic bar consisting of an inner copper layer securely bonded to two outer steel layers (Fig. 1) is heated uniformly to increase its temperature by $250^{\circ} \mathrm{C}$. Assuming that the width of the bar is $\mathbf{4 5} \mathbf{~ m m}$, the length is $\mathbf{8 0 0} \mathbf{~ m m}$, and the thickness of each of the three layers is $\mathbf{2 5 ~ m m}$, determine the normal stresses σ_{s} and σ_{c} in steel and copper, respectively. Coefficient of thermal expansion of steel is $29 \times 1 \mathbf{1 0}^{-6} / /^{\circ} \mathrm{C}$ and copper is $35 \times 1 \mathbf{1 0}^{-6} / /^{\circ} \mathrm{C}$. Modulus of elasticity of steel is 205 GPa and copper is $\mathbf{9 0} \mathbf{~ G P a}$.

Fig. 1

Problem 2

The movement of a $\mathbf{2 5 0} \mathbf{~ m m ~ x ~} \mathbf{1 2 5} \mathbf{~ m m}$ plate is restrained along the x-direction by supports along two edges as shown in Fig. 2. There is no restraint to the movement of the plate in the y and z directions at the supports. The coefficient of thermal expansion is $\mathbf{4 0} \mathbf{x ~} \mathbf{1 0}^{-6} \mathbf{/ b}^{\circ} \mathbf{C}$, modulus of elasticity is $\mathbf{2 3 0} \mathbf{~ G P a}$, and Poisson's ratio is $\mathbf{0 . 4}$. Calculate the change in length of the plate along the \mathbf{y} direction (δ_{y}) due to a temperature change of $175^{\circ} \mathrm{C}$.
Note that the normal strains in the plate along any direction is the summation of strains due to mechanical stresses and thermal changes, i.e. $\varepsilon_{x}=\sigma_{x} / E-v \sigma_{y} / E-v \sigma_{z} / E+\alpha \Delta T$ and similarly for ε_{y} and ε_{z}.

Fig. 2

Problem 3

A system of two concentric torsion members connected at their ends by rigid disks \boldsymbol{G} is shown in Fig. 3. The outside member \boldsymbol{C} is a tube with outside diameter $\mathbf{6 0 0} \mathbf{m m}$ and thickness $\mathbf{2 5 ~ \mathbf { ~ m m }}$. The inside member consists of solid shafts \boldsymbol{A} of diameter $\mathbf{1 7 5} \mathbf{~ m m}$ and \boldsymbol{B} of diameter $\mathbf{3 5 0} \mathbf{~ m m}$. Shafts \boldsymbol{A} and \boldsymbol{B} and tube \boldsymbol{C} are made of the same material having shear modulus $\mathbf{1 3 0} \mathbf{G P a}$. At the right end the rigid disk is fixed in support \boldsymbol{D}. A torque of $350 \mathbf{k N}$ \mathbf{m} is applied to the outside tube as shown in Fig. 3. Determine the maximum shear stress in tube $C\left(\tau_{C, \max }\right)$ and the rotation of the left end rigid disk (ϕ_{G}).

Fig. 3

Problem 4

Draw the shear force and bending moment diagrams of the $\mathbf{2 0} \mathbf{~ m}$ long lower continuous beam that has an internal hinge/pin as shown in Fig. 4. The BMD and SFD for the upper simply supported beam is not required.

Fig. 4

SUMMARY ANSWER SHEET

PAPER CODE: D
Name:
Roll no:

Problem 1

$$
\begin{aligned}
& \sigma_{\mathrm{s}}= \\
& \sigma_{\mathrm{c}}=
\end{aligned}
$$

Problem 2

$$
\delta_{\mathrm{y}}=
$$

Problem 3

$$
\begin{aligned}
& \tau_{A, \max }= \\
& \tau_{B, \max }= \\
& \tau_{C, \max }= \\
& \phi_{G}=
\end{aligned}
$$

CE221 2016 I MIDSEM.
P1

Equil: $\quad P_{s}+P_{c}=0$.
Compat: $\delta_{s}=\delta_{c} \quad\left(-P_{s}\right)$

$$
\begin{aligned}
& A_{S}=2 A_{c}=2 A \\
& \sigma_{S}=\frac{P_{S}}{2 A}=\left[\frac{\left(\alpha_{c}-\alpha_{s}\right) \Delta T}{\frac{1}{E_{S}}+\frac{2}{E_{c}}}\right] ; \alpha_{S} \Delta T L+\frac{P_{S} L}{2 A E_{S}}=\alpha_{c} \Delta T L+\frac{P_{c} L}{A E_{c}} \\
& \sigma_{C}=\frac{P_{c}}{A}=-\frac{P_{S}}{A}=-2 \sigma_{S}
\end{aligned}
$$

$\left(\because \alpha_{c}>\alpha_{s}, \sigma_{s}(T), \sigma_{c}(C)\right.$, as expected).

$$
\text { Codes: } \left.\begin{array}{rlr}
A \rightarrow \sigma_{S}=21.92, & \sigma_{C}= & -43.85 \\
B \rightarrow & 29.87, & -59.74 \\
C \rightarrow & 42.06, & -84.12 \\
D \rightarrow & 55.35, & -110.70
\end{array}\right\} \mathrm{MPa}
$$

P2 $\varepsilon_{x}=0, \sigma_{y}=\sigma_{z}=0 \quad(\because$ constranied in x-diection only).

$$
\begin{aligned}
& \delta_{y}=\varepsilon_{y} \cdot L_{y} \\
& \varepsilon_{y}=\sigma_{y} / E-\nu \sigma_{x} / E-\nu \sigma_{0} / E+\alpha \Delta T \\
& \varepsilon_{x}=\sigma_{x} / E-\nu \sigma_{y} / E-\gamma \sigma_{0} / E+\alpha \Delta T \\
& \Rightarrow \varepsilon_{0}=-\nu(-E \alpha \Delta T) / E+\alpha \Delta T=\alpha \Delta T(1+\nu) \\
& \delta_{y}=\alpha \Delta T(1+\nu) L_{y}
\end{aligned}
$$

code

$$
\left.\begin{array}{rl}
A: \delta_{y} & =0.156250 \\
B: & =0.365625 \\
C: & =0.708750 \\
D: & =1.225
\end{array}\right\} \mathrm{mm} .
$$

P3. Let L_{1}, L_{2} dense lengths of hollow shaft to the left \& right of applied torque, respectively, and $T_{C_{1}} \& T_{C_{2}}$ dents corresponding internal torques in C. Int torque in $A \& B$ is $T_{A}=T_{B}$.
Equil:
left click $\begin{aligned} & G \\ & \rightarrow\end{aligned} \left\lvert\, \begin{aligned} & T_{1} / 2 \\ & T_{C 1} / 2\end{aligned}\right.$
($T_{1} / 2$ show for convenience actually its T_{C} in hollow shaft C).

$$
T_{A}+T_{C_{1}}=0
$$

Compatibility: at left disk G,

$$
T_{C_{1}}=T+T_{C_{2}}
$$

$$
\begin{aligned}
& T_{A}\left[\frac{L_{A}}{(G J)_{A}}+\frac{L_{B}}{(G J)_{B}}\right]^{\psi}=\frac{T_{C_{1}} L_{1}+\left(T_{C_{1}}-T\right) L_{2}}{(G J)_{C}} \\
& \Rightarrow T_{C_{1}}=\frac{T L_{2}}{(G J)_{C}}\left[\frac{L_{A}}{(G J)_{A}}+\frac{L_{B}}{(G J)_{B}}+\frac{L_{1}+L_{2}}{(G J)_{C}}\right]^{-1} \\
& \phi_{G}=\phi_{A}=\phi_{C}=-\left(T_{\left.C_{1}\right)}\left[\frac{L_{A}}{(G J)_{A}}+\frac{L_{B}}{(G J)_{B}}\right]\right.
\end{aligned}
$$

$$
\left(\tau_{c}\right)_{\text {max }}=\max \left[\tau_{c 1}, \tau_{c 2}\right]
$$

for given dimensions, $\left|T_{c 2}\right|>\left|T_{c_{1}}\right|$, so $\left(T_{c}\right)_{\text {max }}=T_{c 2}$

$$
\begin{aligned}
& \left(T_{c}\right)_{\text {max }}=T_{c 2}=\frac{T_{c 2} r_{0, c}}{I_{c}}, \text { where } T_{c_{2}}=T_{c 1}-T \\
& J_{A}=\frac{\pi}{32}\left(d_{A}\right)^{4}, \quad J_{B}=\frac{\pi}{32}\left(d_{B}\right)^{4}, J_{c}=\frac{\pi}{32}\left(d_{0, c}^{4}-d_{i, c}^{4}\right) .
\end{aligned}
$$

If you do writs physically correct directions,

$$
\underset{\longrightarrow}{\longrightarrow} T_{C_{1} / 2}
$$

$$
\left.\begin{array}{l}
T_{c_{1}}=T_{A} \\
T_{c_{1}}+T_{c_{2}}=T
\end{array}\right\}
$$

Compatibility: $\phi_{A}=-\phi_{C}$ (\because rotations in opp directions as per (AD's)

$$
T_{A}\left[\frac{L_{A}}{(G J)_{A}}+\frac{L_{B}}{(G J)_{B}}\right]=-\left[\frac{T_{C_{1}} L_{1}}{(G J)_{C}}-\frac{T_{C 2} L_{2}}{(G J)_{C}}\right] \stackrel{\substack{\text { after substituting } \\ \text { Here you get } \\ \text { same result as }}}{\substack{\text { ain }}}
$$ (*) previous pg.

If you do by equivalent spenifs,

$T_{A}=$ (effective stiffness of lower springs) $* Q_{G}$

$$
T_{A}=\left[\frac{1}{(G J / L) A}+\frac{1}{\left(\frac{G J}{L}\right)_{B}}\right]^{-1} \varphi_{G}
$$

Also, $Q_{G}=$ extensich of left upper spring t ext if right upper $\begin{array}{ll}Q_{G}=\frac{T_{1}}{G J_{C} / L}+\frac{T_{1}-T}{G J_{c} / L_{2}} . & \text { Ehinciate } Q_{G} \text { and } T_{A} \\ & \text { and get } T_{1} \text { same as } T_{C,} \\ & \text { wi } A \text { on previous } \mathrm{pg} .\end{array}$

$$
\begin{aligned}
\left(\sum M_{A}=0 \Rightarrow R_{B}\right. & =\frac{\frac{w a}{2}(3 a)+w a\left(\frac{5}{2} a\right)+\frac{p}{2}(2 a)}{a} \\
& =4 w a+p
\end{aligned}
$$

hinge, so orly internal shear wa /2, no bending moment.

\leftarrow starting from right end proceeding leftward using $V^{\prime}=-w$.
Values, left to night are: Code $A:-35,25,15,5,-5$

$$
\begin{aligned}
& B:-71,47,36,12,-12 \\
& C:-112,72,60,20,-20 \\
& D:-163,103,90,30,-30
\end{aligned}
$$

\longleftarrow starting from left end procedting rightward using $M^{\prime}=V$,

$$
M_{R}-M_{L}=\int V^{\prime} d x
$$

Values, left to right are:
Code A: - 70, $-20,2.5$

$$
\begin{aligned}
& B=-213,-72,9 \\
& C=-448,-160,20 \\
& D=-815,-300,37.5
\end{aligned}
$$

