Tutorial Sheet $=\mathbf{2}$
Instructor: A. Laskar / Naresh K. Chandiramani

1. Determine the deflection of the free end of the steel rod shown in Fig. 1 under the given load ($\mathrm{E}=200 \mathrm{GPa}$).

Fig. 1
2. A uniform timber pile which has been driven to depth L in clay carries an applied load of F at top. This load is resisted entirely by friction along the pile, which varies in the parabolic manner $\mathrm{f}=\mathrm{ky}^{2}$ (origin at bottom). Show that total shortening of the pile is FL/4AE. AE is the axial rigidity of the pile.
3. Show that the total elongation of a slender elastic bar of constant cross sectional area A , length 2 L , unit weight γ is given by following expression when it is rotated in a horizontal plane with an angular velocity of ω radians per second about its middle point.

$$
\Delta=\frac{2 \gamma \omega^{2} \mathrm{~L}^{3}}{3 \mathrm{Eg}}
$$

$\mathrm{E}=$ Modules of elasticity and $\mathrm{g}=$ acceleration due to gravity.
4. The rigid bar BDE (Fig. 2) is supported by two links $A B$ and CD. Link AB is made of aluminum ($\mathrm{E}=70 \mathrm{GPa}$) and has a cross-sectional area of $500 \mathrm{~mm}^{2}$; link CD is made of steel $(E=200 \mathrm{GPa})$ and has a cross-sectional area of $600 \mathrm{~mm}^{2}$. For the 30 kN force shown, determine the deflection of point B, D and E .
5. A composite bar as shown in Fig 3 is firmly attached to unyielding supports at the ends and is subjected to the axial load F. If the aluminum is stressed to 70 MPa , what is the stress in the steel?.

Fig. 2

Fig. 3
6. Determine the stresses in each wires supporting the rigid bar shown in Fig. 4 if $\mathrm{F}=20 \mathrm{kN}$.
7. The rigid bar ABCD is suspended from three identical wires as shown in Fig. 5. Knowing that $a=2 b$, determine the tension in each wire caused by the load P applied at C .
Aluminum
A $=300 \mathrm{~mm}^{2}$
$\mathrm{E}=70 \mathrm{GN} / \mathrm{m}^{2}$

Fig. 5
8. A rod consisting of two cylindrical portion AB and BC (Fig. 6) is restrained at both ends. Portion AB is made of steel ($\mathrm{E}=200 \mathrm{GPa}, \alpha=11.7 \times 10^{-6} /{ }^{\circ} \mathrm{C}$) and portion BC of brass ($\mathrm{E}=105 \mathrm{GPa}, \alpha=20.9 \times 10^{-6} /{ }^{\circ} \mathrm{C}$). Knowing that the rod is initially unstressed, determine
(a) the normal stresses induced in portions AB and BC by a temperature rise of $50^{\circ} \mathrm{C}$, (b) the corresponding deflection of point B.
9. A rigid floor slab with mass of $3,200 \mathrm{~kg}$ rests on three columns as shown in Fig. 7. What is the compressive stress in each of the members (a) at installation and (b) after a temperature decrease of $20^{\circ} \mathrm{C}$?

Fig. 6

Fig. 7
10. The bar shown in Fig. 8 is cut from a 10 mm thick piece of steel. At the change in crosssection at A and B the approximate stress concentration factors are 2.25 and 2, respectively. What is the maximum force F the bar can be subjected? Take allowable stress for axial tension in the bar as 150 MPa .

Fig. 8

CEZZI TUTORIAL \#2

1) $\Delta=\sum \frac{P_{i} L_{i}}{(A E)_{i}}=\frac{(200 E 3)(400)}{(200)(200 E 3)}+\frac{(500 E 3)(300)}{(800)(200 \mathrm{E} 3)}=3.25 \mathrm{~mm}$
2)

$$
\begin{aligned}
& d N+f d y=0 \\
& \int_{0}^{N(y)} d N=\int_{0}^{y}-k y^{2} d y \Rightarrow N(y)=\frac{-k y^{3}}{3}
\end{aligned}
$$

$\prod_{N}^{N} I d y \delta=\int_{0}^{L} \frac{N d y}{A E}=\int_{0}^{L} \frac{k y^{3}}{3} \frac{d y}{A E}=\frac{k L^{4}}{12 A E}=\frac{F L}{4 A E}$

$$
\sum F_{y}=0 \text { for wholepile } \Rightarrow F=\int_{0}^{l} k^{2} d y=\frac{k L^{3}}{3}
$$

3)

$$
d_{m}=A \frac{\gamma}{g} d r
$$

$\sum F_{r}:(d m) r \omega^{2}=-d N$

$$
\begin{aligned}
& \Rightarrow A \frac{\gamma}{g} \frac{\omega^{2}}{2}\left(r^{2}-L^{2}\right)=-N(r) \leftarrow \frac{\gamma}{g} \omega^{2} \int_{L} r d r=-\int_{0}^{a} \\
& \delta=2 \int_{0}^{L} \frac{N d r}{A E}=2 \frac{A \gamma}{g} \frac{\omega^{2}}{2} \int_{0}^{L} \frac{\left(L^{2}-r^{2}\right)}{A E} d r=\frac{\gamma \omega^{2}}{g E}\left(L^{3}-\frac{L^{3}}{3}\right) \\
& 90 \mathrm{kN}=\frac{2}{3} \frac{\gamma \omega^{2} L^{3}}{g E}
\end{aligned}
$$

4) Egiul:

$$
\begin{aligned}
& F_{A B}=\frac{(30)(0.4)}{0.2}=60(\mathrm{C}) \\
& F_{C D}=(60+30)=90(\mathrm{~T}) .
\end{aligned}
$$

Dispracementis \& compatibility:

$$
\begin{aligned}
\delta_{B} & =\frac{(60)(0.3)(E 6)}{7063 \times 500}(\uparrow), \delta_{D}
\end{aligned}=\frac{(90)(0.4)(E 6)}{(200 E 3)(600)}(\downarrow) .
$$

$$
\begin{aligned}
& =0.3 \mathrm{~mm} \\
\delta_{B} & =\frac{\delta_{D}+\delta_{B}}{0.2} * 0.4-\delta_{B} \\
& =1.1143 \mathrm{~mm}=\delta_{r}
\end{aligned}
$$

P5).

$$
\delta_{F}=\frac{F(250)}{950 * 65 E 3} \quad ; \quad \delta_{P}=P\left(\frac{250}{(950)(65 E 3)}+\frac{375}{(1300)(207 E 3)}\right)
$$

Compat: $\delta_{F}=\delta_{p} \Longrightarrow P=0.7439 \mathrm{~F}$

$$
\begin{aligned}
& \sigma_{A L}=70 \Rightarrow N_{a l}=70 * 950=F-P=0.2561 \mathrm{~F} \\
& \quad \Rightarrow F=259700 \\
& \sigma_{S t}=\frac{P}{1300}=\frac{0.7439 * 259700}{1300}=148.61(\mathrm{C})
\end{aligned}
$$

$$
\begin{align*}
& \text { (1), (3) } \Rightarrow F_{B D}=3.94 \mathrm{kN} \\
& F_{C E}=13.022 \mathrm{kN} \tag{3}\\
& \sigma_{B D}=\frac{F_{B D}}{300}=13.13 \mathrm{MPC} \\
& \frac{\delta_{B D}}{2}=\frac{\delta_{C E}}{4} \rightarrow(2) \tag{1}\\
& \sigma_{C E}=\frac{F_{C E}}{150}=86.68 \mathrm{MPa}
\end{align*}
$$

$P 7$

$$
\begin{equation*}
P=F_{A}+F_{B}+F_{D} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& F_{A}(2 \psi)+P(\psi)=F_{D}(2 \psi)- \tag{2}\\
& \frac{\delta_{B}-\delta_{A}}{\alpha}=\frac{\delta_{D}-\delta_{B}}{\alpha} \rightarrow 3
\end{align*}
$$

$T\left(\because \frac{L}{A E}\right.$ same

$$
\begin{aligned}
& \left.\stackrel{F_{D}-F_{B}^{\prime}}{\Rightarrow F_{B}-F_{A}=\frac{L}{A E} \text { same }} \text { for all wiot }\right) .
\end{aligned}
$$

(1), (2), (3) $\rightarrow F_{A}=\frac{P}{12}, F_{B}=\frac{P}{3}, F_{D}=\frac{7 P}{12}$

P8 Free themal expansim $=\delta_{T}=\left[\left(11.7 * 10^{-6}\right)(250)\right.$
$\begin{aligned}\text { (say, relecse at } C)(\text { displofpt. } C) & \\ & =0.45975\end{aligned}$
Apply redundant(p) at $C, \delta_{p}=P\left[\frac{250}{\frac{\pi}{4}\left(30^{2}\right)(200)}+\frac{300}{\frac{\pi}{4}\left(50^{2}\right)(105)}\right]$
(used equil $P_{A B}=P_{B C}=P$ here)
compctitility $\rightarrow \delta_{T}=\delta_{P} \rightarrow(3)$
(1), (2), (3) $\rightarrow P=142.995 \mathrm{kN}, \sigma_{A B}=\frac{P}{\frac{\pi}{4}(30)^{2}}=202.29 \mathrm{MPa}$

$$
\sigma_{B C}=\frac{P}{\frac{\pi}{4}(50)^{2}}=72.826 \mathrm{MPa}, \delta_{B}=\delta_{A B}=\frac{\left(11.7 \times 10^{-6}\right)(250)(50)}{-\frac{P(250)}{\pi / 4(30)^{2}(20053)}}=0.14599
$$

pg (a) assumed

$$
\begin{aligned}
& P_{w}+P_{c}=32 \\
& \delta_{c}=\delta_{w} \rightarrow 2 \\
& \frac{P_{c}(4)}{2(0-08)(20 E 6)}=\frac{P_{w}(2)}{(0.04)(12 \mathrm{E} 6)}
\end{aligned}
$$

(1), (3) $\rightarrow P_{W}=7.3841 \mathrm{kN}, \frac{P_{c}}{2}=12.308 \mathrm{kN}, \sigma_{c}=\frac{P_{c}}{2(0.08)}=\frac{0.538919 \mathrm{~Pa}, \sigma_{w}}{24.6158)}=\frac{P_{w}}{0.04}=0.1846$
(b) Only equation (3) changes.

$$
\begin{aligned}
\frac{P_{c}(4)}{2(0.08)(20 E 6)}+(24 E-6)(4)(20)= & \frac{P_{w}(2)}{(0.04)(12 E 6)} \\
& +(6 E-6)(2)(20)
\end{aligned}
$$

$$
+(6 E-6)(2)(20)
$$

(1), (30) $\rightarrow P_{W}=317.52 \mathrm{kN}, \frac{P_{C}}{2}=-142.76 \mathrm{kN} \Rightarrow P_{C}=-285.519$

$$
\sigma_{w}=7.9379 \mathrm{MPa}, \sigma_{c}=-1.7845 \mathrm{MPa} \text { (so ten side) }
$$

so compressive.
P10 Assume fillets are $\frac{1}{4}^{\text {th }}$ circles.
At $A, \sigma_{\text {are }}=\frac{\sigma_{\max }}{K}=\frac{150}{2.25}=\frac{F}{A}=\frac{F}{(40)(10)} \Rightarrow F=26.67 \mathrm{kN}$
At $B, \sigma_{\text {ave }}=\frac{\sigma_{\text {max }}}{K}=\frac{150}{2}=\frac{F}{A}=\frac{F}{(40+10+10-30)(10)} \Rightarrow F=22.5 \mathrm{kN}$
$F_{\text {max }}=$ lower of the two $\mathrm{F}^{\prime} \mathrm{s}=22.5 \mathrm{kN}$.

