1. A 500 mm long, 16 mm diameter rod is observed to increase in the length by 300 $\mu \mathrm{m}$, and to decrease in the diameter by $2.4 \mu \mathrm{~m}$ when subjected to an axial load of 25 kN . Determine the modulus of elasticity, Poisson's ratio and shear modulus.
2. A piece of $50 \times 250 \times 10 \mathrm{~mm}$ steel plate is subjected to uniformly distributed stresses along its edges as shown in Fig. 1. (a) If $\mathrm{P}_{\mathrm{x}}=100 \mathrm{kN}$ and $\mathrm{P}_{\mathrm{y}}=200 \mathrm{kN}$ then determine the change in thickness of plate. (b) Determine the P_{X} alone which will cause the same change in thickness as in (a). Let $\mathrm{E}=200 \mathrm{GPa}$ and $v=0.25$.
3. A structural steel plate with $\mathrm{E}=210 \mathrm{GPa}$ and $v=0.3$ has the dimension as shown in Fig. 2 before loading. The plate is then subjected to a state of plane stress in xy plane with $\sigma_{\mathrm{X}}=150 \mathrm{MPa}$. For what value of stress σ_{y} will the dimension Y of the plate remain unchanged? What are the final dimension of the plate in the other two directions?
4. The steel block shown in Fig. 3 is subjected to a uniform pressure on all its faces. Knowing that the change in length of edge AB is $-24 \mu \mathrm{~m}$ determine (a) the change in length of the other two edges, (b) the pressure applied to the faces of the block. Let $\mathrm{E}=200 \mathrm{GPa}$ and $v=0.29$.
5. A circle of diameter 200 mm is scribed on an unstressed 18 mm thick aluminium plate as shown in Fig. 4. Forces acting in the plane of the plate later cause normal stresses $\sigma_{\mathrm{X}}=85 \mathrm{MPa}$ and $\sigma_{\mathrm{Z}}=150 \mathrm{MPa}$. Determine the change in (i) the length of diameter $A B$ and CD, (ii) thickness of plate and (iii) volume of plate. Let $\mathrm{E}=70$ GPa and $v=1 / 3$.
6. For the state of plane stress shown in Fig. 5, determine the corresponding $\varepsilon_{\mathrm{X}}, \varepsilon_{\mathrm{y}}$ and γ_{xy}. $\mathrm{E}=80 \mathrm{GPa}$ and $v=0.35$.

Fig. 5

CE221-Tutorial-3
Pl

$$
\begin{align*}
& \sigma_{x}=\frac{25 * 1000}{\frac{\pi}{4}\left(16^{2}\right)}=124.339 \mathrm{MPa} ; \varepsilon_{x}=\frac{300 * 10^{-3}}{500}=6 * 10^{-4} \\
& \varepsilon_{x}=\frac{\sigma_{x}}{E}-\frac{\nu}{E} \sigma_{y}=\frac{\nu}{E} \varepsilon_{z}=\frac{-2.4 * 10^{-3}}{16}=-1.5 * 10^{-4} \\
& \varepsilon_{y}=\frac{\pi y}{E}-\frac{\nu}{E} \sigma_{x}-\frac{\nu}{E} \sigma_{z}^{0} ; \varepsilon_{z}=\frac{\partial_{z}}{E}-\frac{\nu}{E} \sigma_{x}-\frac{\nu}{E} \sigma_{y} \tag{1}\\
&
\end{align*}
$$

(1), (2), $\rightarrow E=2.07 * 10^{5} \mathrm{MPa}, \nu=0.2497$

P2 (a) $\varepsilon_{z}=\frac{\sigma_{z}^{0}}{E}-\frac{\nu}{E}\left(\sigma_{x}+\sigma_{y}\right) ; \sigma_{x}=\frac{100}{(50)(10)}=0.2 \frac{\mathrm{kN}}{\mathrm{mm}^{2}}$
Use $E=200 \mathrm{kN} / \mathrm{mm}^{2}, \nu=0.25$
get $\varepsilon_{z}=-3.5 * 10^{-4}$

$$
\sigma_{y}=\frac{200}{(250)(10)}=0.08 \frac{\mathrm{kN}}{\mathrm{~mm}^{2}}
$$

change in th $k=\varepsilon_{z}(10) \mathrm{mm}=-3.5 * 10^{-3} \mathrm{~mm}$
(b) So ε_{z} same as above, so new σ_{x} same as $\left(\sigma_{x}+\sigma_{y}\right)$ above So $\begin{array}{rl}P_{x}=100 & 40 \\ 40 & =140 \mathrm{kN} . \quad\left(\text { ie } \frac{P_{\text {add }}}{(50)(10)}=\frac{200}{(250)(10)}\right) . \\ P_{\text {add }}\end{array}$

PB

$$
\begin{aligned}
& \Sigma_{y}=0=\frac{\sigma_{y}}{E}-\frac{\nu}{E}\left(\sigma_{x}^{150}+\sigma_{t}^{0}\right)^{0} \Rightarrow \sigma_{y}=(0.3)(1.10)=45 \\
& \varepsilon_{x}=\frac{\lambda_{x}}{E=}-\frac{\nu}{E}\left(\sigma_{y} \psi_{45}+\sigma_{0} \neq\right)=\frac{150-0.3 * 45}{210 E 3}=6.5 * 10^{-4} \\
& \varepsilon_{z}=\frac{\sigma_{2}}{E}-\frac{\nu}{E}\left(\sigma_{x}+\sigma_{y}\right)=\frac{195 * 0.3}{210 E 3}=-2.786 * 10^{-4} \\
& \begin{aligned}
X_{\text {new }}=\left(1+\varepsilon_{x}\right) X^{X} & =300.195 \mathrm{~mm}, Z_{\text {new }}=\left(1+\varepsilon_{z}\right) z / \\
& =900 \quad Y_{\text {new }}=Y_{\text {old }}=200 \mathrm{~mm}
\end{aligned}
\end{aligned}
$$

PG

$$
\begin{array}{r}
\varepsilon_{x}=\frac{-24 \times 10^{-3}}{80}=\left(\frac{1-2 \nu}{E}\right)(-P) \Rightarrow P=0.143 \mathrm{GPa} \\
\text { (used } \left.\sigma_{x}=\sigma_{y}=\sigma_{z}=-P\right)
\end{array}
$$

$\varepsilon_{z}=\varepsilon_{y}=\varepsilon_{x}$ when uniform pressure applied.

$$
\Delta_{y}=\varepsilon_{y}(40)=-0.012 \mathrm{~mm}, \quad \Delta_{z}=\varepsilon_{z}(60)=-0.018 \mathrm{~mm}
$$

PD $\varepsilon_{x}=\frac{85}{70 E 3}-\frac{1}{3} \cdot\left(\frac{150}{70 E 3}\right)=5 * 10^{-4}, \varepsilon_{z}=\frac{150}{70 E 3}-\frac{1}{3}\left(\frac{85}{70 E 3}\right)$

$$
=1.74 * 10^{-3}
$$

$$
\begin{aligned}
& (A B)_{\text {new }}=\left(1+\varepsilon_{x}\right)(200)=200.1 \mathrm{~mm}(C D)_{\text {new }}=\left(1+\varepsilon_{z}\right)(200)=200.3448 \mathrm{~mm} \\
& \Delta_{A_{B}}=\varepsilon_{x}(200)=0.1 \mathrm{~mm} \\
& \varepsilon_{y}=-\frac{1}{3} \cdot\left(\frac{1}{70 E 3}\right)(150+85)=-1.119 \times 10^{-3} \quad \begin{aligned}
\Delta_{c y} & =\varepsilon_{z}(200) \\
& =0.348 \mathrm{~mm} \\
& \Delta_{\text {the }}=\varepsilon_{y}(18)=-6.0201
\end{aligned} \\
& (\text { Thk })_{\text {hew }}=\left(1+\varepsilon_{y}\right)(18)=17.97 .9 \mathrm{~mm} \quad
\end{aligned}
$$

$$
(\operatorname{Vol})_{\text {new }}=(1+\phi)\left(V_{01}\right)_{\text {old }}=\left(1+\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z}\right)\left(350^{2}\right)(18)
$$

$\Delta_{r o c}=\varepsilon\left(350^{2}\right)(18)=2471 \mathrm{~mm}^{3}$ entical dilatation $=2.207 * 10^{6} \mathrm{~mm}^{3}$

The two results isl be close new length of sides.
sine higher oder terms in $\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{z}$ are small.
$p 6$

$$
\begin{aligned}
& \text { (a) } \Sigma_{x}=\frac{10 * 10^{6}}{80 * 10^{9}}-\frac{0.35}{80 * 10^{9}}\left(10 * 10^{6}\right)=1.6875 * 10^{-4} \\
& \varepsilon_{y}=\frac{-10 * 10^{6}}{80 * 10^{9}}-\frac{0.35}{80 * 10^{9}}\left(10 * 10^{6}\right)=-1.6875 * 10^{-4}, \gamma_{x y}=0 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { (G) } \gamma_{x y}=\tau_{x y} / G=\tau_{x y} * 2(1+\nu) / E=40 * 10^{6} * \frac{2(1+0.35)}{80 * 10^{9}} \\
& \varepsilon_{x}=-\frac{40 * 10^{6}}{80 * 10^{9}}-\frac{0.35}{80 * 10^{9}}\left(20 * 10^{6}\right)=-5.875 * 10^{-4}=1.35 * 10^{-3} \\
& \varepsilon_{y}=\frac{20 * 10^{6}}{80 * 10^{9}}-\frac{0.35}{80 * 10^{9}}\left(-40 * 10^{6}\right)=4.25 * 10^{-4}
\end{aligned}
$$

