DEPARTMENT OF CIVIL ENGINEERING, IIT BOMBAY

1. Three boards, each of $40 \mathrm{~mm} \times 90 \mathrm{~mm}$ rectangular cross-section are nailed together to form a beam which is subjected to a vertical shear force of 1 kN . If the spacing between each pair of nails is 60 mm , determine the shearing force in each nail.

Fig. 1
2. A wooden box beam made up of 50 mm thick boards, has the dimensions shown in Fig. 2. If the beam transmits a shear of 3380 N , what should be the longitudinal spacing of the nails connecting (a) board A with boards B and C, (b) board D with boards B and C. The shear carrying capacity of each nail is 220 N .

Fig. 2

Fig. 3
3. The composite beam shown in Fig. 3 has been formed by bolting two I sections using 16 mm diameter bolt spaced longitudinally every 150 mm . If the average allowable stress in the bolts is 75 MPa, determine the largest permissible vertical shear. For the I section, $\mathrm{A}=3790$ mm^{2}, depth $==157 \mathrm{~mm}$, and $\mathrm{I}_{\mathrm{Z}}=17.23 \mathrm{x}$ $10^{6} \mathrm{~mm}^{4}$.

4 The three beam section shown in Fig. 4 are subjected to a shear force of 100 kN . Draw the shear stress and shear flow diagram along the depth.

Fig. 4
5. A T-beam is loaded as shown in Fig. 5. From this beam isolate a segment 200 x $100 \times 25 \mathrm{~mm}$ (shown by shaded portion). Draw the free body diagram of this segment indicating the location, magnitude and sense of resultant forces due to bending and shear stresses. Check the equilibrium of the isolated segment.

Dimensions in mm
Fig. 5
6. Determine the location of the shear centre for the sections shown in Fig. 6.

Fig. 6

CE221 TUTORAAL \#7
P1 $I=\frac{90 * 120^{3}}{12}, t=90, Q=40 * 90 * 40, \quad V=1 \mathrm{kN}$

$$
q=\frac{V Q}{I}=11.11 \mathrm{~N} / \mathrm{mm}=\frac{\Delta H}{\Delta x}
$$

$S F$ in each nail $=\frac{11-11 * 60}{2}=333.33 \mathrm{~N}$ -
P 2

$$
\begin{aligned}
I & =2 *\left(\frac{50 * 250^{3}}{12}+\frac{150 * 50^{3}}{12}+150 * 50 * 50^{2}+\frac{250 * 50^{3}}{12}\right. \\
& \left.=738541.7 * 250 * 50 * 150^{2}\right)^{3} \\
& +200=1875000
\end{aligned}
$$

$$
Q_{1}=\left.Q\right|_{\text {horizontal cut, } y=125}=250 * 50 * 150=1875000 \mathrm{ma}^{3}
$$

$$
\begin{array}{r}
Q_{2}=\left.Q\right|_{\text {vestical cut at ends of } 6 a+D=150 * 50 * 50=375000} ^{\mathrm{ma}^{3}} \\
V=3380 \mathrm{~N} .
\end{array}
$$

$$
q_{1}=\frac{\Delta H_{1}}{\Delta x}=\frac{V Q_{1}}{I}=8.581 \mathrm{~N} / \mathrm{mm}
$$

spaning $s_{1}=\frac{220 * 2}{q_{1}}=51.28 \mathrm{~mm}$.

$$
\begin{aligned}
& q_{2}=\frac{\Delta H_{2}}{\Delta x}=\frac{V Q_{2}}{F}=1.716 \mathrm{~N} / \mathrm{mm} \\
& \text { spacing } S_{2}=\frac{2 * 220}{q_{2}}=256.4 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& \text { P3 } I=2\left[17.23 * 10^{6}+3790 *\left(\frac{157}{2}\right)^{2}\right]=81.17 * 10^{6} \mathrm{~mm}^{4} \\
& q=\frac{\Delta H}{\Delta x}=\frac{2 * 75 * \frac{\pi}{4}(16)^{2}}{150}=201.06 \mathrm{~N} / \mathrm{mm} \\
& Q=3750 * \frac{157}{2}=294375 \mathrm{~mm}^{3} \\
& q=\frac{V Q}{I}=201.06 \Rightarrow V=V_{\max }=55.44 \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
& I=\frac{20 * 80^{3}}{12}+2\left(50 * \frac{20^{3}}{12}+50 * 20 * 50^{2}\right) \\
& =5920000 \mathrm{~mm}^{4} \\
& V=100 \mathrm{kN} . \\
& \left.q=\frac{V Q}{I}, Q_{F}=(50)(60-y) \frac{(60+y)}{2}\right\} \\
& Q_{\omega}=(50)(60-40)\left(\frac{60+40)}{2}\right. \\
& \left.\downarrow_{\text {for } 40 \leqslant y \leqslant-40}+20(40-y)\left(\frac{40+y)}{2}\right)\right) \\
& \text { for horizontal }
\end{aligned}
$$ cuts.

$$
\begin{aligned}
q_{2} & =\frac{V}{I}\left(Q_{W}\right)_{4}=0 \quad\left(T_{x_{4}}\right)_{3}=\frac{q_{2}}{20}=55 \cdot 7 \mathrm{~N} \mathrm{Jman}^{2}=\max \\
& =1115 \mathrm{~N} / \mathrm{Man}
\end{aligned}
$$

$$
\begin{aligned}
y_{c}= & \frac{(50)(20)(110)+(100)(20)(50)}{(50)(20)+(100)(20)=70} \\
I= & \frac{1}{12}(50)(20)^{3}+(50)(20)(40)^{2} \mathrm{~mm} \\
& +\frac{1}{12}(20)(100)^{3}+(20)(100)(20)^{2} \\
= & 4 \cdot 1 * 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

$$
\begin{aligned}
& Q_{1}=\frac{V}{I}\left(Q_{F}\right)_{y=30}=975.61 \mathrm{~N} / \mathrm{mm}: Q_{F}=(50)(50-y)\left(\frac{50+y}{2}\right), 50 \leq y \leq 30 \\
& \left(\tau_{x y}\right)_{1}=\frac{q_{1}}{50}=19.57 \mathrm{~N} / \mathrm{mm}^{2} \\
& Q_{\omega}=(50)(50-30) \frac{(50+30)}{2} \\
& \left(\tau_{x y}\right)_{2}=\frac{q_{1}}{20}=48.78 \mathrm{~N} / \mathrm{mm}^{2} \text {, } \\
& +(20)(30-y) \frac{(30+y)}{2}, 30 \leq y \leq-70 \\
& \left(\tau_{x y}\right)_{3}=\frac{q_{2}}{20}, \quad q_{2}=\frac{V}{I}\left(Q_{w}\right)_{y=0}=1195.12 \mathrm{~N} / \mathrm{mm},\left(\tau_{x y}\right)_{3}=59.76 \\
& 70.1 \\
& \text { HEAR FLOW ' } \underbrace{\prime}
\end{aligned}
$$

$$
\begin{array}{rl}
I_{0}= & \frac{50 * 80^{3}}{12} \cdot \frac{1}{2}=I_{c}+\frac{1}{2} \cdot 50.80 \cdot\left(\frac{80}{6}\right)^{2} \\
\Rightarrow & I_{c}=\frac{64 * 10^{5}}{9} \mathrm{~mm}^{4} . \\
0 / 3 & Q=\frac{1}{2}\left(50 \times \frac{2}{3}-\frac{5}{8} y\right)\left(80 \cdot \frac{2}{3}-y\right)\left(\frac{2}{3} y+80 \cdot \frac{2}{9}\right) \\
& t=50 * \frac{2}{3}-\frac{5}{8} y
\end{array}
$$

$$
\tau_{x y}=\frac{V Q}{I t}=\frac{100 * 10^{3} \cdot \frac{1}{2}\left(\frac{160}{3}-y\right)\left(\frac{160}{9}+\frac{2}{3} y\right)}{\frac{64}{9} * 10^{5}}
$$

$$
\begin{aligned}
\frac{d \tau_{x y}}{d y}=0 \Rightarrow & -\frac{160}{9}-\frac{2}{3} y \\
& +\frac{2}{3}\left(\frac{160}{3}-y\right) \\
& =0 \\
\Rightarrow y= & \frac{40}{3}
\end{aligned}
$$

$$
\begin{aligned}
& q=\frac{V Q}{I}=\frac{100 E 3 \cdot \frac{1}{2}}{\frac{64}{9} E 5}\left(\frac{256 E 4}{81}-\frac{100}{3} y^{2}+\frac{5}{12} y^{3}\right) \\
& \frac{d q}{d y}=0 \Rightarrow y=0, y=\frac{160}{3} ; \frac{d^{2} q}{d y}
\end{aligned}
$$

$$
\begin{aligned}
y_{c} & =\frac{(200)(25)(237.5)+(25)(225)\left(\frac{225}{2}\right)}{(200)(25)+(25)(225)} \\
& =171.32 . \mathrm{man} \\
I & =\frac{1}{12}(200)(25)^{3}+(200)(25)(66.18)^{2} \\
& +\frac{1}{12}(25)(225)^{3}+(25)(225)(58-82)^{2} \\
& =65.35 * 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

$$
\begin{aligned}
F_{1} & =\frac{1}{2}(76.39+183.51)(100)(25) \\
& =324875 \mathrm{~N}
\end{aligned}
$$

$$
=324875 \mathrm{~N}
$$

$$
\left\{\begin{array}{l}
M_{2}=100 \times 10^{3} \times 500=50 \times 10^{6} \mathrm{~N} . \mathrm{mm} \\
\left(\sigma_{u}\right)_{1}=\frac{(-70 \mathrm{E})(-71.32)}{I}=-76.39 \mathrm{Maa} \\
200
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\left(\sigma_{u}\right)_{1}=\frac{\left(\sigma_{u}\right)}{I}=-\frac{(-50 E 6)(-71.32)}{I}=-54.57 \mathrm{Mla} \\
I
\end{array}\right.
$$

$$
F_{2}=\frac{1}{2}(54.57+131.08)_{*}
$$

$$
\begin{array}{c:c}
=232062.5 & \left(\sigma_{v}\right)_{1}=-\frac{-(-70 E 6)(-171.32)}{I}=-131.08 \mathrm{MPa} \\
\Delta H+F_{2}-F_{1}=10.5 \approx 0 & \left.\left(\sigma_{v}\right)_{2}=-\frac{(-50 E 6)(-171.32)}{I}=100\right)(25)
\end{array}
$$

(100) (25)

split traper \langle inm into

$$
\begin{aligned}
1_{1}^{\prime} q=\frac{\Delta H}{\Delta x}=\frac{\Delta H}{200} & =\frac{V Q}{I}=\frac{(100 E 3)(100 * 25 *[-12132)}{I} \\
& =-464.12 \mathrm{~N} / \mathrm{mm} .
\end{aligned}
$$

$$
\Delta H=-92823 \mathrm{~N}
$$

rectangle 4 triangle.

$$
\begin{aligned}
& F_{1 A}=(76.39)(100)(25)=190975 \mathrm{~N} \\
& F_{2 A}=(54.57)(100)(25)=136425 \mathrm{~N} \\
& F_{1 B}=\frac{1}{2}(183.51-76.39)(100)(25)=133900 \mathrm{~N} \\
& F_{2 B}=\frac{1}{2}(131.08-54.57)(100)(25)=\frac{191275}{2} \mathrm{~N} \\
& \left(F_{1}=F_{1 A}+F_{1 B}, F_{2}=F_{2 A}+F_{2 B}\right) .
\end{aligned}
$$

$$
\begin{aligned}
\bar{V} & =\int_{0}^{100} T_{x y}(25) d \bar{y}=\int^{100} \frac{q}{25}(25) d \bar{y} \\
& =V_{I}^{100} \int_{0}^{125)} \frac{0}{y}\left(y_{c}-\bar{y}\right) d y \\
V & =26393.8 N \\
& \sum M_{A}=\left(F_{1 A}-F_{2 A}\right)
\end{aligned}
$$

$F_{1 A}, F_{2 A}$ art at 50 mm from brotlom
$F_{1 B}, F_{2 B}$ act at $\frac{100}{3} \mathrm{~mm}$ from brtton.

$$
\Rightarrow \sum M_{A}=0 \text { cleckiont }
$$

Thickness' t ' throwout.

$$
\begin{aligned}
& q= \frac{V Q}{I} \\
& I= 2\left[(a+b) t^{3}\right. \\
& 12 \\
&+\frac{t(h-t)^{3}}{12}
\end{aligned}
$$

neglect t^{2}, t^{3}, terms $\rightarrow I \simeq t\left[\frac{h^{2}}{2}(a+6)+\frac{h^{3}}{12}\right]$

$$
F_{1}=\int T_{x z} t d s=\int q d s=\frac{V}{I} \int Q d s=\frac{V}{I}\left(a t \frac{h}{2}\right) \frac{a}{2}
$$

Similaly $F_{2}=\frac{V}{I}\left(b-\frac{h}{2}\right) \frac{b}{2}$.

$$
\begin{aligned}
& \forall e=\left(F_{2}-F_{1}\right) h=\frac{\forall}{\notin\left(\frac{h^{2}}{2}(a+b)+\frac{h^{3}}{12}\right)} \frac{\nvdash h}{4}\left(b^{2}-a^{2}\right) h \\
& e=\frac{b^{2}-a^{2}}{\left(2(a+b)+\frac{h}{3}\right)}
\end{aligned}
$$

Done in class notes.

