DEPARTMENT OF CIVIL ENGINEERING, IIT BOMBAY

CE 221 Solid Mechanics
Tutorial Sheet $=8$
Instructor: A. Laskar/N. K. Chandiramani

1. For the engineering structures shown in Fig. 1 determine the normal and shear stresses at the point shown. Sketch an element in each case showing the magnitude and sense of the stresses on each face.
2. For the elements illustrated in Fig. 2 calculate the stress components on the inclined planes.
3. Find the principal normal and maximum shearing stresses and show their sense on a properly oriented element for the state of stress (in MPa) shown in Table 1. by (a) analytically and (b) Mohr's circle of stresses.
4. A chemical pressure vessel is to be manufactured from glass fibres in an epoxy matrix as shown in Fig. 3. If the optimum orientation of fibre is that in which the fibres are subjected to tensile stress with no transverse or shear stresses, determine the optimum value of α.
5. Draw Mohr's circle of strain and determine principal normal and shear strains and their directions for the elements having the strains as in Table 2. Verify your results analytically. Also, determine principal normal and shearing stresses. Take E=200 GPa and $v=0.3$.
6. Data from rectangular strain rosette glued to steel plate are as follows $\varepsilon_{0^{0}}=-0.00022$, $\varepsilon_{45}{ }^{\circ}=0.00012$ and $\varepsilon_{90}{ }^{\circ}=0.00022$. What are the principal stresses and in which direction do they act? $\mathrm{E}=200 \mathrm{GPa}$ and $v=0.3$.
7. Data from equiangular strain rosette attached to aluminium alloy are as follows $\varepsilon_{0}{ }^{\circ}=$ $0.0004, \varepsilon_{60}{ }^{\circ}=0.0004$ and $\varepsilon_{120}{ }^{\circ}=-0.0006$. What are the principal stresses and their directions. $\mathrm{E}=70 \mathrm{GPa}$ and $v=0.25$
Table-1

Element.	σ_{x}	σ_{y}	τ_{xy}
1.	60	20	0
2.	-30	50	-40
3.	200	0	80
4.	20	30	20

Table - 2

Element.	ε_{X}	ε_{y}	γ_{xy}
1.	-0.00012	0.00112	-0.0002
2.	0.0008	0.0020	0.0008

(in MPa)

Fig. 3

CE22I TUTJRIAL\# 8 .

Pomit A: $\begin{aligned} \sigma_{x} & =0, \tau_{x y}\end{aligned}=\frac{(20 E 3)(50)(50)(25)}{(50) \frac{(100)^{3}}{12}(50)}, ~\left(\sigma_{y}=0 \quad=6 \mathrm{MPa}\right.$.

Point $B: \tau_{x y}=0, \sigma_{x}=\frac{-\left(-20 E 3_{0} \mid E 3\right)(50)}{(50) \frac{(100)^{3}}{12}}$
$\sigma_{y}=0$

$$
=240 \mathrm{MPa}
$$

$$
\begin{aligned}
& \tau=\frac{(3 E 6)(50}{\frac{\pi}{32}\left(50^{4}\right)}=\frac{244.46}{2}=122.23 \mathrm{MPa} \\
& \sigma_{x}=\frac{-20 E 3}{\frac{\pi}{4} 50^{2}}=-10.19 \mathrm{MPa}
\end{aligned}
$$

2).

$$
\begin{aligned}
\text { 2). a) } \sigma_{x} & =180, \sigma_{y}=120, \tau_{x y}=40, \theta=30^{\circ} \\
\sigma_{x^{\prime}} & =\frac{180+120}{2}+\frac{180-120}{2} \cos 60+40 \sin 60=199.64 \\
\binom{n 0 t}{e^{2} \text { d }} \rightarrow \sigma_{y^{\prime}}^{\prime} & =\prime \prime=100.36 \\
\tau_{x^{\prime} \prime^{\prime}} & =-\left(\frac{180-120}{2}\right) \sin 60+40 \cos 60=-5.98
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \\
& \sigma_{x}=200, \sigma_{y}=-20, \tau_{x y}=-60, \theta=45^{\circ} \\
& \sigma_{x^{\prime}}=\frac{200-20}{2}+\frac{200+20}{2} \cos 90-60 \sin 90=30 \\
& \underset{(\text { reqd })}{(\text { not }} \rightarrow \sigma_{y^{\prime}}=" 11+"=150 \\
& \tau_{x^{\prime} y^{\prime}}=-\left(\frac{200+20}{2}\right) \sin 90-60 \cos 90=-110
\end{aligned}
$$

3)

$\because \tau_{x y}=0$, it is the prnicipal element itself.

$$
\begin{aligned}
& \sigma_{\max }=60, \sigma_{\min }=20 \\
& \tau_{\max }=\left|\frac{60-20}{2}\right|=20
\end{aligned}
$$

Pnicipal element $O_{n \max } \tau$ plane, $\sigma_{x^{\prime}}=\sigma_{y^{\prime}}=\sigma_{a v e}=\frac{60+20}{2}=40$. Tax planes make 45° witt pmicipal planes,

\rightarrow For direction of $\tau_{\max }$, use

$$
\tau_{x^{\prime} y^{\prime}}=-\left(\frac{60-20}{2}\right) \sin 2 \theta+(0) \cos 2 \theta=-20
$$

(with $\theta=+45^{\circ}$).

T Max element

$$
\begin{aligned}
& \sigma_{\text {ave }}=\frac{-30+50}{2}=10, R=\sqrt{\left(\frac{-30-50}{2}\right)^{2}+(-40)^{2}}=40 \sqrt{2} \\
&
\end{aligned}
$$

$$
\sigma_{\text {max }}=\sigma_{\text {ave }}+R=66.57, \sigma_{\min }=\sigma_{\text {ave }}-R=-46.57
$$

$$
R=\tau_{\text {max }}=40 \sqrt{2}=56.57
$$

$$
\begin{aligned}
& =\tau_{\text {max }}=40 \sqrt{2}=56.3+ \\
& \theta_{p}=\frac{1}{2} \tan ^{-1}\left(\frac{2 *(-40)}{-30-50}\right)=22.5^{\circ}, 112.5^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\theta_{s}=22.5 \pm 45 & =67.5^{0},-22.5^{\circ} \\
\left.\sigma_{x^{\prime}}\right|_{\theta=\theta_{p}}=22.5 & =\left(\frac{-30+50}{2}\right)+\left(\frac{-30-50}{2}\right) \cos 45-40 \sin 45 \\
& =-46.57 \\
\left.T_{x^{\prime} y^{\prime}}\right|_{\theta=\theta_{s}}=67.5^{\circ} & =-\left(\frac{-30-50}{2}\right) \sin (2 * 67.5)-40 \cos (2 * 67.5) \\
& =56.56 .
\end{aligned}
$$

(same
results as form formulae)

$$
\begin{aligned}
& R=\frac{1}{2} \sqrt{(50+30)^{2}+(40+40)^{2}}=56.57=40 \sqrt{2} \\
& \sigma_{\min }\left(\equiv X^{\prime}\right)=10-R=-46.57 . \\
& \sigma_{\text {max }}\left(\equiv Y^{\prime}\right)=10+R=66.57
\end{aligned}
$$

$$
\theta_{p}=\frac{1}{2} \sin ^{-1}\left(\frac{40}{R}\right)=22.5^{\circ} \pi
$$

$$
\left.\theta_{S}=22.5^{\circ}\right)
$$

procicipal element

Principal element.

$$
\begin{array}{ll}
X^{\prime} \equiv \sigma_{\text {max }} & =100+R, R=\frac{1}{2} \sqrt{(200-0)^{2}+(80 * 2)^{2}}=128.06 \\
& =228.06 \\
Y^{\prime} \equiv \sigma_{\text {min }} & =100-R=-28.06 . \\
\theta_{p} & \left.=\frac{1}{2} \sin ^{-1}\left(\frac{80}{R}\right)=19.33^{\circ}\right)^{2} \\
\text { element } \\
\theta_{s} & =45-\theta_{p}=25.67^{\circ}:
\end{array}
$$

$$
\begin{aligned}
& \text { Tare }=\frac{200+0}{2}=100, R=\sqrt{\left(\frac{200-0}{2}\right)^{2}+80^{2}}=128.06 \\
& \sigma_{\text {max }}=228.06, \sigma_{\min }=100-128.06=-28.06 \\
& \tau_{\text {max }}=128.06 \\
& \theta_{p}=\frac{1}{2} \tan ^{-1}\left(\frac{2 * 80}{200-0}\right)=19.33^{\circ}, 109.33^{\circ} \\
& \theta_{s}=19.33 \pm 45^{\circ}=64.33^{\circ},-25.67^{\circ} \\
& \begin{array}{l}
\left.\sigma_{x^{\prime}}\right|_{\theta=\theta_{p}=19.33}=\frac{200+0}{2}+\left(\frac{200-\theta}{2}\right) \cos (2 * 19.33)+80 \sin (2 * 19.33) \\
=228.06
\end{array} \\
& \begin{array}{c}
\left.\tau_{x^{\prime} y^{\prime}}\right|_{\theta_{s}=64.33}=-\left(\frac{200-0}{2}\right) \sin (2 * 64.33)+80 \cos (2 * 64.33) \\
=-128.06
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{a v}=\frac{20+30}{2}=25, R=\sqrt{\left(\frac{20-30}{2}\right)^{2}+20^{2}}=20.62 \\
& \sigma_{\max }=25+20.62=45.62, \sigma_{\min }=25-20.62=4.38 \\
& \tau_{\max }=20.62 \\
& \theta_{p}=\frac{1}{2} \tan ^{-1}\left(\frac{2 * 20}{20-30}\right)=-37.98^{\circ}, 52.02^{\circ} \\
& \theta_{s}=-37.98 \pm 45=7.02^{\circ},-82.98^{\circ} \\
& \left.\sigma_{x^{\prime}}\right|_{\theta=\theta_{p}}=\frac{-37.98^{\circ}}{2}+\frac{20-30}{2} \cos (2 *-37.98)+20 \sin (2 *-37.98) \\
& =4.38 \\
& \left.\tau_{x^{\prime} y^{\prime}}\right|_{\theta_{s}}=7.02=-\left(\frac{20-30}{2}\right) \sin (2 * 7.02)+20 \cos \left(2 * 7.0^{2}\right) \\
& =20.62
\end{aligned}
$$

Tmax ${ }^{1}{ }^{1} .02$ etrment

$$
\begin{aligned}
& X^{\prime} \equiv \sigma_{\text {min }}=25-\frac{1}{2} \sqrt{40^{2}+10^{2}}=4.38 ; R=\frac{1}{2} \sqrt{40^{2}+10^{2}=} 20.62 \\
& Y^{\prime} \equiv \sigma_{\text {max }}=25+\frac{1}{2} \sqrt{40^{2}+10^{2}}=45.62 \\
& \theta_{p}=\frac{1}{2} \sin ^{-1}\left(\frac{20}{R}\right)=37.98^{\circ} \\
& \theta_{s}=\frac{1}{2} \cos ^{-1}\left(\frac{20}{R}\right)=7.62
\end{aligned}
$$

4)

Transform from $x^{\prime} \& x^{\prime \prime}$ systems to x system. Use $\sigma_{y^{\prime}}=\sigma_{y^{\prime \prime}}=\tau_{x^{\prime} y^{\prime \prime}}=\tau_{x^{\prime \prime} y^{\prime \prime}}=0$

$$
\begin{align*}
& \sigma_{x}=\frac{p r}{2 t}=\frac{\sigma_{x^{\prime}}}{2}+\frac{\sigma_{x^{\prime}}}{2} \cos 2 \alpha+\frac{\sigma_{x^{\prime \prime}}}{2}+\frac{\sigma_{x^{\prime \prime}}}{2} \cos 2 \alpha=\sigma(1+\cos 2 \alpha) \rightarrow(1) \tau_{x y}^{1}=0 \\
& \sigma_{y}=\frac{p r}{t}=\frac{\sigma_{x^{\prime}}}{2}-\frac{\sigma_{x^{\prime}}}{2} \cos 2 \alpha+\frac{\sigma_{x^{\prime \prime}}}{2}-\frac{\sigma_{x^{\prime \prime}}}{2} \cos 2 \alpha=\sigma(1-\cos 2 \alpha) \tag{1}\\
& 1 \sigma_{y}=\frac{p r}{t} \\
& T_{x y}=0=\frac{\sigma_{x}^{\prime}}{2} \sin 2 \alpha-\frac{\sigma_{x^{\prime \prime}}}{2} \sin 2 \alpha=\frac{\sigma}{2}(\sin 2 \alpha-\sin 2 \alpha)=0 \\
& \text { satrsied idéntically }
\end{align*}
$$

4) contd.

Solve (1), (2),

$$
\begin{aligned}
& 2 \sigma=\frac{3}{2} \frac{p r}{t} \Rightarrow \sigma=\frac{3}{4} \frac{p r}{t} \\
& \Rightarrow \cos 2 \alpha=-1+\frac{2}{3}=-\frac{1}{3} \Rightarrow \alpha=54.73^{\circ}
\end{aligned}
$$

5)

$$
\begin{aligned}
& \varepsilon_{\text {ave }}= \\
& R=\frac{1}{2} \\
& \varepsilon_{y} \\
& \text { 10) } E-5
\end{aligned}
$$

$$
\varepsilon_{\text {max }}=50+62.8=112.8 \mathrm{E}-5
$$

$$
\varepsilon_{\min }=50-62.8=-12.8 E-5
$$

$$
\left(\gamma_{x y}\right)_{\max }=2 R=125.6 \mathrm{~F}-5
$$

$$
\theta_{p}=\frac{1}{2} \sin ^{-1}\left(\frac{10}{R}\right)=4.58^{\circ}
$$

$$
\theta_{s}=\frac{1}{2} \cos ^{-1}\left(\frac{10}{R}\right)=40.42^{\circ}
$$

Principal element. $\left\{\begin{array}{l}\left(\frac{\pi}{2}+125-6 E-5\right) \geq X^{\prime \prime} \\ M a x \gamma_{x y} \text { element }\end{array}\right.$

$$
\begin{aligned}
& \varepsilon_{\text {max, min }}=\left(\frac{-12+112}{2}\right) \pm \sqrt{\left(\frac{-12-112}{2}\right)^{2}+\left(-\frac{20}{2}\right)^{2}}=(112.8,-12.8) E-5 . \\
&\left(\gamma_{x y}\right)_{\max }=2 R=125.6 E-5 . \\
& \theta_{p}=\frac{1}{2} \tan ^{-1}\left(\frac{-20}{-12-112}\right)=4.58^{\circ}, 94.58^{\circ} ; \theta_{s}=\theta_{p} \pm 45^{\circ}=49.58^{\circ}-40.42^{\circ} \\
&\left.\varepsilon_{x^{\prime}}\right|_{\theta=\theta_{p}}=4.58 \\
&=-12.8 E-5 . \quad\left(\frac{-12+12}{2}\right)+\left(\frac{-12-112}{2}\right) \cos (2 * 4.88)+\left(\frac{-20}{2}\right) \sin (2 * 4.58) \\
& \text { so it checks rut int Mohur circle }
\end{aligned}
$$

$$
\begin{array}{r}
\gamma_{x^{\prime} y^{\prime}} \mid=-(-12-112) \sin (2 *-40 \cdot 42)+(-20) \cos (2 *-40 \cdot 42)=-125 \cdot 6 E-5 \\
\theta_{s}=-40.42 \quad \text { so it checks out witt }
\end{array}
$$

So it checks out with
x Mosh aisle.

$$
\left(\Sigma_{x}=8, \varepsilon_{y}=20, \gamma_{x y}=8\right) E-4
$$

$$
\begin{aligned}
& \sum_{\text {are }}=\frac{8+20}{2}=14 \\
& R=\frac{1}{2} \sqrt{(20-8)^{2}+8^{2}}=7.211
\end{aligned}
$$

$$
\varepsilon_{\text {max }}=14+7.211=\underset{E-5}{21.211}, \quad \varepsilon_{\text {min }}=14-7.211=
$$

$\left(\gamma_{x y}\right)_{\text {max }}=2 R=14.422 E-4$ E-4.

$$
\theta_{p}=\frac{1}{2} \sin ^{-1}\left(\frac{4}{R}\right)=16.84, \theta_{s}=\left(\frac{\pi}{2}-2 \theta_{\rho}\right) \frac{1}{2}=28.15^{\circ}
$$

$$
\begin{aligned}
& \varepsilon_{\text {max, min }}=\left(\frac{8+20}{2}\right) \pm \sqrt{\left(\frac{8-20}{2}\right)^{2}+\left(\frac{8}{2}\right)^{2}}=(21.211,6.789) E-4 \\
& \left(\gamma_{x y}\right)_{\max }=2 R=2 \sqrt{52}=14.422 E-4 \\
& \theta_{p}=\frac{1}{2}+c_{n}^{-1}\left(\frac{8}{8-20}\right)=-16.84^{\circ}, 73.15^{\circ}, \theta_{s}= \pm 45+\theta_{p}=28.16^{\circ},-61.84^{\circ} \\
& \left.\varepsilon_{x^{\prime}}\right|_{\theta=\theta_{p}=-16.84^{\circ}}=\left(\frac{8+20}{2}\right)+\left(\frac{8-20}{2}\right) \cos (2 *-16.84)+\frac{8}{2} \sin (2 *-16.84)=6.789 E-4 / \\
& \quad \begin{array}{l}
\text { checks out } \\
\text { with Mohur cire }
\end{array} \\
& \left.\gamma_{x^{\prime} y^{\prime}}\right|_{\theta=\theta_{s}=28.16^{\circ}} \quad-(8-20) \sin (28.16 * 2)+8 \cos (2 * 28.16)=14.422 E-4 .
\end{aligned}
$$ with Mot er circle

THEORY.
Principal stress, max shearing str essen form principal and max shearing strains.
From constitutive law $T_{x y}=G \gamma_{x y}$
So $\gamma_{x y}=0 \Rightarrow \tau_{x y}=0, \gamma_{x y}=\max \Rightarrow \tau_{x y}=\max$.
So principal planes 8 maximum sheer planes of strain coincide int prisipd planes \& max shear plane of stress.

$$
\begin{aligned}
& \left.\varepsilon_{x^{\prime}}=\frac{\sigma_{x^{\prime}}}{E}-\frac{\nu}{E} \sigma_{y^{\prime}}-\frac{\nu}{E} \sigma_{z^{\prime}}\right\rangle_{u}^{s}=\frac{1}{E}\left[\left(1-\nu^{2}\right) \sigma_{x^{\prime}}-\nu(1+\nu) \sigma_{y^{\prime}}\right] \\
& \begin{array}{l}
\left.\varepsilon_{y^{\prime}}=\frac{\sigma_{y}^{\prime}}{E}-\frac{\nu}{E}\left(\sigma_{x^{\prime}}+\sigma_{z^{\prime}}\right) \quad\right)_{t}^{u} \begin{array}{l}
u \\
b \\
t \\
t
\end{array}=\frac{1}{E}\left[\left(1-\nu^{2}\right) \sigma_{y^{\prime}}-\nu(1+\nu) \sigma_{x^{\prime}}\right] \\
\varepsilon_{z^{\prime}}=0=\sigma_{z^{\prime}}-\frac{\nu}{E}\left(\sigma_{x^{\prime}}+\sigma_{y^{\prime}}\right){ }_{t}^{t}
\end{array} \\
& \varepsilon_{z^{\prime}}=0=\frac{\sigma_{\bar{z}}}{E}-\frac{\nu}{E}\left(\sigma_{x^{\prime}}+\sigma_{y^{\prime}}\right){\underset{c}{t}}_{\substack{t \\
t \\
e}}^{\substack{t}}
\end{aligned}
$$

\because plane strain

$$
\begin{aligned}
& \because \text { plamestrain } \\
\Rightarrow \sigma_{x^{\prime}} & =\left[\left(1-\nu^{2}\right) \varepsilon_{x^{\prime}}+\nu(1+\nu) \varepsilon_{y^{\prime}}\right] \frac{E}{\left(1-\nu^{2}\right)^{2}-\nu^{2}(1+\nu)^{2}}=\frac{E}{(1+\nu)(1-2 v)}\left[(1-\nu) \varepsilon_{x^{\prime}}+\nu \varepsilon_{y^{\prime}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{x^{\prime}}=\frac{E}{(1+\nu)(1-2 r)}\left[(1-\nu) \varepsilon_{x^{\prime}}+\nu \varepsilon_{y^{\prime}}\right] \\
& \sigma_{y^{\prime}}=\frac{E}{(1+r)(1-2 \nu)}\left[(1-\nu) \varepsilon_{y^{\prime}}+\nu \varepsilon_{x^{\prime}}\right] \\
& \sigma_{z^{\prime}}=\frac{E \nu}{(1+\nu)(1-2 v)}\left(\varepsilon_{x^{\prime}}+\varepsilon_{y^{\prime}}\right)
\end{aligned}
$$

were derived in
L2 - axial loading chapter (slide 34).

Case I forprincipalstramis

$$
\text { sI } \alpha \varepsilon_{x^{\prime}}=\varepsilon_{\min }=-12.8 E-5, \varepsilon_{y^{\prime}}=\varepsilon_{\text {max }}=112.8 E-5, \gamma_{x^{\prime} y^{\prime}}=0
$$

$$
\sigma_{x^{\prime}}=\frac{200 E_{3}}{(1.3)(0.4)}[(0.7)(-12.8 E-5)+(0.3)(112.8 E-5)]=\begin{gathered}
95.69 \mathrm{MPa} \\
=\sigma_{\min }
\end{gathered}
$$

$$
\sigma_{y^{\prime}}=\frac{200 E 3}{(1.3)(0.4)}[(0.7)(112.8 E-5)+(0.3)(-12.8 E-5)]=\begin{gathered}
288.9 \mathrm{MPa} \\
=\sigma_{\max }
\end{gathered}
$$

$$
T_{x^{\prime} y^{\prime}}=G \gamma_{x^{\prime} y^{\prime}}=0
$$

$$
\begin{aligned}
& \text { For mex shear strain, } \\
& \varepsilon_{x^{\prime \prime}}=\varepsilon_{y \prime \prime}=\varepsilon_{\text {ave }}=50 E-5 \\
& \gamma_{x^{\prime \prime} y^{\prime \prime}}=-125.6 E-5
\end{aligned}
$$

$$
\sigma_{y^{\prime \prime}}=\sigma_{x^{\prime \prime}}=\frac{200 E 3}{(1.3)(0.4)}(50 E-5)=192.3 \mathrm{MPa}
$$ element.

$$
T_{x^{\prime \prime} y^{\prime \prime}}=G \gamma_{x^{\prime \prime} y^{\prime \prime}}=\frac{200 E 3}{2(1.3)}(-125.6 \mathrm{E}-5)=-96.61 \mathrm{MPa}=\left(\tau_{x y}\right)_{\text {max }} x^{\prime \prime}
$$

Case II For prnicipel stramis, $\varepsilon_{x^{\prime}}=\varepsilon_{\text {min }}=6.789 E-4, \varepsilon_{y_{1}}=\varepsilon_{\text {max }}=21.211 E-4$,

$$
\begin{aligned}
& \sigma_{x^{\prime}}=\frac{200 E 3}{(1.3)(0.4)}[(0.7)(6.789 E-4)+(0.3)(21.211 E-4)]=427.5 \mathrm{MPa}_{x^{\prime} y^{\prime}}=0 \\
& \sigma_{y^{\prime}}=\frac{200 E 3}{(1.3)(0.4)}[(0.7)(21.211 E-4)+(0.3)(6.789 E-4)]=649.4 \mathrm{MPa}=\sigma_{\mathrm{max}} \\
& \text { Pimicipal }
\end{aligned}
$$

$$
\tau_{x^{\prime} y^{\prime}}=G \gamma_{x^{\prime} y^{\prime}}=0
$$

For max sheer stramis, $\varepsilon_{x^{\prime \prime}}=\varepsilon_{y_{11}}=14 E-4, \gamma_{x^{\prime \prime} y^{\prime \prime}}=14 .\{22 E-4$

$$
\begin{aligned}
& \sigma_{x^{\prime \prime}}=\sigma_{y^{\prime \prime}}=\frac{200 E 3}{(1.3)(0.4)}(14 E-4)=538 \mathrm{MPa} \\
& \tau_{x^{\prime \prime} y^{\prime \prime}}=G \gamma_{x^{\prime \prime} y^{\prime \prime}}=\frac{200 E 3}{2(1.3)}(14.422 E-4)=110.9 \mathrm{MPa}
\end{aligned}
$$

6)

$$
\begin{aligned}
& \text { 7) } \begin{aligned}
& \varepsilon_{x}
\end{aligned}=\varepsilon_{00}=4 E-4 \\
& \varepsilon_{60^{\circ}}=4 E-4=\varepsilon_{x} \frac{1}{4}+\varepsilon_{y} \frac{3}{4}+\gamma_{x y} \frac{\sqrt{3}}{2} \cdot \frac{1}{2}=1 . E-4+\frac{3}{4} \varepsilon_{y}+\frac{\sqrt{3}}{4} \\
&-6 E-4=\varepsilon_{120^{\circ}}=\varepsilon_{x} \frac{1}{4}+\varepsilon_{y} \frac{3}{4}+\gamma_{x y} \frac{\sqrt{3}}{2}\left(-\frac{1}{2}\right)=1 E-4+\frac{3}{4} \varepsilon_{y}-\frac{\sqrt{3}}{4} \gamma_{x y} \\
& \Rightarrow \varepsilon_{y}=\frac{2}{3} \cdot(-4 E-4)=-\frac{8}{3} E-4, \quad \gamma_{x y}=\frac{2}{\sqrt{3}} \cdot(10 E-4)=\frac{20}{\sqrt{3}} E-4 . \\
& \varepsilon_{\text {max }, \text { min }}=\frac{\left(4-\frac{8}{3}\right)}{2} \pm \sqrt{\left(\frac{4+\frac{8}{3}}{2}\right)^{2}+\left(\frac{20}{2 \sqrt{3}}\right)^{2}}=(7.33,-6) * E-4 \\
& \theta_{p}=\frac{1}{2} \tan ^{-1}[\frac{20 / \sqrt{3}]}{\left.\left(4+\frac{8}{3}\right)\right]}=30^{\circ}, 12 \underbrace{\circ} ; \varepsilon_{30^{\circ}}=\left(4 . \frac{3}{4}-\frac{8}{3} \cdot \frac{1}{4}+\frac{20}{\sqrt{3}} \frac{\sqrt{3}}{2} \cdot \frac{1}{2}\right. \\
&=7.33 E-4
\end{aligned}
$$

$$
\varepsilon_{60^{\circ}}=4 E-4=\varepsilon_{x} \frac{1}{4}+\varepsilon_{y} \frac{3}{4}+\gamma_{x y} \frac{\sqrt{3}}{2} \cdot \frac{1}{2}=1 . E-4+\frac{3}{4} \varepsilon_{y}+\frac{\sqrt{3}}{4} \gamma_{x y}
$$

$$
\varepsilon_{\text {max, min }}=\frac{\left(4-\frac{8}{3}\right)}{2} \pm \sqrt{\left(\frac{4+\frac{8}{3}}{2}\right)^{2}+\left(\frac{20}{2 \sqrt{3}}\right)^{2}}=(7.33,-6) * E-4
$$

$$
\begin{aligned}
\theta_{p}=\frac{1}{2} \tan ^{-1}\left[\frac{20 / \sqrt{3}}{\left(4+\frac{8}{3}\right)}\right]=30^{\circ}, 120^{\circ} ; \varepsilon_{30^{\circ}} & =\left(4 . \frac{3}{4}-\frac{8}{3} \cdot \frac{1}{4}+\frac{20}{\sqrt{3}} \frac{\sqrt{3}}{2} \cdot \frac{1}{2}\right) E-4 \\
& =7.33 E-4
\end{aligned}
$$

$$
\Sigma_{x^{\prime}}=\varepsilon_{\text {max }}=7.33 ; \quad \varepsilon_{y^{\prime}}=\varepsilon_{\text {min }}=-6 E-4=-1 x^{\prime} \text { her used transformation. }
$$

-1 29.87 : 1 (as an alternative (wick, as dose (above).

$$
\begin{aligned}
& \varepsilon_{x}=\varepsilon_{0^{\circ}}=-22 E-5, \quad \varepsilon_{y}=\varepsilon_{90^{\circ}}=22 E-5 \\
& \varepsilon_{45^{\circ}}=12 E-5=\left(\frac{-22+22}{2}\right) E-5+\frac{\gamma_{x y}}{2} \Rightarrow \gamma_{x y}=24 E-5 \\
& \varepsilon_{\text {max, min }}=\left[\frac{(-22+22)}{2} \pm \sqrt{\left(\frac{-22-22}{2}\right)^{2}+\left(\frac{24}{2}\right)^{2}}\right] E-5= \pm 25.06 E-5
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \varepsilon_{x^{\prime}}=\varepsilon_{\text {min }}=-25.06 \mathrm{E}-5, \varepsilon_{y^{\prime}}=\varepsilon_{\text {max }}=25.06 \mathrm{E}-5 \\
& \gamma_{x^{\prime} y^{\prime}}=0 \\
& \sigma_{x^{\prime}}=\frac{200 E 3}{(1.3)(0.4)}[(0.7)(-25.06)+(0.3)(25.06)] E-5=-38.55 \mathrm{MPa} \\
& \sigma_{y^{\prime}}=38.55 \mathrm{MPa}
\end{aligned}
$$

