# DEPARTMENT OF CIVIL ENGINEERING, IIT BOMBAY 

CE 201 Solid Mechanics

## Tutorial Sheet = 9

1. For the beams loaded as shown in the Fig. 1 determine the equations of elastic curves using the integration method. Determine the values of maximum deflection, slope and their locations.
2. Determine the deflection of guided roller of the uniform beam shown in the Fig. 2.
3. Determine the deflection of point C of the uniform overhanging beam shown in the Fig. 3.
4. Determine the deflection and slope at the internal hinge of the beam shown in the Fig. 4.
5. Determine the slope and deflection of the point $C$ of the non-uniform beam shown in the Fig. 5.
6. Determine the deflection of the point C of the right angle bent as shown in the Fig. 6.


Fig. 1


Fig. 6
Fig. 2

PB

$2^{\text {nd }}$ order method


$$
\begin{aligned}
& M_{A B}=-\frac{P a}{L} x \\
& \Rightarrow E I y_{A B}=-\frac{P a}{L} \frac{x^{3}}{6}+C_{1} x+C_{2} \\
& x=0, y_{A B}=0 \Rightarrow C_{2}=0 \\
& x=L, y_{A B}=0 \Rightarrow C_{1}=P a \frac{L}{6} \\
& M_{B C}=-P \xi \Rightarrow E I y_{B C}=-\frac{P \xi^{3}}{6}+C_{3} \xi+C_{4} \\
& \xi=a, y_{B C}=0 \Rightarrow C_{3} a+C_{4}=P \frac{P a^{3}}{6} \\
& x=L, \xi=a,\left.y_{A B}^{\prime}\right|_{x=L}=-\left.y_{B C}^{\prime}\right|_{\xi=a} \Rightarrow 0=-\frac{P a L}{2}+P a \frac{L}{6}-\frac{P a a^{2}}{2}+C_{3} \\
& \Rightarrow C_{3}=P a\left(\frac{a}{2}+\frac{L}{3}\right) \\
& \quad C_{4}=-P a^{2}\left(\frac{a}{3}+\frac{L}{3}\right) \\
& y_{C}=\left.y_{B C}\right|_{\xi=0}=\frac{C_{4}}{E I}=-\frac{P a^{2}}{E I}\left(\frac{a}{3}+\frac{L}{3}\right)=-\frac{P a^{2}}{3 E I}(a+L) \\
& \theta_{C}=\left.y_{B C}^{\prime}\right|_{\xi=0}=\frac{C_{3}}{E I}=P a\left(\frac{a}{2}+\frac{L}{3}\right)(\Omega)
\end{aligned}
$$

$4^{\text {te order method }}$

$$
E I y^{I}=-W=R_{B}(X-L)^{-1}-P(x-(L+a)\rangle^{1} \hat{r}_{B}=P\left(\frac{a}{L}+1\right)
$$

$$
\begin{aligned}
& E I y^{\text {III }}=R_{B}\left\langle(x-L\rangle^{0}-P\langle x-(L+a)\rangle^{0}+C_{1}\right. \\
& \text { Er } y^{\Pi I}=R_{B}\langle x-L\rangle^{\prime}-P\langle x-(L+a\rangle\rangle^{\prime}+C_{1} x+C_{2} \\
& E I y^{I}=\frac{R_{B}}{2}(x-L\rangle^{2}-\frac{P}{2}\langle x-(L+a)\rangle^{2}+c_{1} \frac{x^{2}}{2}+c_{2} x+c_{3} \\
& \text { Ely }=\frac{R_{B}}{6}\langle x-L\rangle^{3}-\frac{P}{6}\langle x-(L+a)\rangle^{3}+c_{1} \frac{x^{3}}{6}+c_{2} \frac{x^{2}}{2}+c_{3} x+c_{4} \\
& \left.E I y\right|_{x=0}=0 \Rightarrow C_{y}=0 \\
& \left.E I y^{\prime \prime}\right|_{x=0}=0 \Rightarrow C_{2}=0 \\
& \left.E I y\right|_{x=L}=0 \Rightarrow C_{1} \frac{L^{3}}{6}+C_{3} L=0 \text {. } \\
& \left.E I y^{\prime \prime}\right|_{x=L+a}=0 \Rightarrow R_{B} a+C_{1}(L+a) \\
& \Rightarrow C_{1}=-\frac{P a}{L}, \quad C_{3}=\frac{P a L}{6} \\
& y_{c}=\left.y\right|_{L+a}=\left(\frac{R_{B}}{b} a^{3}-\frac{P a}{L} \frac{(L+a)^{3}}{6}+\frac{P a L}{6}(L+a)\right) \frac{1}{E I} \\
& =-P \frac{(L+a)}{3} \frac{a^{2}}{E I} \text { (same as by zed order method) } \\
& \theta_{c}=\left.y^{\prime}\right|_{L+a}=\frac{R_{B}}{2} a^{2}-\frac{P a}{L} \frac{(L+a)^{2}}{2}+P \frac{P L}{6} \\
& \begin{aligned}
& P a\left(-\frac{a}{2}-\frac{L}{3}\right) \text { ie }(\Omega) \rightarrow \begin{array}{l}
\text { same } a \text { by } \\
\text { 2ndorder } \\
\text { method }
\end{array} \\
&
\end{aligned}
\end{aligned}
$$

Note that shear force boundary condition is identically satisfied. Cheek it $\rightarrow$ $\forall(a l l x=1+a)$

$$
\left.E I y^{\text {III }}\right|_{x=(L+c)^{+}}=R_{B}-P+c_{1}=P\left(1+\frac{a}{L}-1-\frac{a}{L}\right)=0
$$

or $E I y$ III $\left.\right|_{x=(L+a)^{-}}=R_{B}+C_{1}=p\left(1+\frac{a}{L}-\frac{a}{L}\right)=P \Omega_{p T_{C} T_{0}^{p}}^{p}$

PL


For $B C D, \sum M_{B}=0 \Rightarrow P_{y}=\frac{P}{2}$

$$
\Rightarrow B_{y}=\frac{p}{2}
$$

So $A B$ behave like cantilever with tip land $B_{y}=\frac{P}{2}(\downarrow)$
$2^{\text {nd }}$ order method.

AB: $\left(0 \leq x \leq \frac{L}{3}\right)$


$$
\begin{aligned}
& M_{A B}=-P\left(\frac{L}{6}-\frac{x}{2}\right) \Rightarrow P\left(\frac{x^{3}}{12}-\frac{L x^{2}}{12}\right)=E I y_{A B}+C_{1} x+C_{2} \\
&\left.\begin{array}{l}
x=0, \\
x=0, \\
x=0 \Rightarrow C_{A}=0 \\
y_{A B}^{\prime}=0 \Rightarrow C_{1}=0
\end{array}\right\} \Rightarrow y_{A B}\left(\frac{L}{3}\right)=y_{B}=\frac{P L^{3}}{E I}\left(-\frac{1}{162}\right)(\downarrow) \\
& y_{A B}^{\prime}\left(\frac{L}{3}\right)=\theta_{B}^{-}=\frac{P L^{2}}{E I}\left(-\frac{1}{36}\right)(2)
\end{aligned}
$$

$\frac{B C}{}: M_{B C}=\frac{P}{2} \xi \Rightarrow \frac{P}{12} \xi^{3}=E I y_{B C}+C_{3} \xi+C_{4}$

$$
\left(0 \leq \xi \leq \frac{L}{3}\right)
$$

$$
x=\frac{L}{3}, \xi=0,\left.\quad y_{A B}\right|_{x=2}=y_{B C}=\left.y_{B}\right|_{\xi=0} ^{\Rightarrow} C_{4}=\frac{P L^{3}}{162}
$$

$$
\left.\begin{array}{rl}
\frac{C D}{\left(0 \leqslant \eta \leqslant \frac{L}{3}\right)} & M_{C D}=\frac{P}{2} \eta \Rightarrow \frac{P}{12} \eta^{3}=E I y_{C D}+C_{5} \eta+C_{6} \\
\eta=0, y=0 \Rightarrow C_{6}=0 \\
\xi=\frac{L}{3}=\eta, y_{B C}=y_{C D} \Rightarrow C_{5}-C_{3}=\frac{P L^{2}}{54} \\
\xi=\frac{L}{3}=\eta, y_{B C}^{\prime}=-Y_{C D}^{\prime} \Rightarrow C_{3}+C_{5}=\frac{P L^{2}}{18}
\end{array}\right\} \Rightarrow C_{5}=\frac{P L^{2}}{C_{3}}=\frac{P L^{2}}{54}
$$

$$
Q_{B}^{+}=\left.y_{B C}^{\prime}\right|_{\xi=0}=-C_{3}=-\frac{P L^{2}}{E I}\left(\frac{1}{54}\right)(2)
$$

Can also treat $B C \& C D$ complied using $4^{\text {th }}$ order method, as follows. Ante grating we get

$$
\theta_{B}^{+}=\left.y_{B D}^{\prime}\right|_{\xi=0}=a_{3}=-\frac{P L^{2}}{E I}\left(\frac{1}{54}\right) \longrightarrow \text { Same as by } 2^{2 d}
$$

Check: $\left.E I y_{B D}^{\prime \prime}\right|_{\xi=\frac{2 L}{3}}=0,\left.E I y^{\prime \prime \prime}\right|_{\xi=\frac{2 L}{3}}=-\frac{P}{2}$ There are identically satisfied.

$$
\begin{aligned}
& E I y_{B D}^{\prime \prime \prime}=-P\left\langle\xi-\frac{L}{3}\right\rangle^{0}+a_{1} \\
& \text { (use } w=\left\langle\xi-\frac{L}{3}\right\rangle^{-1} p \text { ) } \\
& \left(E I y_{B D}^{J}=-w\right)^{3} . \\
& E I y_{B D}^{\prime \prime}=-p\left\langle\xi-\frac{L}{3}\right\rangle^{\prime}+a_{1} \xi+a_{2} \\
& E I y_{B D}^{\prime}=\frac{-P\left\langle\xi-\frac{L}{3}\right\rangle^{2}}{2}+a_{1} \frac{\xi^{2}}{2}+a_{2} \xi+a_{3} \\
& E I y_{B D}=-\frac{p^{2}}{6}\left\langle\xi-\frac{L}{3}\right\rangle^{3}+\frac{a_{1} \xi^{3}}{6}+\frac{a_{2} \xi^{2}}{2}+a_{3} \xi+a_{4} \\
& x=\frac{L}{3}, \xi=0,\left.\quad y_{B D}\right|_{\xi=0}=y_{B}=\left.y_{A B}\right|_{x=\frac{L}{3}}=\frac{P L^{3}}{E I}\left(-\frac{1}{162}\right) \\
& \Rightarrow a_{4}=-\frac{P L^{3}}{162} \\
& \xi=0, E I y_{B D}^{\prime \prime \prime}=V_{B}=\frac{p}{2}=a_{1} \\
& \xi=0, E I y_{B D}^{\prime \prime}=M_{B}=0=a_{2} \\
& \xi=\frac{2 L}{3}, E I y_{B D}=0=-\frac{P L^{3}}{6.27}+\frac{8 P L^{3}}{2.6 .27}+a_{3} \frac{2 L}{3}-\frac{P L^{3}}{162} \\
& \Rightarrow a_{3}=P L^{2}\left(-\frac{1}{54}\right)
\end{aligned}
$$

PS

$2^{\text {nd }}$ order method


$$
\begin{aligned}
& \left.\begin{array}{l}
M_{L}=\frac{P x}{2}=E I y_{L}^{\prime \prime}, 0 \leq x \leq \frac{L}{2}: \\
\frac{P x^{3}}{12}=E I y_{L}+C_{1} x+C_{2}=\frac{P \xi}{2}=2 E I y_{R}^{\prime \prime}, 0 \leq \xi \leqslant \frac{L}{2} \\
x=0, y_{L}=0 \Rightarrow C_{2}=0 \\
x=\xi=\frac{P \xi^{3}}{12}=2 E I y_{R}+C_{3} \xi+C_{4} \\
x=y_{L}=y_{R} \Rightarrow \frac{P L^{3}}{96}=C_{1} L-C_{3} \frac{L}{2} \\
x=\xi=\frac{L}{2}, y_{L}^{\prime}=-y_{R}^{\prime} \Rightarrow \frac{P L^{2}}{8}+\frac{P L^{2}}{16}=2 C_{1}+C_{3}
\end{array}\right\} \Rightarrow C_{1}=\frac{5}{96} P L_{3}^{2} \\
& C_{3}=\frac{1}{12} P L^{2} \\
& y_{C}=y_{L}\left(\frac{L}{2}\right)=y_{R}\left(\frac{L}{2}\right)=\frac{P L^{3}}{E I}\left(-\frac{1}{64}\right) \\
& \theta_{C}=y_{L}^{\prime}\left(\frac{L}{2}\right)=-y_{R}^{\prime}\left(\frac{L}{2}\right)=\frac{P L^{2}}{E I}\left(\frac{1}{96}\right)
\end{aligned}
$$

$\left\{\begin{array}{c}\text { Can also wite } M_{R}=\frac{P}{2}(L-x) \Rightarrow \frac{P}{2}\left(\frac{L x^{2}}{2}-\frac{x^{3}}{6}\right)=2 E I y_{R}+C_{3}^{\prime} x \\ \\ +C_{4}^{\prime}\end{array}\right.$

$$
\left\{\begin{array}{l}
x=L, y_{R}=0 \Rightarrow \frac{P}{6}=c_{3}^{\prime} L+c_{4}^{\prime} \\
x=\frac{L}{2}, y_{L}=y_{R} \Rightarrow-\frac{1}{32} P L^{3}=c_{1} L-c_{3}^{\prime} \frac{L}{2}-c_{4}^{\prime} \\
x=\frac{L}{2}, y_{L}^{\prime}=y_{R}^{\prime} \Rightarrow-\frac{1}{16} P L^{2}=2 c_{1}-c_{3}^{\prime}
\end{array}\right.
$$

$$
+C_{y}^{\prime}
$$

volute for $c_{1}, c_{3}^{\prime}, c_{3}^{\prime}$. Then $y_{c}=y_{L}\left(\frac{L}{2}\right)=y_{R}\left(\frac{L}{2}\right)$
MORE TEDIOUS!!

$$
\theta_{C}=y_{L}^{\prime}\left(\frac{L}{2}\right)=y^{\prime} R\left(\frac{L}{2}\right)
$$

P6


For $A B$.


Neglect axial depormation $7 A B$, le cossume axial sitiftress $E A \rightarrow \infty$

$$
\begin{aligned}
& M_{A B}=-\frac{P L}{2} \Rightarrow E I y_{A B}=-\frac{P L}{2} \frac{x^{2}}{2}+c_{1} x+c_{2} \\
& \left.E I y_{A B}\right|_{x=0}=0 \Rightarrow c_{2}=0 ;\left.E I y_{A B}^{\prime}\right|_{x=0}=0 \Rightarrow C_{1}=0 \\
& y_{B}=\left.y_{A B}\right|_{x=L}=-\frac{P L^{3}}{4 E I} ;\left.y_{A B}^{\prime}\right|_{x=L}=Q_{B}=-\frac{P L^{2}}{2 E I}
\end{aligned}
$$



$$
\begin{aligned}
& M_{C B}=-P\left(\frac{L}{2}-\xi\right) \\
& \Rightarrow E I y_{C B}=-P\left(\frac{L \xi^{2}}{4}-\frac{\xi^{3}}{6}\right)+C_{3} \xi+C_{4} \\
& \left.E I y_{C B}\right|_{\xi=0}=0 \Rightarrow C_{4}=0 \\
& \left.E I y_{C B}^{\prime}\right|_{\xi=0}=E I \theta_{B} \Rightarrow C_{3}=-\frac{P L^{2}}{2} \\
& \left.y_{C B}\right|_{\xi=\frac{L}{2}}=\frac{P L^{3}}{E I}\left(-\frac{7}{24}\right) ;\left.y_{C B}^{\prime}\right|_{\xi=\frac{L}{2}}=\theta_{C}=\frac{P L^{2}}{E I}\left(-\frac{5}{8}\right)
\end{aligned}
$$

Deplectia of $C$ : $\theta_{c}=\frac{P L^{2}}{E I}\left(-\frac{5}{8}\right)(\Omega) ; x_{c}=\frac{-P L^{3}}{4 E_{I}}(G), y_{c}=\frac{P L^{3}}{E I}-\left(\frac{7}{24}\right)(U)$

