ALL QUESTIONS EQUAL MARKS.

Problem 1

Three identical rigid plates of size $0.8 \mathrm{~m} \times 0.8 \mathrm{~m}$ each weighing 21 kN are connected by pin connections with each other as shown in Fig. 1. The plates are stabilized by three cables each having axial stiffness $\boldsymbol{A E}$. One cable is connected to each plate as shown. The three cables are parallel to each other and are inclined at 45°. Find the vertical displacement of plate 1 (the top most plate) at its centre of gravity.

Problem 2

The frame with internal hinges is loaded as shown in Fig. 2. Find the internal forces at hinge \boldsymbol{D}, and draw the Bending Moment Diagram (BMD) and sketch the Qualititative Deflected Shape (QDS) for the frame. Neglect effect of axial and shear forces on the deflection.

Fig. 2

Problem 3

The trussed-beam supports a load as shown in Fig. 3. The truss members are pin connected to the beam $\boldsymbol{A F}$ as shown. Determine the forces in all the truss members. Use $I=100 \times 10^{6} \mathrm{~mm}^{4}$ for the beam, and $A=200 \mathrm{~mm}^{2}$ for all truss members, and $E=200 \mathrm{GPa}$ for all members. For the deflection of the beam neglect effect of axial and shear forces.

Fig. 3

Problem 4

The structural assembly supports the loading as shown in Fig. 4. Find the force in the tie rod CB, and draw the BMD and sketch the QDS for beams $\boldsymbol{A B}$ and $\boldsymbol{D E}$. Use $I=100 \times 10^{6} \mathrm{~mm}^{4}$ for the beams, and $A=200 \mathrm{~mm}^{2}$ for the tie rod, and $E=200 \mathrm{GPa}$ for all members. For the deflection of the beams neglect effect of axial and shear forces.

Fig. 4

Problem 5

Draw the influence line for the force in member $\boldsymbol{F G}$ for the truss shown in Fig. 5.

Fig. 5

CE222 ENDSEM 2009 Sprig-
PI

$$
\begin{aligned}
& \frac{T_{1}}{\sqrt{2}}(0.1+0.7)=21(0.4) \Rightarrow T_{1}=10.5 \sqrt{2} \\
& \frac{T_{2}}{\sqrt{2}}(0.8)+\frac{T_{1}}{\sqrt{2}}(1.6-0.6)=21(0.4+1.1) \Rightarrow T_{2}=26.25 \sqrt{2} \\
& \frac{T_{3}}{\sqrt{2}}(0.8)+\frac{T_{2}}{\sqrt{2}}(1.6-0.6)+\frac{T_{1}}{\sqrt{2}}(2.5-1.3)=21(0.4+1.1+1.8) \\
& \quad \Rightarrow T_{3}=38.0625 .5 \sqrt{2}
\end{aligned}
$$

For unit \downarrow lad at CG of Hock 1 :

$$
\begin{aligned}
t_{1} & =T_{1} / 21=1 / \sqrt{2} \\
t_{2} & =\left[1(1.1)-\frac{t_{1}}{\sqrt{2}}(1)\right] \frac{\sqrt{2}}{0.8}=0.75 \sqrt{2} \\
t_{3} & =\left[1(1.8)-\frac{t_{1}}{\sqrt{2}}(1.2)-\frac{t_{2}}{\sqrt{2}}(1)\right] \frac{\sqrt{2}}{0.8}=0.5625 \sqrt{2} \\
\Delta & =\sum \frac{T_{i}}{t_{i} L_{i}} \\
A E & =\frac{1}{A E}\left[10.5\left(\frac{2.5}{\sqrt{2}}\right)+39.375\left(\frac{1.6}{\sqrt{2}}\right)+42.8203125\left(\frac{0.7}{\sqrt{2}}\right)\right] \\
\Delta & =\frac{84.3042}{A E}
\end{aligned}
$$

PB SDOI $\rightarrow X_{1}=D E$

$$
\begin{aligned}
& X_{1}=0 ; M=\frac{\omega L}{2} x-\omega \frac{x^{2}}{2}, \quad P_{i}=0 \\
& x_{1}=1: m=x, 0 \leq x \leq 4 \longrightarrow \text { (used symmetry) } \\
& P_{D E}=p_{C B}=1 \\
& P_{E F}=P_{A C}=-5 / 3 \\
& =4, \quad 4 \leq x \leq 14 \\
& p_{C E}=-4 / 3 \\
& =4-(x-14), \quad 14 \leq x \leq 18 \\
& f_{11}=\frac{1}{E I}\left[2 * \frac{1}{3}(4)(4)(4)+(4)(4)(10)\right]+\frac{1}{A E}\left[(1)^{2}(3) * 2+\left(\frac{5}{3}\right)^{2}(5) * 2+\left(\frac{4}{3}\right)^{2}(10)\right]=\frac{608}{3 E I}+\frac{464}{9 A E} \\
& \Delta_{10}=\frac{1}{E I} w\left[\frac{(18)}{2} \cdot \frac{4^{3}}{3}-\frac{4^{4}}{2 * 4}+4 \cdot\left\{\frac{18}{2}\left(\frac{9^{2}-4^{2}}{2}\right)-\frac{1}{2}\left(\frac{9^{3}-4^{3}}{3}\right)\right\}\right] * 2=\frac{5320}{3} \cdot \frac{w}{E I} \\
& X_{1} f_{11}+\Delta_{10}=0 \Rightarrow X_{1}=-\frac{\left[\frac{5320}{3} * \frac{4}{200 E 9 * 10^{-3} * 100 E 6 * 10^{-12}}\right]}{\left[\frac{608}{3 * 200 * 100}+\frac{464}{\left.9 * 200 E-6 * 200 E 9 * 10^{-3}\right]}\right.}=\begin{array}{r}
-31.0506 \\
\mathrm{kN}
\end{array} \\
& D E=C B=-31.0506 \mathrm{kN}, \quad E F=A C=51.7510, \quad C E=41.4008 \mathrm{kN}
\end{aligned}
$$

P2 $X_{1}=$ as shown

BMI

$x_{1}=1$

BMD

$$
\begin{aligned}
& \Delta_{10}=-\left[\frac{1}{3}(4)(480)(4+5+4)+\frac{1}{2}(4)(480)(3)\right] \cdot \frac{1}{E I}=-\frac{11200}{E I} \\
& f_{11}=\frac{1}{E I}\left[\frac{1}{3}(4)(4)(4) * 2+(4)(4)(3)+\frac{1}{3}(4)(4)(4+5)\right]=\frac{416}{3 \mathrm{EI}} \\
& X_{1} f_{11}+\Delta_{10}=0 \Rightarrow X_{1}=80.7692 \mathrm{kN}
\end{aligned}
$$

120

$Q D S$

P4 $C B=X_{1}$

$$
\begin{aligned}
& \Delta_{10}=\left[\frac{1}{3}(22.5)(1.5)(6+2)+\frac{1}{4}(144)(6)(6)-\frac{1}{2}(144)(6)(6)\right] \cdot \frac{1}{E I}=\frac{-1206}{E I} \\
& f_{11}=\left[\frac{1}{3}(1.5)^{2}(6+2)+\frac{1}{3}(6)^{2}(6)\right] \cdot \frac{1}{E I}+(1)^{2} \frac{(4)}{A E}=\frac{78}{E I}+\frac{4}{A E} \\
& X_{1} f_{11}+\Delta_{10}=0 \Rightarrow X_{1}=\frac{\left(\frac{1206}{200 E 9 * 100 E 6 * 10^{-12} * 10^{-3}}\right)}{\left(\frac{222}{E I}+\frac{4}{200 E-6 * 200 E 9 * 10^{-3}}\right)} \\
&=\frac{0.0603}{\frac{78}{20000}+\frac{4}{(200)^{2}}}=\frac{0.0603}{4 E-3}=15.075 \mathrm{kN}
\end{aligned}
$$

BMD $\quad-\frac{8 x^{2}}{2}+15=075 x=0 \Rightarrow x=3.76875$

QDS

PS

$$
\begin{aligned}
& x_{1}=R_{c} \\
& x_{1}=0
\end{aligned}
$$

$3 / 4 \uparrow$

$$
\text { (X, } \begin{aligned}
X_{10}= & -\left[2 \cdot\left(\frac{3}{8}\right)\left(\frac{3}{4}\right)(3)+2 \cdot\left(\frac{3}{8}\right)\left(\frac{9}{16}\right)(3)+2 \cdot\left(\frac{3}{8}\right)\left(\frac{3}{16}\right)(3)\right. \\
& \left.+(2-1)\left(\frac{5}{8}\right)\left(\frac{5}{16}\right)(5)+\left(\frac{5}{8}\right)\left(\frac{5}{16}\right)(5)\right] \cdot \frac{1}{A E} \\
= & \frac{233}{32} \cdot \frac{1}{A E} \\
f_{11}= & {\left[2 \cdot\left(\frac{3}{4}\right)^{2}(3)+4 \cdot\left(\frac{5}{8}\right)^{2}(5)+4 \cdot\left(\frac{3}{8}\right)^{2}(3)\right] \cdot \frac{1}{A E} } \\
= & \frac{103}{8} \cdot \frac{1}{A E}
\end{aligned}
$$

$$
\Delta_{10}+f_{11} x_{1}=0 \Rightarrow x_{1}=\frac{233}{412}
$$

$$
F G=-\frac{3}{8}+\frac{3}{4} \times \frac{233}{412}=\frac{81}{1648} \rightarrow \text { same for unit had at } B \text { or } D
$$

Method 2: $X_{1}=F G$

Unit load at B :

$$
\begin{aligned}
& \text { Unit load at } B \text { : } \\
& X_{1}=1 \quad A_{10 B}=-\left[2 \cdot\left(\frac{1}{2}\right)\left(\frac{3}{8}\right)(3)\right] \cdot \frac{1}{A E}=-\frac{9}{8} \cdot \frac{1}{A E}
\end{aligned}
$$

Unit load at $D: \Delta_{1 O D}=\Delta_{10 B}$ (cen also see it from $F G=G H$ if appl-had on liver (cord)

$$
\begin{aligned}
& f_{11}=\left[4 \cdot\left(\frac{5}{6}\right)^{2}(5)+2 \cdot(1)^{2}(3)+4 \cdot(0.5)^{2}(3)\right] \cdot \frac{1}{A E} \\
&=\frac{206}{9} \cdot \frac{1}{A E} \\
& \Delta_{10 B}+f_{11} X_{1}=0 \Rightarrow X_{1}=F G=\frac{9}{8} \cdot \frac{9}{206}=\frac{81}{1648} \mathrm{kN}
\end{aligned}
$$

