Problem 1

Beams $A B C$ and $C D E$ are hinged together at C and supported as shown in Fig. 1. Assume $E I$ is same for all members.
(i) Obtain the influence line (i.e., draw its sketch and obtain its equation) for shear at hinge point \boldsymbol{C}.
(ii) A uniform patch load $w \mathrm{kN} / \mathrm{m}$ of length $\mathrm{L} / 4 \mathrm{~m}$. moves across the connected beam structure. Obtain the magnitude of the maximum shear at \boldsymbol{C} and the corresponding location of the patch load.

Fig. 1

Problem 2

Consider the closed rectangular frame $A B C D$ with rigid (i.e., welded) joints at A, B, C, D. The frame rests on soil which exerts an upward uniform pressure load of $5 \mathrm{kN} / \mathrm{m}$. In addition horizontal loads of 10 kN are applied at B and C, and a downward vertical load of 20 kN is applied at O which lies at the center of $B C$, as shown in Fig. 2. Assume E is same for all members, and I as shown in Fig. 2.
(i) Obtain the axial force, shear force, and bending moment at point \boldsymbol{O}. Clearly indicate their directions and magnitude in a sketch of section at O.

Fig. 2

Problem 3

The truss $A B C D$ is pin jointed at A, B, C, D. Members $A D$ and $B C$ are not connected to each other. It is supported by a vertical roller at A, a pinned support at C, and a horizontal roller at D. The applied loads are 120 kN applied downward at $A, 60 \mathrm{kN}$ applied rightward at B, and 80 kN applied leftward at D, as shown in Fig. 3. Assume $A E=40000 \mathrm{kN}$ for all members.
Given support settlement/movement: When the truss is loaded, the support at D settles downward by 0.5 cm , and support at A moves rightward by 0.3 cm .
(i) Find the reaction at \boldsymbol{A} and member force in $\boldsymbol{B C}$ (magnitude and direction).

Fig. 3

Fig. 5

Problem 4

The continuously supported beam $A B C D$ is supported and loaded as shown in Fig. 4.
(i) Determine the bending moments at all supports (magnitude and direction).
(ii) Determine the reactions at all supports (magnitude and direction).

Fig. 4

Problem 5

The structure shown in Fig. 5 comprises three members $A C D, C E$, and $A E$. Members $A C D$ and $C E$ are connected by a pin/hinge at C. Members $A E$ and $A C D$ are connected by a pin/hinge at A. Members $A E$ and $C E$ are connected by a pin/hinge at E. The support at A is a pin and the support at E is a roller. Assume $E A$ is the axial stiffness and $E I$ is the bending stiffness for all members.
(i) Find the vertical component of deflection of point \boldsymbol{B} using Castigliano's theorem.

CE222 ENDSEM 2010 SOLUTIONS.
P. 1

11 Qualitative IL

Given: Continuous beam as in Fig.
Find: IL for V_{c} and $\left(V_{c}\right)_{\text {max }}$ when patch u.d. ${ }^{\prime} \omega_{x}^{\prime}$ of length $1 / 4$ travels over beam.

$$
\begin{aligned}
& \underbrace{-\frac{L^{2}}{32} \cdot \frac{1}{E I}+\frac{L^{2}}{96} \cdot \frac{1}{E I}}_{v_{A B}^{1}[L / 4]}=\underbrace{-\left(-\frac{L^{2}}{32} \cdot \frac{1}{E I}-C_{1, C B}\right)}_{-v_{C B}^{1}[L / 4]} \Rightarrow C_{1, C B}=-\frac{5}{96} \frac{L^{2}}{E I} \\
& V_{C B}=\left(-\frac{x^{3}}{6}+\frac{5}{96} L^{2} x-\frac{1}{96} L^{3}\right) \cdot \frac{1}{E I} \text { (same as above). }
\end{aligned}
$$

Max shear at C
Patch veer $A B$ or $D E, \quad V_{1}=w \int_{0}^{L / 4} V_{A B} d x=\frac{w}{E E}\left(\frac{L^{2}}{96} \cdot \frac{L^{2}}{32}-\frac{1}{6} \cdot \frac{1}{4} \cdot \frac{L^{4}}{256}\right)$

$$
=\frac{w}{E I} \cdot \frac{1}{6144}
$$

Patch over $B C$ or $C D, \quad V_{2}=\omega \int_{0}^{L / 4} v_{C B} d x=\frac{\omega}{E I}\left(-\frac{L^{3}}{96} \cdot \frac{L}{4}+\frac{5}{96} L^{2} \cdot \frac{L^{2}}{32}\right.$

$$
=\frac{-\omega}{E I} \cdot \frac{7}{6144}
$$

$$
\left.-\frac{1}{6} \cdot \frac{1}{4} \cdot \frac{L^{4}}{256}\right)
$$

So max shear is $\frac{w}{E I} \cdot \frac{7}{6144}$ when patch over $B C$ or $C D$

PZ
By Castigliano's Therrem.

$$
\begin{array}{rlrl}
M & =M_{0}-10 x, O B, \hat{1}+\uparrow & \Rightarrow \frac{\partial M}{\partial M_{0}}=1, \Rightarrow \frac{\partial M}{\partial N_{0}} & =0, O B \\
& =M_{0}-20-10 x-N_{0} x, B A, \ll \\
& =-x, B A \\
& =M_{0}-40-2 N_{0}-\frac{5 x^{2}}{2}+10 x, A 0^{\prime},(+) & =1, &
\end{array}
$$

$$
\begin{aligned}
\text { Compativility } \Rightarrow \theta_{0}=0=\frac{\partial U}{\partial M_{0}}=\frac{2}{E I} * & {\left[\frac{1}{2} \int_{0}^{2}\left(M_{0}-10 x+M_{0}-40-2 N_{0}-\frac{5}{2} x^{2}+10 x\right)(1)\right.} \\
& +\int_{0}^{2}\left(M_{0}-20-10 x-N_{0} x\right)(1) d x \\
\Rightarrow & 0=\frac{1}{2}\left(4 M_{0}-80-4 N_{0}-\frac{5}{6} * 8\right)+2 M_{0}-40-\frac{10}{2} * 4-\frac{N_{0}}{2} * 4 \\
& 4 M_{0}-4 N_{0}=\frac{310}{3}
\end{aligned}
$$

Compatibilitg $\Rightarrow \Delta_{H, 0}=O=\frac{\partial U}{\partial N_{0}}=\frac{2}{E I} *\left[\frac{1}{2} \int_{0}^{2}\left(M_{0}-40-2 N_{0}-\frac{5}{2} x^{2}+10 x\right)(-2) d x\right.$

$$
\left.+\int_{0}^{2}\left(M_{0}-20-10 x-N_{0} x\right)(-x) d x\right]
$$

$$
\begin{aligned}
\Rightarrow & 0=-\left(2 M_{0}-80-4 N_{0}-\frac{5}{6} * 8+\frac{10}{2} * 4\right)-\left(2 M_{0}-40-\frac{10}{3} * 8\right. \\
& \left.-\frac{N_{0}}{3} * 8\right)
\end{aligned}
$$

By superposition method (alterative
solution)

$$
x_{1}=x_{2}=0
$$

$\xrightarrow{~} \xrightarrow{\text { LO }}$ hire of symmetry

$$
x_{1}=1, x_{2}=0
$$

$$
x_{2}=1, \quad x_{1}=0
$$

$$
\begin{aligned}
& \Delta_{10}=\frac{1}{2} \cdot \frac{1}{2}(-20)(1)(2)+(-20)(1)(2)+\frac{1}{2}(-20)(1)(2)+\frac{1}{2}\left\{(-40)(1)(2)+\frac{2}{3}(10)(1)(2)\right. \\
& \left.+(-10)(1)^{3}(2)+\frac{1}{2}(20)(1)(2)\right\} \\
& =-\frac{310}{3} \\
& \Delta_{20}=\frac{1}{2}(20)(2)(2)+\frac{1}{3}(20)(2)(2)+\frac{1}{2}\left\{(40)(2)(2)+\frac{2}{3}(10)(-2)(2)+(10)(2)(2)\right. \\
& \left.+\frac{1}{2}(20)(-2)(2)\right\} \\
& =\frac{400}{3} \\
& f_{11}=\frac{1}{2}(1)(1)(2) * 2+(1)(1)(2)=4 ; f_{22}=\frac{1}{3}(2)(2)(2)+\frac{1}{2} *(2)(2)(2)=\frac{20}{3} \\
& f_{12}=\frac{1}{2}(1)(-2)(2)+\frac{1}{2} *(1)(-2)(2)=-4 \\
& {\left[\begin{array}{cc}
4 & -4 \\
-4 & 20 / 3
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=\left\{\begin{array}{c}
310 / 3 \\
\frac{-400}{3}
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=\frac{3}{32}\left[\begin{array}{cc}
20 / 3 & 4 \\
4 & 4
\end{array}\right]\left\{\begin{array}{c}
310 / 3 \\
\frac{-400}{3}
\end{array}\right\}=\left\{\begin{array}{c}
14.5833 \\
-11.25
\end{array}\right\}}
\end{aligned}
$$

PS

P_{i} :
$X=x_{2}=0$ applied load.

$$
p_{x_{11}}: 1, x_{2}=0
$$

$\begin{array}{ccccc} & P_{i 1} & p_{i 1} & p_{i 2} & L_{i}\end{array} P_{i} p_{i 1} L_{i}$

$p_{i 2}=$

$$
x_{1}=0, x_{2}=1
$$

Find: $R_{A}, F_{B C}$
$a_{\text {real }}=2 \mathrm{~cm}^{2}$ for each member
$E=200 \mathrm{GPa}$

$$
\Rightarrow A E=40000 \mathrm{kN} .
$$

Given: Loadingkand settlement of D is $0.5 \mathrm{~cm}(\downarrow)$
of A is $0.3 \mathrm{~cm}(\rightarrow)$

P4

$$
\begin{align*}
& \frac{\operatorname{pan} A^{-} A B}{M_{L}=M_{A^{-}}}=0, M_{C}=M_{A}, M_{R}=M_{B}, L_{L}=0, L_{R}=4, P_{R}=40, k_{R}=0.5 \\
& \Rightarrow 4 M_{B}+2 M_{A}(4)=-40\left(4^{2}\right)\left(0.5-0.5^{3}\right) \\
& 8 M_{A}+4 M_{B}=-240 \rightarrow \text { (1) } \tag{1}
\end{align*}
$$

Span $A B C$

$$
\begin{aligned}
& \frac{A B C}{M_{L}=M_{A}, M_{C}=M_{B}, M_{R}=M_{C}=-20(2), L_{L}=4, L_{R}=6,} \\
& P_{L}=40, k_{L}=0.5, \omega_{R}=10 \\
& \Rightarrow-40(6)+4 M_{A}+2 M_{B}(4+6)=-240-\frac{10}{4}\left(6^{3}\right) \\
& 4 M_{A}+20 M_{B}=-540 \\
& \Rightarrow M_{B}=-23.33 \mathrm{kN} \cdot \mathrm{~m}, M_{A}=-18.33 \mathrm{kN} . \mathrm{m} .
\end{aligned}
$$

$$
\begin{aligned}
R_{A} & =\frac{1}{4}\left(\frac{55}{3}-\frac{70}{3}+40 \times 2\right) \\
& =18.75 \mathrm{kN} \\
V_{B}- & =40-18.75=21.25
\end{aligned}
$$

$$
V_{B^{+}}=\frac{1}{6}\left(\frac{70}{3}-40+10 * 6^{2}\right)
$$

$$
=27.22
$$

$$
\begin{aligned}
& =27.22 \\
V_{c^{-}} & =60-27.22=32.78, V_{c^{+}}=20
\end{aligned}
$$

$$
\begin{aligned}
& R_{A}=18.75 \uparrow \\
& R_{B}=21.25+27.22=48.47 \uparrow \\
& R_{C}=32.78+20=52.78 \uparrow \\
& M_{A}=18.33\left(L, \quad M_{B}=23.33(2\right.
\end{aligned}
$$

