Problem 1

Find the maximum tension in the parabolic cable shown in Fig. 1 due to the uniformly distributed load applied on the girder. The girder has an internal hinge at \boldsymbol{B} which lies directly below the lowest point on the cable as shown in Fig. 1. Support at \boldsymbol{A} is pinned and support at \boldsymbol{C} is roller.

Problem 2

Each member of the truss in Fig. 2 has cross-section area $400 \mathrm{~mm}^{2}$ and Young's modulus 200 GPa. In the first case the truss is loaded as shown in the figure, for which point \boldsymbol{A} has vertical and horizontal displacements v_{A} and h_{A}, respectively. Then, the loads are removed, member $\boldsymbol{A E}$ is replaced by a defective member that is shorter by 20 mm , and member $\boldsymbol{H J}$ is replaced by a member with cross-section area $200 \mathrm{~mm}^{2}$. The loads in Fig. 2 are applied again and member $\boldsymbol{A B}$ further undergoes a temperature increase of $200^{\circ} \mathrm{F}$, with $\alpha=10^{-6} /{ }^{0} \mathrm{~F}$. Let the new vertical and horizontal displacements of point \boldsymbol{A} be \bar{v}_{A} and \bar{h}_{A}, respectively. Find the differences $v_{A}-\bar{v}_{A}$ and $h_{A}-\bar{h}_{A}$. Clearly indicate the direction that point \boldsymbol{A} moves when going from the first loading case to the second loading case.

Fig. 2

Problem 3

Find the vertical deflection of point \boldsymbol{B} for the continuously supported beam $\boldsymbol{A B}$ which has an internal hinge \boldsymbol{F} ($\boldsymbol{F i g} .3$). The beam $\boldsymbol{A B}$ has flexural rigidity $\boldsymbol{E I}$ and is supported by a truss system $\boldsymbol{B C D E}$ through a pin connection at \boldsymbol{B}. The axial rigidity is $\boldsymbol{A E}$ for the truss members (i.e., $\boldsymbol{B C}, \boldsymbol{B D}, \boldsymbol{C D}, \boldsymbol{C}, \boldsymbol{D E}$).

Problem 4

Find the horizontal displacement of point \boldsymbol{G} for the frame shown in Fig. 4. Take flexural rigidity as $\boldsymbol{E I}$ and neglect axial and shear deformations.

Fig. 3

Fig. 4

CE222 Midsem. 2009 .
3)

Due to real load.

$$
\begin{array}{ll}
(20)(12)+(30)(8)+(40)(4)+ & H J\left(\frac{4}{5}\right)(6) \\
H J=-\frac{800}{9} & +H J\left(\frac{3}{5}\right)(4)=0
\end{array}
$$

3(2) $4 m$
the to unit vertical load, (\downarrow),

$$
A B=-1, \quad A E=H J=0
$$

Due t_{0} unit honzontal lo cd, (\rightarrow),

$$
\begin{aligned}
& A E=-\left(\frac{5}{3}\right), \quad A B=\left(\frac{5}{3}\right)\left(\frac{4}{5}\right)=\left(\frac{4}{3}\right) \\
& H J=-\frac{(1)(12)}{\left(\frac{4}{5}\right)(6)+\left(\frac{3}{5}\right)(4)}=-\frac{5}{3}
\end{aligned}
$$

change dispel.

$$
\begin{aligned}
\Delta\left(\Delta_{A H}\right) & =-\left\{\left(-\frac{5}{3}\right)(-20)+\left(\frac{4}{3}\right)(200)\left(10^{-6}\right)\left(4 * 10^{3}\right)\right\}+\left(-\frac{5}{3}\right)\left(-\frac{800 * 10^{6}}{9}\right)(5000)\left(\frac{1}{400 * 2000 / 3}-\frac{1}{200 * 20053}\right) \\
& =-43.659 \mathrm{~mm} \\
\Delta\left(\Delta_{A V}\right) & =-\left\{(-1)(200)\left(10^{-6}\right)\left(4 * 10^{3}\right)\right\}=0.8 \mathrm{~mm} .
\end{aligned}
$$

2)

Real loads: $\quad C E=D E=-\left(\frac{60}{2}\right)\left(\frac{5}{3}\right)=-50=C B \Rightarrow B$.

$$
C D=(2)(50)\left(\frac{4}{5}\right)=80
$$

Unit vertical load: $F_{y}=1, \quad C F=D E=C B=D B=-\frac{5}{6}, C D=\frac{4}{3}$

$$
\Delta_{V}=\frac{1}{A E}\left(4 *(-50)\left(\frac{-5}{6}\right)(5)+(80)\left(\frac{4}{3}\right)(8)\right)=\frac{5060}{3 A E}=\frac{1686.7}{A E}
$$

$$
\begin{aligned}
& \sum_{\text {mole }} M_{A}=0 \Rightarrow 40\left(c_{y}+E_{y}\right)-8 F_{H}-\frac{2}{2}(40)^{2}=0 \\
& \sum_{\text {RHFBD }} M_{B}=0 \Rightarrow 30\left(c_{y}+E_{y}\right)-9 F_{H}-\frac{2}{2}(30)^{2}=0 . \\
& \Rightarrow 24 F_{H}+4800-36 F_{H}-3600=0 \Rightarrow F_{H}=100 \\
& T_{5}^{4} / 3 \\
& T_{\text {max }}=\frac{100}{\cos \theta_{\text {max }}}, y=\frac{x}{100}, y^{\prime}=\frac{x}{50}, \tan \theta_{\text {max }}=\frac{30}{50} \\
& \Rightarrow T_{\text {max }}=100 /(5 / \sqrt{34})=116.6 \mathrm{kN} .
\end{aligned}
$$

4) $\frac{\text { Real Lood }}{G_{y}}=\frac{2 P L+P L}{3 L}=P$

Unit homzontel loed at G

$$
\begin{gathered}
G_{y}=\frac{(1)(L)}{3 L}=\frac{1}{3} \\
1 / 3 \uparrow, \pi \frac{4}{3 \sqrt{2}} \\
\vdots \frac{2}{3 \sqrt{2}}
\end{gathered}
$$

$$
\begin{aligned}
\Delta_{G h}=\frac{1}{E I}\{ & \left(\frac{1}{3}\right)(1)(1)(1)+\left(\frac{1}{2}\right)()^{(1)}(1)\left(\frac{3 \sqrt{2}}{4}\right)+\left(\frac{1}{2}\right)\left(-\frac{1}{3}\right)(1)\left(\frac{\sqrt{2}}{4}\right)+\left(\frac{1}{6}\right)\left(-\frac{1}{3}\right)\left(2 * 1+\frac{4}{3}\right)\left(\frac{1}{3}\right) \\
& +\left(\frac{1}{6}\right)\left(\frac{2}{3}\right)\left(\frac{4}{3}+2 * 2\right)\left(\frac{2}{3}\right)+\left(\frac{1}{6}\right)\left(\frac{2}{3}\right)(2 * 2-2 * 1)\left(\frac{1}{2} \cdot \sqrt{2}\right)+\left(\frac{1}{2}\right)\left(-\frac{2}{3}\right)(1)\left(\frac{2}{3}\right) \\
& \left.+\frac{1}{2}\left(\frac{1}{3}\right)(1)\left(\frac{1}{3}\right)+\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)(1)(1)\right\} P L^{3}=1.2397 \frac{P L^{3}}{E I .} .
\end{aligned}
$$

