DEPARTMENT OF CIVIL ENGINEERING

CE-222 STRUCTURAL MECHANICS I
Midsem $\quad 13 / 2 / 10$

Problem 1

Find the deflection (i.e., vertical and horizontal components) at \boldsymbol{D} in the truss-arch due to the mechanical loading shown in Fig. 1.
After the mechanical loads are applied the four members ($\mathbf{B C}, \mathbf{C D}, \mathbf{D H}, \boldsymbol{H G}$) undergo a temperature increase of $200^{\circ} \mathrm{F}$ with $\alpha=10^{-6} /{ }^{\circ} \mathrm{F}$, and the two members ($\mathbf{A B}, \boldsymbol{F G}$) are replaced by misfit members that are 0.25% shorter than the original length in Fig. 1, and the two members (EC, $\boldsymbol{I H}$) are replaced by misfit members that are 0.3\% longer than the original length in Fig. 1. What is the additional deflection at \boldsymbol{D}.

Problem 2

Consider the beam-truss bridge shown in Fig. 2. Draw influence lines for shear at \boldsymbol{A}, bending moment at \boldsymbol{B}, and force in member $\boldsymbol{E} \boldsymbol{L}$.

Fig. 1

Fig. 2

Problem 3

The structure shown in Fig. $\mathbf{3}$ comprises four members $\boldsymbol{A B}, \boldsymbol{B C D}, \boldsymbol{D F}$, and $\boldsymbol{C E}$. Members $\boldsymbol{A B}$ and $\boldsymbol{B C D}$ are connected by a pin/hinge at \boldsymbol{B}. Members $\boldsymbol{B C D}$ and $\boldsymbol{C} \boldsymbol{E}$ are connected by a pin/hinge at \boldsymbol{C}. Members $\boldsymbol{B C D}$ and $\boldsymbol{D F}$ are connected by a pin/hinge at \boldsymbol{D}.
Find the vertical deflection of pin/hinge point \boldsymbol{B} due to applied uniform load as shown. Consider axial rigidity $\boldsymbol{A E}$ and flexural rigiditiy $\boldsymbol{E I}$ to be same for all members. Neglect shear deformations.

Problem 4

Find the rotation of points $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}$ for the frame shown in Fig. 4. Take flexural rigidity as $\boldsymbol{E I}$ and axial rigidity $A E$. Neglect shear deformations.

Fig. 3

Fig. 4

CE222 Midsem 2010 .
P1 Unit load at D (\downarrow). Use symmetry for half truss.

Consider section $X X \rightarrow \sum M_{A}=0 \Rightarrow C D=0=B C$, also $C E=0$,

$$
\begin{aligned}
& j+B \Rightarrow B E=0 \Rightarrow B A=0 \\
& j t D \Rightarrow \frac{1}{2}+D E\left(\frac{3}{5}\right)=0 \Rightarrow D E=\frac{-5}{6}=A E
\end{aligned}
$$

So only $A E$ \& $E D$ non-zero virtual member forces. This is obvious sane unit lied at D gets transferred to supports thru had path DEA \& D IF

Real loads (usesppmetry)

$$
\begin{aligned}
& j t D=3+D E\left(\frac{3}{5}\right)=0 \\
& \Rightarrow D E=-5 \\
& \Sigma M_{A}=0 \Rightarrow(4)(10)+(3)(20) \\
& \Rightarrow D_{x}=\frac{20}{3}=A_{x}(15)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow D_{x}=\frac{20}{3}=A_{x} \\
& 20-\left(\frac{15}{4}\right)\left(\frac{20}{3}\right)=-\frac{25}{3}
\end{aligned}
$$

$$
\text { 1. } \Delta D_{V}=\left[\left(-\frac{25}{3}\right)\left(\frac{-5}{6}\right)\left(\frac{12.5}{A E}\right)+(-5)\left(-\frac{5}{6}\right)\left(\frac{12.5}{A E}\right)\right] * 2=\frac{2500}{9 A E}=\frac{277.8}{A E}
$$

$\Delta D_{H}=0$ (fro msymmetry of structure \& load)
Sima all members undergoing temp change and misfit have zero virtual forces, thee is no additional deflection of point D
?2 Truss prition C to G can be replaced by an equivalent beam, ie,

Forces in truss part are zero when unit load at A, B, H, I.
$C_{x}, C_{y}, G_{x}, G_{y}$ are interaction betwre truss and bear parts at the pis C, G. So truss part can be treated widependently of bears pat (ie seperately).

	C_{y}	E_{L}
C	1	0
D	0.75	$0.25 \sqrt{2}$
E	0.5	$0.5 \sqrt{2}$
F	0.25	$-0.25 \sqrt{2}$
G	0	0

EL
$\frac{E L}{\sqrt{2}}+C_{y}-1=0$, for unit load at C, D, E $\frac{E L}{\sqrt{2}}+C_{y}=0$, for unit load at F, G
P. 3.

$$
\sum M_{B}=0 \Rightarrow A_{y}=0
$$

$$
\Sigma M_{c}=0 \Rightarrow D F=1(T)
$$

$$
3 \quad \sum F_{y}=0 \Rightarrow C E=-(1+1) \frac{5}{3}=-\frac{10}{3}(c)
$$

$$
\sum F_{x}=0 \Rightarrow A_{x}=C E\left(\frac{4}{5}\right)=-\frac{8}{3}
$$

BMD (eal)

$$
\text { 1. } \begin{aligned}
\Delta_{B V} & =\frac{1}{A E}\left[\left(\frac{8}{3}\right)(100)(4)+\left(-\frac{10}{3}\right)(-125)(5)+(1)(30)(3)\right] \\
& +\frac{1}{E I}\left[\frac{1}{3}(-2)(-60)(2)+\frac{1}{3}(-30)(-2)(2)+\frac{1}{4}(30)(-2)(2)+\frac{1}{2}(-30)(-2)(2)\right] \\
& =\frac{3240}{A E}+\frac{150}{E I}
\end{aligned}
$$

4

Note: \because AFD ritual is zen, no axial deformatim effects are present.

$$
\begin{aligned}
& 1 \theta_{A}=\left[\frac{1}{2}(1)(-100)(1)+(1)(-100)(1)+\frac{1}{3}(-1)(100)(3)\right] \cdot \frac{1}{E I}=\frac{(-50-100-100)}{E_{I}}=\frac{-250}{E_{I}} \\
& 1 \theta_{B}=\frac{-200}{E_{I}}, \quad 1 \cdot \theta_{C}=\frac{-100}{E_{I}} \\
& 1 \cdot \theta_{D}=\frac{1}{6}(1)(100)(3) \cdot \frac{1}{E_{I}}=\frac{50}{E I}
\end{aligned}
$$

