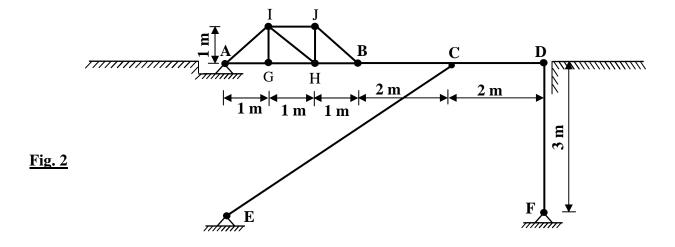
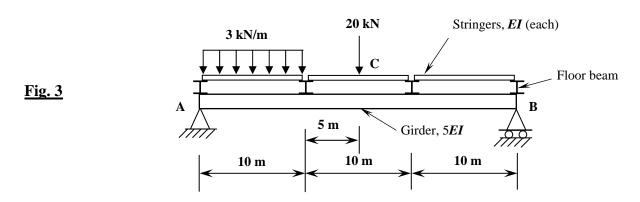

DEPARTMENT OF CIVIL ENGINEERING, IIT BOMBAY

CE-222 STRUCTURAL MECHANICS I Midsem 21/2/11

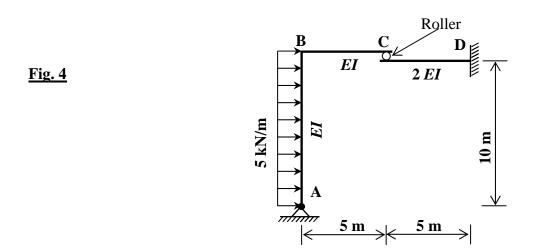
Problem 1


Consider the structure in **Fig. 1**. Draw influence lines for all reactions at supports, and for shear at the hinge, when a load moves from B to E.

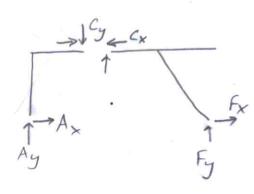
Problem 2


The truss-beam bridge structure shown in **Fig. 2** comprises truss AGHBJI and three members BCD, DF, and CE. The truss is connected to member BCD. Members BCD and CE are connected by a pin/hinge at C. Members C and C are connected by a pin/hinge at C. Members C and C are connected by a pin/hinge at C. Misfit errors exist in the truss members. Members C and C are connected by a pin/hinge at C and C are connected by a pin/hinge at C and C are connected by a pin/hinge at C are connected by

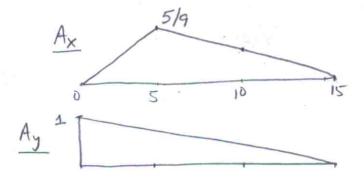
- (i) the rotation at point C in member BCD.
- (ii) the rotation at point C in member CE.

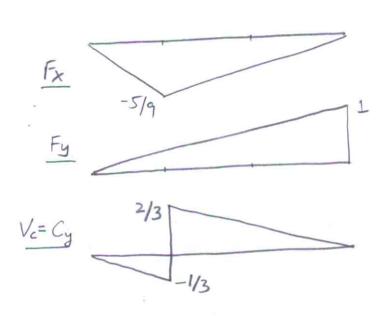

Problem 3

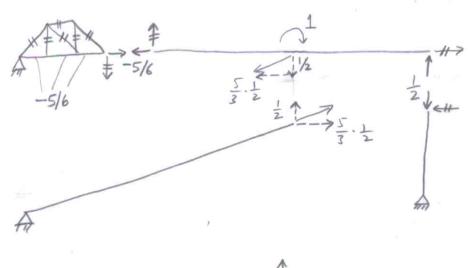
The system shown in **Fig. 3** comprises stringers, floor beams, and a girder, with loading and properties as shown. Assume stringers are simply supported between floor beam support points. Find the <u>vertical deflection at the midpoint C of the middle stringer</u>. Neglect shear deformations.


Problem 4

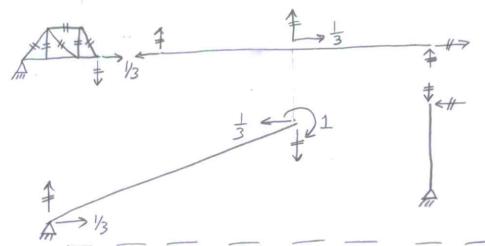
For the system shown in **Fig. 4**, find the <u>rotation and horizontal deflection of point B</u>. Neglect axial and shear deformations.




1. Use equilibrium approach.


	A×	A	FX	Fy	Cy
X=0	0	1	0	0	0
x= 5	5/9	2/3	-5/9	1/3	-1/3
x=5+	5/9	2/3	-5/9	1/3	2/3
X= 10	5/18	1/3 ,	-5/18	2/3	1/3
x=15	0	0	0	1	0
	(6)				

$$x=5: A_x = 5A_y$$



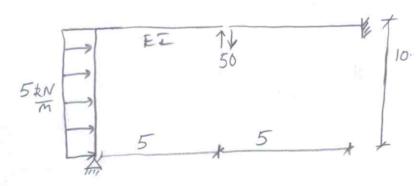
For rotation of BCD at C, apply Mc=1 as shown

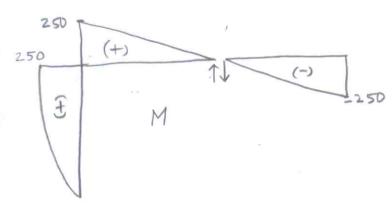
Virtual work gives, 1 Nm. Oc = - 5 N. (5+5-2)mm ⇒ Oc = 6.67 E-3 red. ■

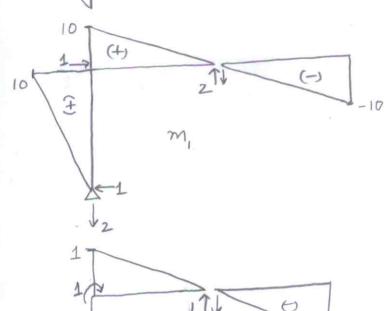
For rotation of CE atC, apply M=1 as shown.

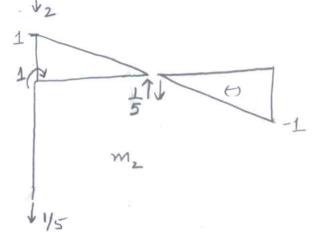
Virtual work gives,

INm. $\theta_e = \frac{1}{3}N(5+5-2)mm$ $\theta_c = 2.67 E-3 rad$


A
$$\frac{10}{10}$$
 $\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$


$$1. \Delta_{CV} = \int_{0}^{10} m_{1} \frac{M_{1}}{E_{T}} dx + \int_{0}^{30} m_{2} \frac{M_{2}}{5E_{T}} dx$$


$$= \int_{E_{T}} \frac{1}{3} (50)(2.5)(10)$$


$$+ \int_{E_{T}} \left\{ \frac{1}{3} (10) \left[(200)(5) + (150)(5) \right] + \frac{1}{2} (5)(200+150)(10) \right\}$$

$$\Delta_{CV} = \underbrace{10000}_{3E_{T}}$$

For DBH apply unit horizontal load at B 1. $\Delta_{BH} = \int m_1 \frac{M}{EI} dx$

$$\Delta_{BH} = \frac{1}{3} (250) (10) (5) \frac{1}{2EI} + \frac{1}{3} (250) (10) (5) \cdot \frac{1}{EI} + \frac{5}{12} (10) (250) (10) \cdot \frac{1}{EI}$$

$$\Delta_{\rm BH} = \frac{50000}{3} \frac{1}{\rm EI}$$

For OB apply unit moment at B

$$O_B = \frac{1}{3}(250)(1)(5) \cdot \frac{1}{2EI} + \frac{1}{3}(250)(1)(5) \cdot \frac{1}{EI}$$