DEPARTMENT OF CIVIL ENGINEERING
 CE-222 STRUCTURAL MECHANICS I
 Quiz-1 2/2/11

Problem 1

Draw the Axial Force, Shear Force, and Bending Moment Diagram for the frame shown in Fig. 1. Then, use this to sketch the Qualitative Deflected Shape.

Problem 2

The truss-beam bridge structure shown in Fig. 2 comprises truss AGHBJI and three members BCD, DF, and $\boldsymbol{C E}$. The truss is connected to member $\boldsymbol{B C D}$. Members $\boldsymbol{B C D}$ and $\boldsymbol{C E}$ are connected by a pin/hinge at \boldsymbol{C}. Members $\boldsymbol{B C D}$ and $\boldsymbol{D F}$ are connected by a pin/hinge at \boldsymbol{D}. The load train shown passes over the bridge. Find:
(i) the maximum compressive force in member $\boldsymbol{E C}$
(ii) the maximum bending moment at \boldsymbol{C} in member $\boldsymbol{B C D}$

Figure 1

(1)

$$
\overrightarrow{A_{x}=0} \oint_{A_{y}}
$$

$$
\begin{aligned}
\sum M_{b}=0 & \Rightarrow E_{y}=\frac{\frac{1}{2} \cdot 6 \cdot 2 \cdot 2}{12}=1 \mathrm{kN} \\
\Rightarrow A_{y} & =2+\frac{1}{2} \cdot 12 \cdot 2-1=13 \mathrm{kN} \\
M_{A} & =-\left(2.3+\frac{1}{2} \cdot 12 \cdot 2 \cdot 12-1.24\right) \\
& =126 \mathrm{kN} \cdot \mathrm{~m} .
\end{aligned}
$$

DEFL SHAPE
AFTX
x^{6}

(2)

IL-EC. (compressive)
Best to use Muller Breslom. Release EC (三releasing its vesical compment) and give unit $A_{i}^{(1)}$ displ in vertical direction. Then IL-EC at $C=\frac{1}{\cos \theta}=\frac{\sqrt{34}}{3}$ (maintain support at A, D)
$I L-M_{C}$ in $B C D$
Best to use Muller Brestan. create lunge at C, give unit rotational displ, maintain support at A, C, D.
(EC) max when 8 RN at B, train moving right ward so that 6 kN on shallower slope

$$
(E C)_{\text {max }}=\frac{\sqrt{34}}{3} \cdot \frac{4}{2}\left(8+6 \cdot \frac{3}{4}+4 \cdot \frac{2}{3}\right)=58.96 \mathrm{kN}
$$

$\left(M_{C}\right)_{\text {max }}$ in $B C D$ when 8 kN at B, train morning leftward so that 6 kN on shallower slope

$$
\left(M_{e}\right)_{\text {max }} \text { in } B C D=-2\left(8+6 \cdot \frac{2}{3}+4 \cdot \frac{1}{2}\right)=-28 \mathrm{kN} \text {. }
$$

