CE222 STRUCTURAL MECHANICS I DEPARTMENT OF CIVIL ENGINEERING
 Quiz 2; March 28, 2019, 9-10pm

Problems carry equal weightage

Problem 1

For the beam shown in Figure 1, use the conjugate beam method to calculate vertical deflection at \boldsymbol{C} and rotation at point \boldsymbol{E}.

Figure 1

Problem 2

Calculate reaction at \boldsymbol{E} and force in member $\boldsymbol{B D}$ of the truss shown in Figure 2. Assume $A E$ same for all members.

Figure 2

CE222 Quiz-2 2019
1)
 BMD, Hed beam.

$$
\left.w_{c}=\bar{M}_{c}=\frac{1}{2} \cdot 10 \cdot \frac{100}{E_{I}} \cdot \frac{2}{3} \cdot 10+\frac{1}{2} \cdot 30 \cdot \frac{100}{E_{I}} \cdot\left(10+\frac{1}{3} \cdot 30\right)-\frac{1}{2} \cdot 30 \cdot \frac{100}{E_{I}} \cdot \frac{1}{3} \cdot 30\right) / 30=\frac{500}{E_{I}} \cdot 40=\frac{40000}{3 E_{I}}
$$

Loading, C-beam.

$$
\theta_{E}=\bar{V}_{E}=\frac{500}{E I}
$$

2). Take reaction $E_{y}=X_{1}=$ redundant. (ie 1 DoSI external)

(or equivalents tea atm at A)
Tape force in $A B_{L}$ as redinder $t=X_{1}$ (ie 100 SI internal or
 external)

section $a^{\prime \prime \prime}$ a:
$\sum M_{E}=0: \frac{D B}{\sqrt{2}} \cdot 20-100 \cdot 20=0 \Rightarrow D B=100 \sqrt{2}$

$$
\begin{aligned}
& g a q+o v e A_{\text {ap }}=0 \\
& -6856.85+96.57 x_{1}=0 \\
& x_{1}=71.005 \mathrm{kN} \\
& \begin{aligned}
\sum M_{D} & =0 \Rightarrow E_{y}
\end{aligned}=\frac{1}{20}(100 * 40 \\
& \\
& =128.995 \mathrm{kN}
\end{aligned} \quad \begin{aligned}
& D B=100 \sqrt{2}-\sqrt{2} x_{1}=41.005 \mathrm{kN}
\end{aligned}
$$

Take reaction $D_{x}=X_{1}$ redundant \rightarrow see below. It same as above

From section $a-a, D B$ comes out sari as when we take red. as $A B$ (above). So rest if working is identical.

$$
\Rightarrow D_{x}=x_{1}=71.005 \mathrm{kN}
$$

$E_{y}=200-1 * x_{1}=128.995 \mathrm{kN}$
a Tape reaction $D_{y}=x_{1}=$ redundant. $D B=100 \sqrt{2}-\sqrt{2} X_{1}=41.005 \mathrm{kN}$

BE $40 \quad 120 \frac{800}{\Delta_{10}=2800} \frac{20}{f_{11}=96.57}$

$$
\begin{aligned}
& \Delta_{10}+f_{11} x_{1}=0 \\
& \Rightarrow x_{1}=-28.995=D_{y} \\
& E_{y}=100-1 * x_{1}=128.995 \mathrm{kN} \\
& D B=0-\sqrt{2} x_{1}=41.005 \mathrm{kN}
\end{aligned}
$$

