CE-222 STRUCTURAL MECHANICS I
 DEPARTMENT OF CIVIL ENGINEERING
 Tutorial Assignment \# 6: Deflection of Beams and Frames

Problem 1

Calculate vertical displacement of point \mathbf{C} for the following systems. Take EI constant and neglect axial deformations.

10 kN/m

Problem 2

For the frame systems shown below, calculate the horizontal displacement, vertical displacement and rotation for all joints by considering both flexural and axial deformations. Draw the qualitative deflected shape of the frames clearly showing the directions of displacements and rotations considering only flexural deformations.

CE222 - TUTORIAL 6
1)

30 kN

$$
A_{y}=\frac{1}{12}\left[\frac{8\left(12^{2}\right)}{2}-30(4)\right]=38
$$

BM-real.

BM diagrar. shour as superpositim of basic components (shapes).

BM virtual.

$$
\begin{aligned}
\Delta_{c} & =\frac{1}{E I}\left\{\frac{1}{3}(456)(-4)(12)+\frac{1}{4}(576)(-4)(12)-(576) \frac{1}{2}(12)(-4)+\frac{1}{3}(-120)(-4)(4)\right\} \\
& =\frac{256}{E I} * 10^{3}, E I \text { in } \mathrm{Nm}^{2}
\end{aligned}
$$

2).

Virtual BM

$$
\begin{aligned}
\Delta_{c}=\frac{1}{E I}\{ & \frac{1}{3}(252)(2)(8)+\frac{1}{3}(60)(2)(4)+\frac{1}{3}(-60)(-2)(4+2)+\frac{1}{4}(256)(2)(8) \\
& \left.+\frac{1}{4}(64)(2)(4)-(256) \frac{1}{2}(8)(2)-(64) \frac{1}{2}(4)(2)\right\}=\frac{592}{E I} * 10^{3}, \text { EI.m }
\end{aligned}
$$

$\frac{\text { Problems (1), (2) re-done by integration }}{8 \mathrm{kN} / \mathrm{m}}$
1)

$$
\begin{aligned}
& B_{y}=\frac{(30)(16)+(8)\left(\frac{12^{2}}{2}\right)}{12}=88 \\
& A_{y}=8 * 12+36-88=38
\end{aligned}
$$

$$
M(x)=38 x-\frac{8 x^{2}}{2} \text {, in } \dot{A B}
$$

$$
M(x)=-30 x \text {, in } C B
$$

Unit load at C
$m(x) \uparrow$

$$
\begin{aligned}
B_{y} & =\frac{16}{12}=\frac{4}{3}, A_{y}=-\frac{1}{3} \\
M(x) & =-x \text { in } C B \\
& =-\frac{1}{3} x \text { in } A B
\end{aligned}
$$

$$
E I \Delta_{c V}=\int_{0}^{2}\left(38 x-4 x^{2}\right)\left(-\frac{x}{3}\right) d x+\int_{0}^{4}(-30 x)(-x) d x=\left(\frac{4}{3}\right)\left(\frac{12^{4}}{4}\right)-\left(\frac{38}{3}\right)\left(\frac{12^{3}}{3}\right)+(30)\left(\frac{4^{3}}{3}\right)
$$

$\Delta_{C V}=\frac{256 * 10^{3}}{E I}$, EI in Nm^{2}
2)

Unitload at C

$$
\begin{aligned}
& F_{y}=30\left(\frac{6}{4}\right)=45 ; D_{y}(8)+(45)(16)-(30)(18)-(8)\left(\frac{12^{2}}{2}\right)=0 \Rightarrow D_{y}=49.5 \\
& \begin{aligned}
A_{y} & =-49.5-45+(8)(12)+30 \\
& =31.5
\end{aligned} \\
& \begin{array}{l}
=31.5 \\
=30-45=-15
\end{array} \\
& M(x)=-30 x \text { in CF, Z'x'as in } \\
& \left.\begin{array}{l}
=-15 x \text { in } B F \\
=15 x-4 x^{2} \text { in } B D \\
=31.5 x-4 x^{2} \text { in } A D
\end{array}\right\} \begin{array}{l}
\text { unstload } \\
B M D
\end{array} \\
& \begin{array}{l}
=31.5 x-4 x^{2} \cos \sin A D \quad B M D \\
=3 x^{2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \sum M_{B}=0 \Rightarrow F_{y}=\frac{6}{4}=1.5 ; \sum M_{A}=0 \Rightarrow D_{y}(8)+(1.5)(16)-(1)(18)=0 \Rightarrow D_{y}=-0.75 \\
& A_{y}=1-1.5+0.75=0.25 \text {. } \\
& m(x) \uparrow \rightarrow x \\
& M(x)=-x \text {, in } C F \text { ix'as } \\
& \begin{array}{l}
=-\frac{x}{2} \text { in } B F \\
=x \text { in } A D
\end{array}\left\{\begin{array}{l}
\text { shourn } \\
\text { in } B M D
\end{array}\right. \\
& =\frac{x}{4} \text { in } A D \\
& =\frac{x}{2} \sin B \\
& \text { Actinal load. }
\end{aligned}
$$

$$
\begin{aligned}
E I \Delta_{c v} & =\int_{0}^{8}\left(\frac{x}{4}\right)\left(31.5 x-4 x^{2}\right) d x+\int_{0}^{4}\left(\frac{x}{2}\right)\left(15 x-4 x^{2}\right) d x+\int_{0}^{4}\left(-\frac{x}{2}\right)(-15 x) d x+\int_{0}^{2}(-x)(-30 x) d x \\
& =\left(\frac{31.5}{4}\right)\left(\frac{8^{3}}{3}\right)-\left(\frac{4}{4}\right)\left(\frac{8^{4}}{4}\right)+\left(\frac{15}{2}\right)\left(\frac{4^{3}}{3}\right)-\left(\frac{4}{2}\right)\left(\frac{4^{4}}{4}\right)+\left(\frac{15}{2}\right)\left(\frac{4^{3}}{3}\right)+(30)\left(\frac{2^{3}}{3}\right)=592 \\
\Delta_{C V} & =\frac{592}{E I} * 10^{3} \mathrm{~m}, E I \text { in } \mathrm{Nm}^{2} .
\end{aligned}
$$

3)

$10 \mathrm{kN} / \mathrm{m}$

$$
M_{A}=(20)(3)+(10)\left(\frac{4^{2}}{2}\right)=140
$$

$$
\left.\begin{array}{rl}
M(x) & =-10 \frac{x^{2}}{2}=-5 x^{2}, \dot{i} C B \\
& =-140+20 x, \text { in } A D \\
& =-80 . \text { in } D B .
\end{array}\right\} \begin{aligned}
& \text { ' } x \text { ' as shown } \\
& \text { in BMD for oread } \\
& \text { load }
\end{aligned}
$$

$$
\begin{aligned}
\left.E I \Delta_{c v}=\frac{1}{2}(-4)(-140-80)(3)+(-80)(-4)(1)+\int_{0}^{4}\left(-5 x^{2}\right)(-x) d x\right) & =1640+5\left(\frac{4^{4}}{4}\right) \\
& =1960
\end{aligned}
$$

$$
\Delta_{C v}=\frac{1960}{E_{I}} * 10^{3} \mathrm{~m}, \quad E I \text { in N. } \mathrm{m}^{2}
$$

alternatively, by multiplying areas, $\int_{0}^{4}(m+80) m^{\prime} d x-80 \int_{0}^{4} m^{\prime} d x$

$$
=\frac{1}{4}(80)(-4)(4)-(80) \frac{(-4)(4)}{2}=320
$$

so you get same penult.
4) Real Load

$$
\begin{aligned}
D_{y} & =\frac{(60)(2)+(120)(4)+(60)(3)}{8} \\
& =97.5 \\
A_{y} & =60+120-97.5=82.5 \\
A_{v} & =(60)\left(\frac{3}{5}\right)+(82.5)\left(\frac{4}{5}\right)=102 \\
A_{H} & =(60)\left(\frac{4}{5}\right)-(82.5)\left(\frac{3}{5}\right)=-1.5
\end{aligned}
$$

No reed to wite equations for $A F D, B M D, S F D$, can use Tables.

Virtual Load

using tables,

$$
\begin{aligned}
\Delta_{B V}= & \frac{1}{E I}\left\{\frac{1}{3}(255)(1)(2.5)+\frac{1}{6}[(255)(2 * 1+2)+(390)(1+2 * 2)] * 2.5+\frac{1}{3}(390)(2)(4)\right\} \\
& +\frac{1}{E A}\{(-0.3)(-1.5+34.5)(2.5)+(-0.5)(-97.5)(3)\}=\left(\frac{2490}{E I}+\frac{121.5}{E A}\right) * 10^{3} \mathrm{~m} . \\
\Delta_{B H}= & \frac{1867.5}{E I}+\frac{434.25-240}{E A}=\left(\frac{1867.5}{E I}+\frac{194.25}{E A}\right) * 10^{3} \mathrm{~m} \\
\theta_{B}= & \frac{1}{E I}\left\{492.5-\frac{1}{6}(390)(2 * 0.5+1)+\frac{1}{3}(-0.5)(390)(4)\right\}-\frac{42.75}{E A}=\left(\frac{102.5}{E I} \cdot \frac{-42.75}{E A}\right) * 10^{3} \mathrm{rad} \\
\theta_{A}= & \frac{1}{E I}\left\{\frac{1}{6}(255)(-1+2 *(-0.75))(2.5)+\frac{1}{6}[(255)(-2 * 0.75-0.5)+(390)(-0.75-2 * 0.5)](2.5)\right. \\
& -42.75 / E A \\
= & \left(-\frac{10.22 .5}{E I}-\frac{42.75)(390)(4)\}}{E A}\right) * 10^{3} \mathrm{Had}
\end{aligned}
$$

$$
\begin{aligned}
& E_{y}=\frac{60)(6)+(120)(9)+(60)(10)}{8}=255 \\
& A_{y}=255-60=195
\end{aligned}
$$

Actual Load

(a)
(b)

$0.125 \uparrow$
$A F D, S F D$ as in (C)

SF, BM is zero.

$A F D, S F D$ as in (c)

$$
\begin{aligned}
& \Delta_{F V}=\frac{1}{E I}\left\{\frac{1}{6}(-1)(1080+2 * 660)(5)+(660)(-1)(8)+\frac{1}{6}(780)((2)(-1)+(-2))(4)+\frac{1}{6}(-2)(120)(2)\right. \\
& \left.-(120)\left(\frac{(-1-2)}{2}(4)+\frac{(-2)(2)}{2}\right)\right\} \\
& +\frac{1}{E_{A}}\{(0.25)(195)(6)+(0.15)(213)(5)+(-0.25)(-195)(8)\} \\
& =\frac{-8480}{E I}+\frac{842.25}{E A}(\downarrow) \\
& \Delta_{F H}=\frac{1}{E I}\left\{\frac{1}{3}(6)(1080)(6)+\frac{1}{6}[(6)(2 * 1080+660)+(8-5)(1080+2 * 660)](5)+\frac{1}{2}(660)(8.5+0.5)(8)\right. \\
& \left.+\frac{1}{6}(780)(2 * 0.5+0.167)(4)+\frac{1}{6}(120)(0.167)(2)-(120) \frac{(0.5)(6)}{2}\right\} \\
& +\frac{1}{E A}\{(0.125)(195)(6)+(0.875)(213)(5)+(-0.125)(-195)(8)\}=\frac{68253.52}{E I}+\frac{(\overrightarrow{1273} 125}{E A} \\
& v_{F}=\frac{1}{E I=\left\{\frac{1}{6}(0.5)(1080+2 * 660)(5)+(6.5)(660)(8)+\frac{(780)}{6}(2 * 0.5+1)(4)+\frac{1}{2}(120)(1)(2)\right.} \\
& \left.-(120)\left[\frac{(1+0.5)}{2}(4)+(1)(2)\right]\right\} \\
& +\frac{1}{E A}\{(-0.125)(195)(6)+(-0.075)(213)(5)+(0.125)(-195)(8)\} \\
& =\frac{4200}{E I}-\frac{421.125}{E A}(T) \\
& \Delta_{E H}=\Delta_{F H} \\
& \theta_{E}=\frac{1}{E I}\left[4200-\frac{1}{2}(120)(1)(2)+(120)(1)(2)\right]-\frac{421.125}{E A}=\frac{4320}{E_{I}}-\frac{421.125}{E A}(9)
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{D V}=\frac{1}{E I}\left\{\frac{1}{6}(2)(1080+2 * 660)(5)+(2)(660)(8)+\frac{1}{3}(2)(780)(4)-\frac{\left.(120) \frac{(2)(4)}{2}\right\}}{}\right\} \\
& +\frac{1}{E A}\{(-0.5)(195)(6)+(-0.3)(213)(5)+(0.5)(-195)(8)\}=\frac{16160}{E_{I}}-\frac{1684.5}{E_{A}}(\downarrow) \\
& \Delta_{D H}=\Delta_{F H} \\
& \theta_{D}=\frac{1}{E I}\left\{\frac{1}{6}(0.5)(1080+2 * 660)(5)+(0.5)(660)(8)+\frac{1}{3}(780)(-0.5)(4)-(120) \frac{(-0.5)(4)}{2}\right\}-\frac{421.125}{E A} \\
& =\frac{3240}{E I}-\frac{421.125}{E A}(\pi) \\
& \Delta_{C V}=\frac{16160}{E I}+\frac{1}{E A}(-1684.5+2 *(0.5)(195)(8))=\frac{16160}{E I}-\frac{124.5}{E A}(\downarrow) \\
& \Delta_{C H}=\frac{1}{E I}\left\{\frac{1}{3}(6)(1080)(6)+\frac{1}{6}[(6)(2 * 1080+660)+(4.5)(1080+2 * 660)](5)+(4.5)(660)(8)\right. \\
& \left.+\frac{1}{3}(4-5)(780)(4)-(120) \frac{(4-5)(4)}{2}\right\} \\
& +\frac{1}{E A}\{(1-125)(195)(6)+(1-475)(213)(5)+(-1.125)(-195)(8)\} \\
& =\frac{63420}{E I}+\frac{4642 \cdot 125}{E A}(\rightarrow) \\
& \left.\theta_{C}=\frac{1}{E I}(3240-2 *(0-5)(660)(8))-\frac{421-125}{E A}=-\frac{2040}{E I}-\frac{421-125}{E A}(5)\right) \\
& \Delta_{B V}=\frac{1}{E A}(-1)(195)(6)=-\frac{1170}{E A}(\downarrow) \\
& \Delta_{B H}=\frac{1}{E I}\left\{\frac{1}{3}(6)(1080)(6)+\frac{1}{6}[(6)(2 * 1080+660)+(3)(1080+2 * 660)](5)+(3)(660)(8)\right. \\
& \left.+\frac{1}{3}(3)(780)(4)-(120) \frac{(3)(4)}{2}\right\} \\
& +\frac{1}{E A}\{(0.75)(195)(6)+(0-45)(213)(5)+(-0.75)(-195)(8)\}=\frac{51300}{E I}+\frac{(\underset{25}{ } 26.75}{E A} \\
& \theta_{B}=\frac{1}{E I}\left(-2040-\frac{1}{6}(0-5)(1080+2 * 660)(5)+\frac{1}{6}[(-1)(2 * 1080+660)+(-0.5)(1080+2 * 660)](5)\right) \\
& \left.-\frac{421.125}{E A}=\frac{-6390}{E I}-\frac{421.125}{E A}(T)\right) \\
& \theta_{A}=\frac{1}{E I}\left(-6390+\frac{1}{2}(-1)(1080)(6)\right)-\frac{421.125}{E A}=-\frac{9630}{E I}-\frac{421.125}{E A}(\stackrel{)}{E})
\end{aligned}
$$

Defle
only.
4)

$E I *$	Δ_{H}	Δ_{V}	θ
A	-	-	-1022.5
B	1867.5	2490	102.5
C	1867.5	0	492.5
D	4515	0	492.5

