Notes

1. Common data for problems 2, 3, 4: $E=200 \mathrm{GPa}, G=80 \mathrm{GPa}, I_{y}=I_{z}=8000 \mathrm{~cm}^{4}, A=200 \mathrm{~cm}^{2}$, $J=10000 \mathrm{~cm}^{4}$
2. Numerical answers must be accurate to 2 or more places after decimal.
3. Must: use member end (local) coordinate system as done in class; use convention for all forces and displacements (linear and angular) as in class; use numbering sequence of structure's nodal forces and displacements as in class.

Problem 1

Data: $E I_{z}=10, \quad A / I_{z}=5, \quad L=2, \quad P=1$. Rotational spring constant $k=5$. Settlement of support node 3 is 0.1 m downward. Member 23 is heated $20^{\circ} \mathrm{C}$ above ambient temperature, coefficient of linear expansion is $0.000012 /{ }^{\circ} \mathrm{C}$. All data provided in units of N, m.
Find the numerical values of the stiffness matrix $\mathbf{K}_{\text {II }}$ and the load vector \mathbf{P}_{I} that are required to solve for the displacements. You do not need to invert $\mathbf{K}_{\text {II }}$ and do not need to solve for displacements using $\mathbf{K}_{\text {II }}^{-1} \mathbf{P}_{\mathrm{I}}$. Settlement must be handled by including it in load vector $\mathbf{P}_{\mathbf{I}}$.

Fig. 1

Problem 2

Taking the redundant at node 4 . Use Flexibility matrix method to find redundant.

Fig. 2

Problem 3

Data: $L=10 \mathrm{~m}$
Plan view of a grid is shown in Fig. 3. Thus, the vertical downward direction (i.e., Z) acts into the plane of the paper. All 16 members of the grid are subjected to vertically downward uniformly distributed load of magnitude 20 kN/m. Further, the grid supports a vertically downward load of magnitude $\mathbf{1 0 0} \mathbf{k N}$ at joint 1.
Find deflections at joint 1 and reactions at joint 2 using Stiffness Method.

Fig. 3

Problem 4
Data: $L=10 \mathrm{~m}$
Find deflections at joint 2 using Stiffness Method.

Fig. 4

CE317 2011 Endsem

- Intenal hinge with partial notatimal restrant.
- Note that due to spring, mamber 23 behaves as frame \& not truss.

$$
a_{21}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad a_{23}=\left[\begin{array}{ccc}
0.8 & -0.6 & 0 \\
0.6 & 0.8 & 0 \\
0 & 0 & 1
\end{array}\right]: \begin{aligned}
& \text { itotal } 10 \text { dispis } \\
& \text { it (2), } 3 \text { at (3) } \\
& 0 \text { are }(4,5,6,7,10)
\end{aligned}
$$

$$
K_{22}(4 \times 4), K_{23}(4 \times 3), K_{32}(3 \times 4), K_{33}(3 \times 3)
$$

$$
\begin{aligned}
& K_{22}^{1}=a_{21}^{\top} k_{22}^{1} a_{21}=k_{22}^{1}=\left.5\left[\begin{array}{ccc}
4 & 5 & 6 \\
0 & 3 & -3 \\
0 & -3 & 4
\end{array}\right]\right|_{6} ^{4} \\
& \left.K_{22}^{3}=a_{23}^{\top} k_{22}^{3} a_{23}=5\left[\begin{array}{ccc}
4 & 1.8 & -1.8 \\
-3 & 2.4 & -2.4 \\
0 & -3 & 4
\end{array}\right]\left[\begin{array}{ccc}
0.8 & -0.6 & 0 \\
0.6 & 0.8 & 0 \\
0 & 0 & 1
\end{array}\right]=5\left[\begin{array}{ccc}
\frac{4}{4.28} & -0.96-1.8 \\
-0.9 & 3.72 & -2.4 \\
-1.8 & -2.4 & 4
\end{array}\right] \right\rvert\, 4 \\
& 5
\end{aligned}
$$

Node-urise assembly
From above $\hat{K}_{23}, \frac{8}{8} \quad 9 \quad 10$

$$
K_{23}=\left.\left[\begin{array}{ccc}
-4.28 & 0.96 & -10 \\
0.96 & -3.72 & -2.4 \\
0 & 0 & 0 \\
1.8 & 2.4 & 2
\end{array}\right]\right|_{23} ^{4} \quad K_{32}=K_{23}^{\top}
$$

$$
\begin{aligned}
& K_{22}^{\text {spming }}=\left.5\left[\begin{array}{cc}
\frac{6}{1} & 7 \\
-1 & 1
\end{array}\right]\right|_{7} ^{6} \\
& \left.\left.\begin{array}{l}
\left.a_{23}^{\top} R_{23} a_{32}=\hat{K}_{23}=5\left[\begin{array}{ccc}
4 & 1.8 & -1.8 \\
-3 & 2.4 & -2.4 \\
0 & -3 & 2
\end{array}\right]\left[\begin{array}{ccc}
-0.8 & 0.6 & 0 \\
-0.6 & -0.8 & 0 \\
0 & 0 & 1
\end{array}\right]=5\left[\begin{array}{ccc}
\frac{8}{-4.28} & 0.96 & -1.8 \\
0.96 & -3.72 & -2.4 \\
\hat{K}_{32} & =a_{32}^{\top} R_{32}^{\top} a_{23}=\left[\hat{K}_{23}^{\top}\right.
\end{array}\right]\right]_{10}^{8} \\
1.8 \\
2.4 \\
\hline 9
\end{array}\right]\right]_{7}^{5}
\end{aligned}
$$ contribution of spang

$$
\begin{aligned}
K_{22} & =\left[\begin{array}{cccc}
5+4.28+0, & 0-0.96+0 & 0+0+0 & 0-1.8+0 \\
0-0.96+0 & 3+3.72+0 & -3+0+0 & 0-2 \cdot 4+0 \\
0+0+0 & -3+0+0 & 4+0+1 & 0+0-1 \\
0-1.8+0 & 0-2.4+0 & 0+0-1 & 0+4+1
\end{array}\right] \\
K_{I I} & =\left[\begin{array}{ccccc}
46.4 & -4.8 & 0 & -9 & -9 \\
-4.8 & 33.6 & -15 & -12 & -12 \\
0 & -15 & 25 & -5 & 0 \\
-9 & -12 & -5 & 25 & 10 \\
-9 & -12 & 0 & 10 & 20
\end{array}\right]
\end{aligned}
$$

Element-wise assembly - Direct stiffness method Add element contributions insistent thy using row-orl node miniver pair. Only those element submatrices will participate, at least ac entry whose row \& col numbers correspond to dog's (ie unconstrained nodes). Thus

$$
\begin{aligned}
& K_{I I}=K_{22}^{1}+K_{22}^{3}+K_{22}^{3 p n n i s}+\hat{K}_{23}+\hat{K}_{32}+K_{33} \text {, added } \\
& \text { cousistentty. }
\end{aligned}
$$

Loads

$$
\begin{aligned}
& \text { ads } \\
& P^{a}=0 ; \quad \tilde{P}_{M}^{e}=\left\{\begin{array}{lllll}
0 & -P / 2 & \mathrm{P} / 8 & 0 & 0
\end{array}\right\}^{\top} \\
&
\end{aligned}
$$

Cut at (3) for temp, \because settlement gwen at (3).

$$
\begin{aligned}
& \text { cut at (3) for temp, } \\
& \left\{\delta_{s}\right\}_{3}=\left\{\begin{array}{c}
-\alpha \operatorname{Tar} L \\
0 \\
0
\end{array}\right\}+\left[\begin{array}{ccc}
-0.8 & 0.6 & 0 \\
-0.6 & -0.8 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
0.1 \\
0
\end{array}\right\}=\left[\begin{array}{c}
-4.8 E-4+0.06 \\
-0.08 \\
0
\end{array}\right\} \\
& a_{32} \quad \text { settlement }
\end{aligned}
$$

$$
\left\{F_{s}\right\}_{32} f^{\prime}=R_{33}^{2}\left\{\delta_{s}\right\}_{3}^{\prime}=5\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & 3 & -3 \\
0 & -3 & 4
\end{array}\right]\left\{\begin{array}{c}
0.05952 \\
-0.08 \\
0
\end{array}\right\}=5\left[\begin{array}{c}
0.2976 \\
-0.24 \\
0.24
\end{array}\right\}
$$

$$
\left\{F_{5}\right\}_{23} f=k_{23}\left\{\delta_{s}\right\}_{3}=5\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & 3 & -3 \\
0 & -3 & 2
\end{array}\right]\left\{\begin{array}{c}
0.05952 \\
-0.08 \\
0
\end{array}\right\}=5\left\{\begin{array}{c}
0.2976 \\
-0.24 \\
0.24
\end{array}\right\}
$$

$$
\left\{P_{s}\right\}_{3}^{e}=a_{32}^{T}\left\{F_{s}\right\}_{32}^{\gamma}=5\left\{\begin{array}{l}
- \\
0.24
\end{array}\right\}
$$

$$
\left.\begin{array}{l}
\left\{P_{S}\right\}_{3}^{e}=a_{32}^{T}\left\{F_{S}\right\}_{32}^{x}=5\left\{\begin{array}{l}
\sim \\
0.24
\end{array}\right\} \\
\left\{P_{S}\right\}_{2}^{e}=a_{23}^{T}\left\{F_{S}\right\}_{23}^{f}=5\left\{\begin{array}{c}
0.09408 \\
-0.37056 \\
0.24
\end{array}\right\}
\end{array}\right\} \Rightarrow \tilde{P}_{S}^{e}=5\left\{\begin{array}{c}
0.09408 \\
-0.37056 \\
0 \\
0.24 \\
0.24
\end{array}\right\}
$$

$$
P_{I}=P^{a}-\tilde{P}_{M}^{e}-\tilde{P}_{S}^{e}=\left\{\begin{array}{c}
-0.4704 \\
2.3528 \\
-0.25 \\
-1.2 \\
-1.2
\end{array}\right\}
$$

12
do by Flexibilits matrix methed．

$$
\begin{aligned}
& P_{\text {II }}=\left\{\left(P_{1}\right)_{4}\right\} \\
& P_{\text {I }}=\left\{\left(P_{1}\right)_{2}\left(P_{1}\right)_{2}\left(P_{2}\right)_{2}\left(P_{2}\right)_{4}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { quilibrium matrices } \\
& \sum M_{0}=0 \Rightarrow R_{2}^{\prime} \sqrt{2} 丩+\left(P_{1}\right)_{3} \frac{⿺}{\sqrt{2}}+\left(P_{2}\right)_{3} \frac{⿺}{\sqrt{2}}+\left(P_{1}\right)_{4} \sqrt{2} \nvdash=0 \\
& F_{32}=F_{23}=R_{2} \sqrt{2}=-\left(P_{1}\right)_{3} \frac{1}{\sqrt{2}}-\left(P_{2}\right)_{3} \frac{1}{\sqrt{2}}-\left(P_{1}\right)_{4} \sqrt{2} \\
& F_{21}=F_{12}=\left(P_{1}\right)_{2}-\frac{F_{23}}{\sqrt{2}}=\left(P_{1}\right)_{2}+\left(P_{1}\right)_{3} \cdot \frac{1}{2}+\left(P_{2}\right)_{3} \frac{1}{2}+\left(P_{1}\right)_{4}
\end{aligned}
$$

$$
\begin{aligned}
\text { section } x x \rightarrow \sum M_{(2)}=0 & \Rightarrow F_{31} \cdot L-\left(P_{1}\right)_{3} \frac{L}{\sqrt{2}}+\left(P_{2}\right)_{3} \frac{L}{\sqrt{2}}=0 \\
& =F_{13} \Rightarrow F_{2}=F_{13}=\left(P_{1}\right)_{3} \frac{1}{\sqrt{2}}-\left(P_{2}\right)_{3}
\end{aligned}
$$

$$
=F_{13} \Rightarrow F_{31}=F_{13}=\left(P_{1}\right)_{3} \frac{1}{\sqrt{2}}-\frac{\left(P_{2}\right)_{3}}{\sqrt{2}}
$$

$$
\begin{aligned}
\sum M_{(1)} & =0 \Rightarrow F_{/, 3} \cdot L+\left(P_{1}\right)_{4} \sqrt{2} L=0 \Rightarrow F_{34}=F_{43}=-\sqrt{2}\left(P_{1}\right)_{4} \\
& =F_{34}
\end{aligned}
$$

$$
=F_{34}
$$

$$
\begin{gathered}
=F_{34} \\
F_{41}=F_{14}=-\left(P_{2}\right)_{4}-F_{43} \cdot \frac{1}{\sqrt{2}}=-\left(P_{2}\right)_{4}+\left(P_{1}\right)_{4}
\end{gathered}
$$

$$
d_{u}=\frac{L}{E A}\left[\begin{array}{ccccc}
\sqrt{2} & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & \sqrt{2}
\end{array}\right]
$$

$$
\begin{aligned}
& P_{\text {II }}=-D_{\text {IIII }}^{-1} D_{\text {III }} P_{\text {I }} \\
&\left.\begin{array}{rl}
D_{\text {IIII }}=b_{\text {II }}^{T} d_{u} b_{\text {II }} & =\frac{L}{E A}\{\sqrt{2}-\sqrt{2} \\
0 & -\sqrt{2} \\
& \sqrt{2}
\end{array}\right\} b_{\text {II }} \\
&=\sqrt{2}+2+2+\sqrt{2}=4+2 \sqrt{2}
\end{aligned} \quad \begin{aligned}
D_{\text {III }}=b_{\text {II }}^{T} d_{u} b_{I}=\left\{\sqrt{2} 1+\frac{1}{\sqrt{2}} 1+\frac{1}{\sqrt{2}}-\sqrt{2}\right\} \frac{L}{E A} \\
P_{\text {II }}=-\frac{1}{(4+2 \sqrt{2})}\left\{\sqrt{2} 1+\frac{1}{\sqrt{2}} 1+\frac{1}{\sqrt{2}}-\sqrt{2}\right\}\left\{\begin{array}{c}
0 \\
0 \\
-P \\
0
\end{array}\right\}=\frac{\sqrt{2}+1}{(4 \sqrt{2}+4)} P=\frac{P}{4}
\end{aligned}
$$

P3 Grid $\Rightarrow\left\{\left(\Delta_{1}\right),\left(\Delta_{2}\right),\left(\Delta_{6}\right),\right\}=\left\{\begin{array}{lll}0 & 0 & 0\end{array}\right\}$
유 Symmetry $\Rightarrow\left\{\left(\Delta_{4}\right),\left(\Delta_{5}\right)_{1}\right\}=\left\{\begin{array}{ll}0 & 0\end{array}\right\}$
ie no out-of-plane rotation of joint 1 , due to symmety.
So only $\left(\Delta_{3}\right)_{1}$ is $\neq 0$, ie.inly me-dif a tivated.
\therefore ie K_{11} contains entries petaining to
 Symmetry, ie' 1 -dof, $\Rightarrow K_{I I}=K_{11}(1,1)$ are in $K_{11}\left(1, t_{0}\left(\Delta_{3}\right)_{1}\right.$ solue
ne wher we used $\frac{G J}{E I_{y}}=\frac{80 * 10000}{200 * 8000}=0.5$

$$
\begin{aligned}
& E I_{y} 200 * 8000 \\
&=8 * \frac{12}{L^{2}} \frac{E I y}{L}=\frac{96}{10^{2}} \cdot \frac{200 E 6 \cdot 8000}{10}
\end{aligned}
$$

$$
K_{I I}=1536
$$

$\left\{\right.$| H |
| :---: |
| ξ |
| |
| H |\(=\frac{E I_{y}}{L}\left[\begin{array}{ccc}-12 / L^{2} \& 0 \& -6 / L

0 \& 0.5 \& 0

-6 / L \& 0 \& -2\end{array}\right]\left\{$$
\begin{array}{c}900 / 1536 \\
0 \\
0\end{array}
$$\right\}+\left\{$$
\begin{array}{c}-20 * 2 * 10 \cos (67.5) \\
0 \\
-20 * \frac{(2 * 10 \cos (67.5))^{2}}{12} *\end{array}
$$\right\}\)

P4 Symmetry $\Rightarrow\left(\Delta_{3}\right)_{2}=\left(\Delta_{4}\right)_{2}=\left(\Delta_{5}\right)_{2}=0$ at joint 2, ie menbers $12,23,24$ deform in $X Y$ plare mly. Actually as we see later even 25,26 deform in $X Y$ plare.

$$
\begin{aligned}
& \text { Thuns, } \\
& \left.\begin{array}{ll}
a_{21}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] ; & a_{23}=\left\{\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} 0\right.
\end{array}\right\} ; \quad a_{24}=\left\{\begin{array}{lll}
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0
\end{array}\right\} \\
& k_{22}^{\prime}=\frac{E I_{z}}{L}\left[\begin{array}{ccc}
A / I_{z} & 0 & 0 \\
0 & 12 / L^{2} & -6 / L \\
0 & -6 / L & 4
\end{array}\right]=1600\left[\begin{array}{ccc}
250 & 0 & 0 \\
0 & 0.12 & -0.6 \\
0 & -0.6 & 4
\end{array}\right] \text {, whe } \frac{E I_{z}}{L} \\
& \frac{E I_{2}}{L}=\frac{200 \mathrm{EG} .8000 \mathrm{E}-8}{10}=1600 \\
& \frac{A}{I_{E}}=\frac{200 \mathrm{E}-4}{8000 \mathrm{E}-8}=250 \\
& k_{22}^{3}=k_{22}^{4}=k_{22}^{5}=k_{22}^{6}=[E A / L]=[4 E 5] \\
& K_{22}^{\prime}=a_{21}^{\top} k_{22}^{\prime} a_{21}=k_{22}^{\prime}=1600\left[\begin{array}{ccc}
200 & 0 & 0 \\
0 & 0.12 & -0.6 \\
0 & -0.6 & 4
\end{array}\right] \\
& \left.K_{22}^{3}=a_{23}^{\top} R_{22}^{3} a_{23}=\left\{\begin{array}{c}
1 / \sqrt{2} \\
-1 / \sqrt{2} \\
0
\end{array}\right\}[4 E 5]\{1 / \sqrt{2}-1 / \sqrt{2} 0\}\right\}=\left.\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 E 5 & -2 E 5 & 0 \\
-2 E 5 & 2 E 5 & 0 \\
0 & 0 & 0
\end{array}\right]\right|_{3} ^{1} \\
& K_{22}^{4}=\left[\begin{array}{ccc}
\frac{1}{2 E 5} & 2 E 5 & 3 \\
2 E 5 & 2 E 5 & 0 \\
0 & 0 & 0
\end{array}\right]| |_{3}^{1} \quad K_{22}^{5}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 0 & 0 \\
0 & 2 E 5 & -2 E 5 \\
0 & -2 E 5 & 2 E 5
\end{array}\right]| |_{3}^{1} \\
& K_{22}^{6}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 0 & 0 \\
0 & 2 E 5 & 2 E 5 \\
0 & 2 E 5 & 2 E 5
\end{array}\right] /\left.\right|_{3} ^{1} \\
& \left.K_{22}=\left[\begin{array}{ccc}
\frac{1}{4 E 5+2 E 5+2 E 5} & -2 E 5+2 E 5 & 6 \\
-2 E 5+2 E 5 & 192+2 E 5+2 E 5 & -960 \\
0 & -2 E 5+2 E 5 & 6400
\end{array}\right] \right\rvert\, \begin{array}{l}
1 \\
2 \\
0
\end{array}=K_{F I}=\left[\begin{array}{ccc}
8 E 5 & 0 & 0 \\
0 & (8 E 5+192)-160 \\
0 & -960 & 6400
\end{array}\right] \\
& P_{I}=\left\{\begin{array}{c}
0 \\
10 * 10 / 2 \\
-10 * 10^{2} / 12
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
50 \\
-\frac{1000}{12}
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
50 \\
-83.33
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{\begin{array}{c}
0 \\
4-69 \mathrm{E}-5 \\
0.01301
\end{array}\right\} \Rightarrow\left(\Delta_{2}\right)_{1}=0 \Rightarrow \text { can use feam formuletion } \begin{array}{l}
\text { det }=5120307200 \\
\text { and } 2 \times 2 \text { transt for trises membes. }
\end{array} \\
& \text { and } 2 \times 2 \text { transt for trims membes. } \\
& \text { This is expected } \because \text { beam } 12 \text { is just resting } \\
& \text { on } 4 \text { truss manberos, } x \text { diloadig no menir monce in mem } 21 \text {, ie no } x \text {-dir rea ctions }
\end{aligned}
$$ at modes $1,3,4,5,6, \Rightarrow$ no X-dii displ at node 2 .

