PAPER CODE: A

Note: Write your name and roll no. on the answerbook and on the summary answer sheet provided on the reverse.

You must submit the question-paper-cum-summary-answer-sheet along with the answerbook. Closed book, closed notes test. No formula sheet allowed. No mobile phones allowed in the exam hall. All **three questions** carry equal marks

Problem 1

You must use only Slope Deflection Method in this question.

Consider the rigid-jointed frame in **Fig. 1.** A point moment M is applied at the midpoint of member BC as shown. **Find**:

- (i) **Rotation at** *B*.
- (ii) All reactions at A.

(Fixed end moment due to point moment M applied at mid-span is M/4)

Problem 2

You must use only Moment Distribution Method in this question. For the rigid-jointed frame in **Fig. 2**, **find all reactions at** *F*

<u>You must use only Stiffness Method in this question</u>. (You must use joint numbering and global coordinate system as shown in **Fig. 3**. Assume unit of *EA* is kN.)

- For the 4-member pin-jointed truss with load as shown in **Fig. 3**, **find:**
 - (i) The \mathbf{K}_{II} (i.e., the reduced stiffness matrix K-roman-one-roman-one).
 - (ii) Displacement of joints 2 and 3.

Fig. 3

SUMMARY ANSWER SHEET

PAPER CODE: A

Name:

Roll no:

Problem 1

<u>(i)</u>	Rotation at $B =$	

(ii) Reactions at A are $A_x = ; A_y = ; M_A =$

Problem 2

Reactions at F are $F_x = ; F_y = ; M_F =$

Problem 3

- (i) Reduced stiffness matrix $K_{II} =$
- (ii) **Displacement of joint 2 is =**

PAPER CODE: B

Note: Write your name and roll no. on the answerbook and on the summary answer sheet provided on the reverse.

You must submit the question-paper-cum-summary-answer-sheet along with the answerbook. Closed book, closed notes test. No formula sheet allowed. No mobile phones allowed in the exam hall. All **three questions** carry equal marks

Problem 1

You must use only Slope Deflection Method in this question.

Consider the rigid-jointed frame in **Fig. 1.** A point moment M is applied at the midpoint of member BC as shown. **Find**:

- (iii) Rotation at B.
- (iv) All reactions at A.

(Fixed end moment due to point moment M applied at mid-span is M/4)

Problem 2

You must use only Moment Distribution Method in this question. For the rigid-jointed frame in **Fig. 2**, **find all reactions at** *F*

<u>You must use only Stiffness Method in this question</u>. (You must use joint numbering and global coordinate system as shown in **Fig. 3**. Assume unit of *EA* is kN.)

- For the 4-member pin-jointed truss with load as shown in **Fig. 3**, **find:**
 - (ii) The \mathbf{K}_{II} (i.e., the reduced stiffness matrix K-roman-one-roman-one).
 - (ii) Displacement of joints 2 and 3.

Fig. 3

SUMMARY ANSWER SHEET

PAPER CODE: B

Name:

Roll no:

Problem 1

(iii) Rotation at $B =$	
-------------------------	--

(iv) Reactions at A are $A_x = ; A_y = ; M_A =$

Problem 2

Problem 3

- (iii) Reduced stiffness matrix $K_{II} =$
- (iv) Displacement of joint 2 is =

PAPER CODE: C

Note: Write your name and roll no. on the answerbook and on the summary answer sheet provided on the reverse.

You must submit the question-paper-cum-summary-answer-sheet along with the answerbook. Closed book, closed notes test. No formula sheet allowed. No mobile phones allowed in the exam hall. All **three questions** carry equal marks

Problem 1

You must use only Slope Deflection Method in this question.

Consider the rigid-jointed frame in Fig. 1. A point moment M is applied at the midpoint of member BC as shown. Find:

- (i) **Rotation at** *B***.**
- (ii) All reactions at A.

(Fixed end moment due to point moment M applied at mid-span is M/4)

Problem 2

You must use only Moment Distribution Method in this question. For the rigid-jointed frame in **Fig. 2**, **find all reactions at** *F*

<u>You must use only Stiffness Method in this question</u>. (You must use joint numbering and global coordinate system as shown in **Fig. 3**. Assume unit of *EA* is kN.)

- For the 4-member pin-jointed truss with load as shown in **Fig. 3**, **find**:
 - (i) The \mathbf{K}_{II} (i.e., the reduced stiffness matrix K-roman-one-roman-one).
 - (ii) Displacement of joints 2 and 3.

Fig. 3

SUMMARY ANSWER SHEET

PAPER CODE: C

Name:

Roll no:

Problem 1

<u>(i)</u>	Rotation at $B =$		

(ii) Reactions at A are $A_x = ; A_y = ; M_A =$

Problem 2

Reactions at F are $F_x = ; F_y = ; M_F =$

Problem 3

- (i) Reduced stiffness matrix $K_{II} =$
- (ii) Displacement of joint 2 is =

PAPER CODE: D

Note: Write your name and roll no. on the answerbook and on the summary answer sheet provided on the reverse.

You must submit the question-paper-cum-summary-answer-sheet along with the answerbook. Closed book, closed notes test. No formula sheet allowed. No mobile phones allowed in the exam hall. All **three questions** carry equal marks

Problem 1

You must use only Slope Deflection Method in this question.

Consider the rigid-jointed frame in **Fig. 1.** A point moment M is applied at the midpoint of member BC as shown. **Find:**

- (iii) Rotation at B.
- (iv) All reactions at A.

(Fixed end moment due to point moment M applied at mid-span is M/4)

Problem 2

You must use only Moment Distribution Method in this question. For the rigid-jointed frame in **Fig. 2**, **find all reactions at** *F*

<u>You must use only Stiffness Method in this question</u>. (You must use joint numbering and global coordinate system as shown in **Fig. 3**. Assume unit of *EA* is kN.)

- For the 4-member pin-jointed truss with load as shown in **Fig. 3**, **find**:
 - (ii) The \mathbf{K}_{II} (i.e., the reduced stiffness matrix K-roman-one-roman-one).
 - (ii) Displacement of joints 2 and 3.

Fig. 3

SUMMARY ANSWER SHEET

PAPER CODE: D

Name:

Roll no:

Problem 1

<u>(iii)</u>	Rotation at <i>B</i> =	

(iv) Reactions at A are $A_x = ; A_y = ; M_A =$

Problem 2

Reactions at F are $F_x = ; F_y = ; M_F =$

Problem 3

- (iii) Reduced stiffness matrix $K_{II} =$
- (iv) Displacement of joint 2 is =

CE317 Midsen 2013

Antisymm => QB = QC Antisymm => QB = QC L = Sway. P(1) $M_{BA} + M_{Bc} = 0 \longrightarrow E_{L} \begin{bmatrix} a \cdot 4 + b \cdot 4 & b \cdot 2 & -6 \cdot a \\ 1 & c & c & -6 \cdot a \\ -M_{C} + M_{C} - b & -6 \cdot a \\ -M_{C} + M$ Not required - using antisymmetry. use $O_B = O_C \rightarrow (4a + 6\frac{b}{c})O_B - \frac{b}{12aO_B} - \frac{b}{12aO_B}$ ⇒ (4a+6b- 6a) 08 = -M L $\Theta_{B} = -\frac{M}{4} \cdot \frac{1}{(a+6b/c)} \cdot \frac{b}{EI}$ $\Delta = -\frac{M}{4} \frac{1}{(a+6b/c)} \frac{L}{EI} \frac{L}{2}$ $M_{AB} = \alpha E \left(2 \left(-\frac{M}{4} \right) \frac{1}{(a+6b/c)} - 6 \left(-\frac{M}{4} \right) \frac{1}{(a+6b/c)} + \frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{(a+6b/c)} + \frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{(a+6b/c)} + \frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{(a+6b/c)} + \frac{1}{2} \left(\frac{1}{2}$ $R_{A} = \frac{(2M_{AB}+M)}{CL}$; $M_{AB} = -M_{BA}$, $A_{X} = 0$ Ay Paper code a b c OB MAB 0 M. M.1 -ML. 1 EI 20 1 2 3

M. 1 0 M. 10 -ML L EI 10 3 12 1 B M.21 0 M. 1 40 -ML. 1 EI 40 2 3 C M. 7 M. --ML n 0.25 6 D

$$P^{(2)} \text{ Symmetry} \Rightarrow A A \stackrel{\text{ET B CET}}{} \stackrel{\text{B CET}}{} \stackrel{\text{dL}}{} \stackrel{\text{dL}}{} \stackrel{\text{dL}}{} \stackrel{\text{dL}}{} \stackrel{\text{cl}}{} \stackrel{\text{dL}}{} \stackrel{\text{dL}}{} \stackrel{\text{cl}}{} \stackrel{\text{cl}}{} \stackrel{\text{cl}}{} \stackrel{\text{dL}}{} \stackrel{\text{cl}}{} \stackrel{\text{cl$$

c 225 16.88 373.13 D 145.45 14.54 258.18

Problem2	Paper A									
	ab	ba	bf	bc	cb	fb	aEl	bL	cEl	dL
k	1	1	0.666667	0.666667	0.666667	0.666667	2	3	2	3
df		0.428571	0.285714	0.285714			L	W		
fem	-100	100	0	-900	900	0	10	12		
dist, co	171.4286	342.8571	228.5714	228.5714	114.2857	114.2857	Mf	Fx	VbL	VbR
BM	71.42857	442.8571	228.5714	-671.429	1014.286	114.2857	114.2857	11.42857	111.4286	168.5714
								Fy		
								280		
Problem2	Paper B									
	ab	ba	bf	bc	cb	fb	aEl	bL	cEl	dL
k	1	1	1.5	1.5	1.5	1.5	3	2	3	2
df		0.25	0.375	0.375			L	w		
fem	-100	100	0	-400	400	0	10	12		
dist, co	37.5	75	112.5	112.5	56.25	56.25	Mf	Fx	VbL	VbR
BM	-62.5	175	112.5	-287.5	456.25	56.25	56.25	8.4375	71.25	111.5625
								Fy		
								182.8125		
Problem2	Paper C									
	ab	ba	bf	bc	cb	fb	aEl	bL	cEl	dL
k	1	1	0.75	0.75	0.75	0.75	3	4	3	4
df		0.4	0.3	0.3			L	w		
fem	-100	100	0	-1600	1600	0	10	12		
dist, co	300	600	450	450	225	225	Mf	Fx	VbL	VbR
BM	200	700	450	-1150	1825	225	225	16.875	150	223.125
								Fy		
								373.125		
Problem2	Paper D									
	ab	ba	bf	bc	cb	fb	aEl	bL	cEl	dL
k	1	1	1.333333	1.333333	1.333333	1.333333	4	3	4	3
df		0.272727	0.363636	0.363636			L	w		
fem	-100	100	0	-900	900	0	10	12		
dist, co	109.0909	218.1818	290.9091	290.9091	145.4545	145.4545	Mf	Fx	VbL	VbR
BM	9.090909	318.1818	290.9091	-609.091	1045.455	145.4545	145.4545	14.54545	92.72727	165.4545
								Fy		
								258.1818		

$(P3) \Delta_{I} = \{(\Delta_{2})_{2}, (\Delta_{1})_{3}\}^{T} = \{\Delta_{4}, \Delta_{5}\}^{T}$ 34 56	3/3
K= keep cols/rows 4,5 of K -> K= [-]]-	1
$\Rightarrow K_{II} = \begin{bmatrix} K_{22}(2,2) & K_{23}(2,1) \\ - & - & - & - & - & - & - & - & - & -$	
$\begin{bmatrix} K_{32}(1,2) & K_{33}(1,1) \end{bmatrix}$ $\begin{bmatrix} - & - & - & - & - & - & - & - & - & - $	- 1
$a_{31} = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) = -a_{35}$ $ k_{23} = k_{32} = k_{22} = k_{33} = k_{11}$ $= k_{11} = k_{32} = a_{22} = k_{33} = k_{12}$	$s = k_{31}$
$a_{32} = \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\right) = -a_{23} = -a_{34} k_{34} = k_{43} = k_{35} = k_{33} = k_{33$	35=R33
$K_{22} = a_{23}^T R_{22}^3 a_{23} = \frac{EA}{L} \cdot \frac{a}{1/\sqrt{2}} \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \frac{EA}{L} \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \frac{EA}{L} \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \frac{EA}{L} \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \frac{EA}{L} \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \frac{EA}{L} \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = $	K X
where axial stiffness of members 1-3, 2-3 is a.EA	and
K33 = a32 k33 a32 + a31 k33 a31 + a34 k33 a34 + a35 k33 a	25
$= EA \left\{ (\sqrt{2} + a\sqrt{2}) \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} (1/\sqrt{2} + 1/\sqrt{2}) \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix} (1/\sqrt{2}) \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} (1/\sqrt{2} + 1/\sqrt{2}) \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix} (1/\sqrt{2} + 1/\sqrt{2}) \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix} (1/\sqrt{2} + 1/\sqrt{2}) \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} (1/\sqrt{2} + 1/\sqrt{2}) \end{pmatrix} (1/\sqrt{2} + 1/\sqrt{2}) \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} (1/\sqrt{2} + 1/\sqrt{2}) \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} (1/\sqrt{2} + 1/\sqrt{2}) \end{pmatrix} (1/\sqrt{2} + 1/\sqrt{2}) \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} (1/\sqrt{2} + 1/\sqrt{2}) \end{pmatrix} (1/\sqrt{2} + 1/\sqrt{2}) \end{pmatrix} (1/\sqrt{2} + 1/\sqrt{2}) \end{pmatrix} (1/\sqrt{2} + 1/\sqrt{2}) \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} (1/\sqrt{2} + 1/\sqrt{2}) \end{pmatrix} (1/\sqrt{2} + 1/\sqrt$	-1/12)]
$= \frac{EA}{L} \begin{bmatrix} \sqrt{2} (a+1) \cdot 2 & X \\ Z \\ X & X \end{bmatrix}$	J
$K_{23} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -1/2 & \sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \underbrace{EA}_{L} a\sqrt{2} \begin{pmatrix} -$	K32
$K_{23} = \frac{1}{23} = \frac{1}{12}$ $K_{-1} = \frac{1}{12} = \frac$	-a/J2]
$II = I [a/v_2 (a+1)v_2]$ $II [2/En]-a/v_2$	a/12
$\Delta_{I} = K_{II} \left\{ \begin{array}{c} P_{4} \\ P_{5} \end{array} \right\} = \left(a + \frac{a^{2}}{2} \right)^{-1} \stackrel{L}{=} \left\{ \begin{array}{c} \sqrt{2}(a+i)P_{4} - \frac{a}{12}P_{5} \\ -\frac{a}{12}P_{4} + \frac{a}{12}P_{5} \end{array} \right\} = \left(a + \frac{a^{2}}{2} \right)^{-1} \stackrel{L}{=} \left\{ \begin{array}{c} \sqrt{2}(a+i)P_{4} - \frac{a}{12}P_{5} \\ -\frac{a}{12}P_{4} + \frac{a}{12}P_{5} \end{array} \right\} = \left(a + \frac{a^{2}}{2} \right)^{-1} \stackrel{L}{=} \left\{ \begin{array}{c} \sqrt{2}(a+i)P_{4} - \frac{a}{12}P_{5} \\ -\frac{a}{12}P_{4} + \frac{a}{12}P_{5} \end{array} \right\} = \left(a + \frac{a^{2}}{2} \right)^{-1} \stackrel{L}{=} \left\{ \begin{array}{c} \sqrt{2}(a+i)P_{4} - \frac{a}{12}P_{5} \\ -\frac{a}{12}P_{4} + \frac{a}{12}P_{5} \end{array} \right\} = \left(a + \frac{a^{2}}{2} \right)^{-1} \stackrel{L}{=} \left\{ \begin{array}{c} \sqrt{2}(a+i)P_{4} - \frac{a}{12}P_{5} \\ -\frac{a}{12}P_{4} + \frac{a}{12}P_{5} \end{array} \right\}$	$ \Delta_4\rangle$ $ \Delta_5- $
Paper code PL P= a DI=(D) Dr=(D)z	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	