DEPARTMENT OF CIVIL ENGINEERING
 CE-317 STRUCTURAL MECHANICS II Midsem 11/9/13

PAPER CODE: A
Note: Write your name and roll no. on the answerbook and on the summary answer sheet provided on the reverse.
You must submit the question-paper-cum-summary-answer-sheet along with the answerbook.
Closed book, closed notes test. No formula sheet allowed. No mobile phones allowed in the exam hall.
All three questions carry equal marks

Problem 1

You must use only Slope Deflection Method in this question.

Consider the rigid-jointed frame in Fig. 1. A point moment \boldsymbol{M} is applied at the midpoint of member $\boldsymbol{B C}$ as shown. Find:
(i) Rotation at B.
(ii) All reactions at A.
(Fixed end moment due to point moment M applied at mid-span is $M / 4$)

Fig. 1

Problem 2

You must use only Moment Distribution Method in this question.
For the rigid-jointed frame in Fig. 2, find all reactions at F
(Fixed end moment due to uniformly distributed load is $w L^{2} / 12$)

Fig. 2

Problem 3

You must use only Stiffness Method in this question. (You must use joint numbering and global coordinate system as shown in Fig. 3. Assume unit of $\boldsymbol{E A}$ is kN.)
For the 4-member pin-jointed truss with load as shown in Fig. 3, find:
(i) The $\mathbf{K}_{\text {II }}$ (i.e., the reduced stiffness matrix K-roman-one-roman-one).
(ii) Displacement of joints 2 and 3.

Fig. 3

SUMMARY ANSWER SHEET

PAPER CODE: A

Name:
Roll no:

Problem 1

(i) Rotation at $B=$
(ii) Reactions at \boldsymbol{A} are $A_{x}=\quad ; A_{y}=\quad ; M_{A}=$

Problem 2

Reactions at \boldsymbol{F} are $F_{x}=$

$$
; F_{y}=
$$

$$
; M_{F}=
$$

Problem 3

(i) Reduced stiffness matrix $\mathrm{K}_{\text {II }}=$
(ii) Displacement of joint 2 is =

Displacement of joint 3 is $=$

DEPARTMENT OF CIVIL ENGINEERING
 CE-317 STRUCTURAL MECHANICS II
 Midsem 11/9/13

PAPER CODE: B
Note: Write your name and roll no. on the answerbook and on the summary answer sheet provided on the reverse.
You must submit the question-paper-cum-summary-answer-sheet along with the answerbook.
Closed book, closed notes test. No formula sheet allowed. No mobile phones allowed in the exam hall.
All three questions carry equal marks

Problem 1

You must use only Slope Deflection Method in this question.

Consider the rigid-jointed frame in Fig. 1. A point moment \boldsymbol{M} is applied at the midpoint of member $\boldsymbol{B C}$ as shown. Find:
(iii) Rotation at B.
(iv) All reactions at \boldsymbol{A}.
(Fixed end moment due to point moment M applied at mid-span is $M / 4$)

Fig. 1

Problem 2

You must use only Moment Distribution Method in this question.
For the rigid-jointed frame in Fig. 2, find all reactions at \boldsymbol{F}
(Fixed end moment due to uniformly distributed load is $w L^{2} / 12$)

Fig. 2

Problem 3

You must use only Stiffness Method in this question. (You must use joint numbering and global coordinate system as shown in Fig. 3. Assume unit of $\boldsymbol{E A}$ is kN.)
For the 4-member pin-jointed truss with load as shown in Fig. 3, find:
(ii) The $\mathbf{K}_{\text {II }}$ (i.e., the reduced stiffness matrix K-roman-one-roman-one).
(ii) Displacement of joints 2 and 3.

Fig. 3

SUMMARY ANSWER SHEET

PAPER CODE: B

Name:
Roll no:

Problem 1

(iii) Rotation at $B=$
(iv) Reactions at \boldsymbol{A} are $A_{x}=\quad ; A_{y}=\quad ; M_{A}=$

Problem 2

Reactions at \boldsymbol{F} are $F_{x}=$
; $F_{y}=$
; $M_{F}=$

Problem 3

(iii) Reduced stiffness matrix $\mathbf{K}_{\text {II }}=$
(iv) Displacement of joint 2 is =

Displacement of joint 3 is $=$

DEPARTMENT OF CIVIL ENGINEERING
 CE-317 STRUCTURAL MECHANICS II Midsem 11/9/13

PAPER CODE: C
Note: Write your name and roll no. on the answerbook and on the summary answer sheet provided on the reverse.
You must submit the question-paper-cum-summary-answer-sheet along with the answerbook.
Closed book, closed notes test. No formula sheet allowed. No mobile phones allowed in the exam hall.
All three questions carry equal marks

Problem 1

You must use only Slope Deflection Method in this question.

Consider the rigid-jointed frame in Fig. 1. A point moment \boldsymbol{M} is applied at the midpoint of member $\boldsymbol{B C}$ as shown. Find:
(i) Rotation at B.
(ii) All reactions at A.
(Fixed end moment due to point moment M applied at mid-span is $M / 4$)

Fig. 1

Problem 2

You must use only Moment Distribution Method in this question.
For the rigid-jointed frame in Fig. 2, find all reactions at \boldsymbol{F}
(Fixed end moment due to uniformly distributed load is $w L^{2} / 12$)

Fig. 2

Problem 3

You must use only Stiffness Method in this question. (You must use joint numbering and global coordinate system as shown in Fig. 3. Assume unit of $\boldsymbol{E A}$ is kN.)
For the 4-member pin-jointed truss with load as shown in Fig. 3, find:
(i) The $\mathbf{K}_{\text {II }}$ (i.e., the reduced stiffness matrix K-roman-one-roman-one).
(ii) Displacement of joints 2 and 3.

Fig. 3

SUMMARY ANSWER SHEET

PAPER CODE: C

Name:
Roll no:

Problem 1

(i) Rotation at $B=$
(ii) Reactions at \boldsymbol{A} are $A_{x}=\quad ; A_{y}=\quad ; M_{A}=$

Problem 2

Reactions at \boldsymbol{F} are $F_{x}=$; $F_{y}=$
; $M_{F}=$

Problem 3

(i) Reduced stiffness matrix $\mathrm{K}_{\text {II }}=$
(ii) Displacement of joint 2 is =

Displacement of joint 3 is $=$

DEPARTMENT OF CIVIL ENGINEERING
 CE-317 STRUCTURAL MECHANICS II Midsem 11/9/13

PAPER CODE: D
Note: Write your name and roll no. on the answerbook and on the summary answer sheet provided on the reverse.
You must submit the question-paper-cum-summary-answer-sheet along with the answerbook.
Closed book, closed notes test. No formula sheet allowed. No mobile phones allowed in the exam hall.
All three questions carry equal marks

Problem 1

You must use only Slope Deflection Method in this question.

Consider the rigid-jointed frame in Fig. 1. A point moment \boldsymbol{M} is applied at the midpoint of member $\boldsymbol{B C}$ as shown. Find:
(iii) Rotation at B.
(iv) All reactions at A.
(Fixed end moment due to point moment M applied at mid-span is $M / 4$)

Fig. 1

Problem 2

You must use only Moment Distribution Method in this question.
For the rigid-jointed frame in Fig. 2, find all reactions at \boldsymbol{F}
(Fixed end moment due to uniformly distributed load is $w L^{2} / 12$)

Fig. 2

Problem 3

You must use only Stiffness Method in this question. (You must use joint numbering and global coordinate system as shown in Fig. 3. Assume unit of $\boldsymbol{E A}$ is kN.)
For the 4-member pin-jointed truss with load as shown in Fig. 3, find:
(ii) The $\mathbf{K}_{\text {II }}$ (i.e., the reduced stiffness matrix K-roman-one-roman-one).
(ii) Displacement of joints 2 and 3.

Fig. 3

SUMMARY ANSWER SHEET

PAPER CODE: D

Name:
Roll no:

Problem 1

(iii) Rotation at $B=$
(iv) Reactions at \boldsymbol{A} are $A_{x}=\quad ; A_{y}=\quad ; M_{A}=$

Problem 2

Reactions at \boldsymbol{F} are $F_{x}=$; $F_{y}=$
; $M_{F}=$

Problem 3

(iii) Reduced stiffness matrix $\mathrm{K}_{\text {II }}=$
(iv) Displacement of joint 2 is =

Displacement of joint 3 is $=$

CE317 Midsem 2013

Artisymm $\Rightarrow \theta_{B}=\theta_{C}$ \Longleftrightarrow Sway.

INof requived \because using antisymmetry.

$$
\begin{aligned}
\text { Not requived } & \left.\left(4 a+6 \frac{b}{C}\right) \theta_{B}-\frac{6}{L} a \Delta=-\frac{M}{4} \cdot \frac{L}{E I}\right\} \\
\text { use } \theta_{C} \rightarrow & \left(42 a \theta_{B}-\frac{24}{L} a \Delta=0\right. \\
\Rightarrow & \left(4 a+6 \frac{b}{C}-\frac{6}{2} a\right) \theta_{B}=-\frac{M}{4} \frac{L}{E I} \\
& \theta_{B}=-\frac{M}{4} \cdot \frac{1}{(a+6 b / c)} \cdot \frac{L}{E I} \\
\Delta & =-\frac{M}{4} \frac{1}{(a+6 b / C)} \frac{L}{E I} \cdot \frac{L}{2}
\end{aligned}
$$

$$
M_{A B}=a \frac{E L}{L}\left(2\left(-\frac{M}{4}\right) \frac{1}{(a+6 b / c)}-6\left(-\frac{M}{4}\right) \frac{1}{(a+6 b / c)} \cdot \frac{L}{2} \cdot \frac{1}{L}\right) \cdot \frac{L}{F I}
$$

$$
R /_{A_{y}}=\frac{\left(2 M_{A B}+M\right)}{c L} ; \because M_{A B}=-M_{B A}, A_{x}=0
$$

$\begin{array}{ccccc}\text { Paper code } & a & b & c & \theta_{B} \\ A & 1 & 2 & 3 & \frac{-M L}{E I} \cdot \frac{1}{20} \\ B & 1 & 3 & 12 & \frac{-M L}{E I} \cdot \frac{1}{10}\end{array}$

$$
0
$$

$$
M \cdot \frac{1}{10} \quad \frac{M}{L} \cdot \frac{1}{10} \quad 0
$$

$C \quad 1 \quad 3 \quad 2 \quad \frac{-M L}{E I} \cdot \frac{1}{40}$

$$
\begin{array}{ll}
M_{A B} & A_{y} \\
\frac{M}{20} & \frac{11}{20}
\end{array}
$$

$$
M \cdot \frac{1}{40} \quad \frac{M}{L} \cdot \frac{21}{40} \quad 0
$$

$D \quad 1 \quad 0.25 \quad 6 \quad \frac{-M L}{E I} \cdot \frac{1}{5}$
$M \cdot \frac{1}{5} \quad \frac{M}{L} \cdot \frac{7}{30} \quad 0$

$$
\begin{aligned}
& \text { emend! } A B \text { : } B A ; B F \text {, } B C, C B \text {, } F B \\
& \text { ale stiff: }:, 1 ;: a / b: c / d, c / d \quad 1 . a / b \\
& \text { af : }-1 \frac{1}{1+\frac{a}{b}+\frac{c}{d},} ; \frac{a / b}{1+\frac{a}{b}+\frac{c}{d}}: \frac{c / d}{1+\frac{a}{b}+\frac{c}{d}}:-1-
\end{aligned}
$$

$$
\begin{aligned}
& \text { where, } q=\frac{w L^{2}}{12}\left(d^{2}-1\right) \cdot \frac{b d}{b d+a d+b c}=\frac{24}{7} \cdot 1007 \\
& \left.\begin{array}{l}
r=\frac{w L^{2}}{12}\left(d^{2}-1\right) \cdot \frac{a d}{b d+a d+b c}=\frac{b d+a d+b c}{7} \cdot 100 \\
s=\frac{w L^{2}}{12}\left(d^{2}-1\right) \cdot \frac{b c}{b d+a d+b c}=\frac{16}{7} \cdot 100
\end{array}\right\} \begin{array}{l}
\text { Cor Paper. } \\
\text { Code } A .
\end{array} \\
& \text { BM }: 171.43 ; 442.86 ; 228.57 ;-671.43: 1014.29: 114.29 \\
& M_{F}=M_{F B}=114.29 ; \quad F_{X}=\frac{M_{F B}+M_{B F}}{b L}=\frac{114.29+228.57}{30}=11.43 \\
& \begin{array}{rlrl}
V_{B L} \downarrow \frac{B}{\prod_{V}} V_{B R} & F_{y} & =V_{B L}+V_{B R}=\frac{M_{A B}+M_{B A}+W L^{2} / 2}{L}+\frac{\left(-M_{B C}-M_{C B}+W \frac{W L^{2}}{2}\right)}{d L} \\
\uparrow F_{y} & & & (71.43+442.86+600) / 10+\frac{1 .(+671.43-1014.29+5400)}{30} \\
& =280
\end{array} \\
& \begin{array}{cccc}
\text { Paper Code } & M_{F} & F_{x} & F_{y} \\
A & 114.29 & 11.43 & 280 \\
B & 56.25 & 8.44 & 182.81 \\
C & 225 & 16.88 & 373.13 \\
D & 145.45 & 14.54 & 258.18
\end{array} \\
& \text { (for MDN tables) } \\
& \text { (see ils file) }
\end{aligned}
$$

Problem2	Paper A									
	ab	ba	bf	bc	cb	fb	aEI	bL	CEI	dL
k	1	1	0.666667	0.666667	0.666667	0.666667	2	3	2	3
df		0.428571	0.285714	0.285714			L	W		
fem	-100	100	0	-900	900	0	10	12		
dist, co	171.4286	342.8571	228.5714	228.5714	114.2857	114.2857	Mf	Fx	VbL	VbR
BM	71.42857	442.8571	228.5714	-671.429	1014.286	114.2857	114.2857	11.42857	111.4286	168.5714
								Fy		
								280		
Problem2	Paper B									
	ab	ba	bf	bc	cb	fb	aEl	bL	CEI	dL
k	1	1	1.5	1.5	1.5	1.5	3	2	3	2
df		0.25	0.375	0.375			L	w		
fem	-100	100	0	-400	400	0	10	12		
dist, co	37.5	75	112.5	112.5	56.25	56.25	Mf	Fx	VbL	VbR
BM	-62.5	175	112.5	-287.5	456.25	56.25	56.25	8.4375	71.25	111.5625
								Fy		
								182.8125		
Problem2	Paper C									
	ab	ba	bf	bc	cb	fb	aEl	bL	CEI	dL
k	1	1	0.75	0.75	0.75	0.75	3	4	3	4
df		0.4	0.3	0.3			L	W		
fem	-100	100	0	-1600	1600	0	10	12		
dist, co	300	600	450	450	225	225	Mf	Fx	VbL	VbR
BM	200	700	450	-1150	1825	225	225	16.875	150	223.125
								Fy		
								373.125		
Problem2	Paper D									
	ab	ba	bf	bc	cb	fb	aEl	bL	CEI	dL
k	1	1	1.333333	1.333333	1.333333	1.333333	4	3	4	3
df		0.272727	0.363636	0.363636			L	w		
fem	-100	100	0	-900	900	0	10	12		
dist, co	109.0909	218.1818	290.9091	290.9091	145.4545	145.4545	Mf	Fx	VbL	VbR
BM	9.090909	318.1818	290.9091	-609.091	1045.455	145.4545	145.4545	14.54545	92.72727	165.4545
								Fy		
								258.1818		

(P3) $\quad \Delta_{I}=\left\{\left(\Delta_{2}\right)_{2}\left(\Delta_{1}\right)_{3}\right\}^{\top}=\left\{\begin{array}{ll}\Delta_{4} & \Delta_{5}\end{array}\right\}^{\top}$
$K_{I I}=$ keep cols/rows 4,5 of K

$$
\begin{aligned}
& \Rightarrow K_{I I}=\left[\begin{array}{ll}
K_{22}(2,2) & K_{23}(2,1) \\
K_{32}(1,2) & K_{33}(1,1)
\end{array}\right] \\
& a_{31}=\left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\right)=-a_{35} \\
& a_{32}=\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right)=-a_{23}=-a_{34} \\
& K_{22}=a_{23}^{\top} R_{22}^{3} a_{23}=\frac{E A}{L} \cdot \frac{a}{1 / \sqrt{2}}
\end{aligned}
$$

$$
k_{23}=k_{32}=k_{22}^{3}=k_{33}^{2}=k_{13}=k_{31}
$$

$$
=k_{11}^{3}=R_{33}^{1}=a_{1} E A /(L / \sqrt{2})_{3}
$$

$$
\begin{aligned}
& R_{34}=R_{33}=R_{35}=R_{53}=R_{33}=R_{55}=R_{33} \\
& =\binom{-1 / \sqrt{2}}{1 / \sqrt{2}}\left(\begin{array}{ll}
-1 / \sqrt{2} & 1 / \sqrt{2}) \\
\frac{E A}{L}\left[\begin{array}{ll}
x & x \\
x & \frac{a \sqrt{2}}{2}
\end{array}\right]
\end{array} .\right.
\end{aligned}
$$

where axial stiffness of members $1-3,2-3$ is a.EA
$P_{4}=$ as given, $P_{5}=0, a=$ as given

$$
\begin{aligned}
& K_{33}=a_{32}^{\top} k_{33}^{2} a_{32}+a_{31}^{\top} k_{33}^{1} a_{31}+a_{34}^{\top} k_{33}^{4} a_{34}+a_{35}^{\top} k_{33}^{5} a_{35} \\
& =\frac{E A}{L}\left\{(\sqrt{2}+a \sqrt{2})\binom{1 / \sqrt{2}}{1 / \sqrt{2}}(1 / \sqrt{2} 1 / \sqrt{2})+(\sqrt{2}+a \sqrt{2})\binom{1 / \sqrt{2}}{-1 / \sqrt{2}}\left(\begin{array}{ll}
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right)\right\} \\
& =\frac{E A}{L}\left[\begin{array}{cc}
\frac{\sqrt{2}}{2}(a+1) \cdot 2 & x \\
x & x
\end{array}\right] \\
& \begin{aligned}
K_{23} & =\frac{E A}{L} a \sqrt{2}\binom{-1 / \sqrt{2}}{1 / \sqrt{2}}(1 / \sqrt{2} \\
& -1 / \sqrt{2})=\frac{E A}{L} a \sqrt{2}\left[\begin{array}{cc}
-1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right]=K_{32} \\
& a_{23}^{\top} k_{23} a_{32}
\end{aligned} \\
& K_{I I}=\frac{E A}{L}\left[\begin{array}{lc}
a / \sqrt{2} & a / \sqrt{2} \\
a / \sqrt{2} & (a+1) \sqrt{2}
\end{array}\right] ; K_{I I}^{-1}=\left(a^{2}+a-\frac{a^{2}}{2}\right)^{-1} \frac{L}{E A}\left[\begin{array}{cc}
(a+1) \sqrt{2} & -a / \sqrt{2} \\
-a / \sqrt{2} & a / \sqrt{2}
\end{array}\right] \\
& \Delta_{I}=K_{I I}^{-1}\left\{\begin{array}{l}
P_{4} \\
P_{5}
\end{array}\right\}=\left(a+\frac{a^{2}}{2}\right)^{-1} \frac{L}{E A}\left\{\begin{array}{l}
\sqrt{2}(a+1) P_{4}-\frac{a}{\sqrt{2}} P_{5} \\
-\frac{a}{\sqrt{2}} P_{4}+\frac{a}{\sqrt{2}} P_{5}
\end{array}\right\}=\left\{\begin{array}{l}
\Delta_{4} \\
\Delta_{5}
\end{array}\right\}
\end{aligned}
$$

