Instructions:

1. Attempt all questions.
2. All questions carry equal weight.
3. Make suitable assumptions, if necessary, and state the same clearly.
Q. 1. For the frame loaded as shown in Fig. 1, the deflections were found as $\theta_{\mathrm{B}}=0.2041 \times 10^{-2}$ rad (clockwise), $\theta_{\mathrm{C}}=0.5174 \times 10^{-3} \mathrm{rad}$ (counter-clockwise), $\theta_{\mathrm{D}}=0.2824 \times 10^{-4} \mathrm{rad}$ (clockwise), $\Delta_{B}=0.8633 \times 10^{-2} \mathrm{~m}(\rightarrow), \Delta_{\mathrm{D}}=0.1357 \times 10^{-1} \mathrm{~m}(\rightarrow)$. Using Slope Deflection Method, find ALL reactions at joint \boldsymbol{A}. Joints \boldsymbol{B} and \boldsymbol{D} are at the same horizontal level. Member lengths are shown against each member. $E I=2 \times 10^{14} \mathrm{~N} . \mathrm{mm}^{2}$ for all members.

Fig. 1

Fig. 2
Q. 2. Using Matrix Stiffness Method, determine the displacement of joint B of the two-member plane truss shown in Fig. 2. Joint B is an inclined roller support. $E A=8 \times 10^{6} \mathrm{~N}$ for all members.
Q. 3 Joint displacements due to loads \boldsymbol{V} and \mathbf{Q} applied to the simply-supported plane truss in Fig. 3 are given in Table 1. Determine the loads V and Q that cause these displacements. $E A=8 \times 10^{6} \mathrm{~N}$ for all members.

Table 1.

Joint	\mathbf{X}-displacement (m)	Y - displacement (m)
1	0.00000	0.00000
2	0.07294	0.00000
3	0.01425	-0.10700
4	0.06919	-0.08835
5	0.03338	-0.16080
6	0.05494	-0.15450
7	0.05046	-0.16230
8	0.03452	-0.15460
9	0.06883	-0.10670
10	0.02252	-0.08540
11	0.08083	0.00000
12	0.02252	0.00000

Fig. 3
Q. 4 The space truss in Fig. 4 comprises three members $A D, B D, C D$, each with length $1 \mathbf{m}$. Coordinates (in m) are: $A=\left(0,0, \frac{1}{\sqrt{3}}\right), \quad B=\left(-\frac{1}{2}, 0,-\frac{1}{2 \sqrt{3}}\right), \quad C=\left(\frac{1}{2}, 0,-\frac{1}{2 \sqrt{3}}\right)$, $D=\left(0, \sqrt{\frac{2}{3}}, 0\right)$. Supports $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$, are ball and sockets. Member $\boldsymbol{C D}$ is heated to $70^{\circ} \mathrm{C}$ above ambient temperature. Determine displacements at joint D. Use $E A=8 \times 10^{6} \mathrm{~N}$ for all members, and $\alpha=5 \times 10^{-6} /{ }^{0} \mathrm{C}$ for $\mathbf{C D}$.

Fig. 4

$$
2018
$$

Q1

$$
\begin{aligned}
& M_{A B}=\frac{2 * 10^{14}}{5 * 10^{3}}\left(2 * 0.2041 * 10^{-2}-6 * \frac{0.8633 * 10^{-2}}{5}\right)=-2.51104 * 10^{8} \mathrm{~N} \cdot \mathrm{~mm} \\
& M_{B A}=\frac{2 * 10^{4}}{5 * 10^{3}}\left(4 * 0.2041 * 10^{-2}-6 * \frac{0.8633 * 10^{-2}}{5}\right)=-8.7824 * 10^{7} \mathrm{~N} . \mathrm{mm} \\
& A_{x}=\frac{M_{A B}+M_{B A}}{5 * 10^{3}}=-6.77856 * 10^{4} \mathrm{~N}=-67.79 \mathrm{kN} \cdot(\leftrightarrow) \\
& M_{E D}=\frac{2 * 10^{14}}{10 * 10^{3}}\left(2 * 0.2824 * 10^{-4}-6 * \frac{0.1357 * 10^{-1}}{10}\right)=-1.617104 * 10^{8} \\
& A_{y}=\left(-M_{A B}-M_{E D}-100 * 10^{3} * 13 * 10^{3}+50 * 10^{3} * 4 * 10^{3}-A_{x} * 5 * 10^{3}\right) \\
& 8 * 10^{3} \\
& A_{y}=-43532.2 N=-43.53 \mathrm{kN}(\mathrm{~V})
\end{aligned}
$$

Q2
(2)

$$
a_{(1) 2}=\left[\begin{array}{ll}
1 & 0
\end{array}\right], a_{(1)(3)}=\left[\begin{array}{ll}
0 & -1
\end{array}\right]
$$

45

$$
K_{\text {II }}=\frac{E A}{L}\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
1 & 2
\end{array}\right]_{4}^{1} K_{\text {园 }}=\frac{E A}{L}\left[\begin{array}{ll}
0 & 0 \\
3 & 1 \\
0 & 1
\end{array}\right]_{1}^{1} 25^{1}
$$

Q3

$$
\begin{aligned}
F_{24} & =k_{22}^{4} a_{24} \Delta_{2}+k_{24} a_{42} \Delta_{4}=\frac{E A}{3}\left(\left[\begin{array}{ll}
-1 & 0
\end{array}\right]\left[\begin{array}{c}
0.07294 \\
0
\end{array}\right]+\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{c}
0.06919 \\
-0.08835
\end{array}\right]\right) \\
& =-10000 \mathrm{~N}
\end{aligned}
$$

Joint equil (method of joints) at joint (2) $\Rightarrow Q+F_{24}=0 \Rightarrow Q=10000 \mathrm{~N}$.

$$
\left(\begin{array}{l}
F_{34}=\frac{E A}{4}\left(\left[\begin{array}{ll}
0 & -1
\end{array}\right]\left[\begin{array}{c}
0.01425 \\
-0.10700
\end{array}\right]+\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{c}
0.06919 \\
-0.08835
\end{array}\right]\right)=37300 \mathrm{~N} \\
F_{36}=\frac{E A}{5}\left(\left[\begin{array}{ll}
-0.6 & -0.8
\end{array}\right]\left[\begin{array}{l}
0.01425 \\
-0.10700
\end{array}\right]+\left[\begin{array}{ll}
0.6 & 0.8
\end{array}\right]\left[\begin{array}{c}
0.05494 \\
-0.15450
\end{array}\right]\right)=-21737.6 \mathrm{~N}
\end{array}\right.
$$

Jait equil at jt.(3) $\Rightarrow V=F_{34}+F_{36} * 0.8=19909.92 \mathrm{~N}$

$$
\text { (or) }\left(\begin{array}{l}
F_{56}=\frac{E A}{4}\left(\left[\begin{array}{ll}
0 & -1
\end{array}\right]\left[\begin{array}{cc}
0.03338 \\
-0.16080
\end{array}\right]+\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{cc}
0.05494 \\
-0.15450
\end{array}\right]\right)=12600 \mathrm{~N} \\
F_{58}=\frac{E A}{5}\left(\left[\begin{array}{ll}
-0.6 & -0.8
\end{array}\right]\left[\begin{array}{c}
0.03338 \\
-0.16080
\end{array}\right]+\left[\begin{array}{ll}
0.6 & 0.8
\end{array}\right]\left[\begin{array}{c}
0.03452 \\
-0.15460
\end{array}\right]\right)=9030.4 \\
\text { Joint equid. at } j d .5) \Rightarrow V=F_{56}+F_{58} * 0.8=19824.32 \mathrm{~N}
\end{array}\right.
$$

(6)

$$
\left\{\begin{array}{l}
F_{78}=\frac{E A}{4}\left(\left[\begin{array}{ll}
0 & -1
\end{array}\right]\left[\begin{array}{c}
0.05046 \\
-0.16230
\end{array}\right]+\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{c}
0.03452 \\
-0.15460
\end{array}\right]\right)=15400 \mathrm{~N} \\
F_{76}=\frac{E A}{5}\left(\left[\begin{array}{ll}
0.6 & -0.8
\end{array}\right]\left[\begin{array}{c}
0.05046 \\
-0.16230
\end{array}\right]+\left[\begin{array}{ll}
-0.6 & 0.8
\end{array}\right]\left[\begin{array}{l}
0.05494 \\
-0.15450
\end{array}\right]\right)=5683.2 \mathrm{~N}
\end{array}\right.
$$

Joint equil at jt (7) $\Rightarrow V=F_{78}+F_{76} * 0.8=19946.56 \mathrm{~N}$

$$
\left(\begin{array}{l}
F_{9,10}=\frac{E A}{4}\left(\left[\begin{array}{ll}
0 & -1
\end{array}\right]\left[\begin{array}{l}
0.06883 \\
-0.10670
\end{array}\right]+\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{c}
0.02252 \\
-0.08540
\end{array}\right]\right)=42600 \mathrm{~N} \\
F_{98}=\frac{E A}{5}\left(\left[\begin{array}{ll}
0.6 & -0.8
\end{array}\right]\left[\begin{array}{c}
0.06883 \\
-0.10670
\end{array}\right]+\left[\begin{array}{ll}
-0.6 & 0.8
\end{array}\right]\left[\begin{array}{c}
0.03452 \\
-0.15460
\end{array}\right]\right)=-28374 \mathrm{~N}
\end{array}\right.
$$

Joint equil at jt (9) $\Rightarrow V=F_{9,10}+F_{98} * 0.8=19900.8 \mathrm{~N}$
P4 $D \rightarrow(1), A \rightarrow$ (2),$B \rightarrow$ (3), $C \rightarrow$ (4) is jt mumbering.

$$
\begin{aligned}
& K_{I I}=\sum_{j=2,3,4}[K]_{11}^{j}=\sum a_{1 j}^{\top}[R]_{11}^{j} a_{i j}=\frac{E A}{1} \sum a_{1 j}^{T} a_{1 j} \\
& a_{12}=\left(0, \sqrt{\frac{2}{3}},-\frac{1}{\sqrt{3}}\right) ; a_{13}=\left(\frac{1}{2}, \sqrt{\frac{2}{3}}, \frac{1}{2 \sqrt{3}}\right) ; a_{14}=\left(\frac{-1}{2} \sqrt{\frac{2}{3}} \frac{1}{2 \sqrt{3}}\right) \\
& K_{I I}=E A\left[\begin{array}{ccc}
0+6
\end{array}\left[\begin{array}{ccc}
0+\frac{1}{4}+\frac{1}{4} & 0+\frac{1}{\sqrt{6}}-\frac{1}{\sqrt{6}} & 0+\frac{1}{4 \sqrt{3}}-\frac{1}{4 \sqrt{3}} \\
& \frac{2}{3}+\frac{2}{3}+\frac{2}{3} & -\frac{\sqrt{2}}{3}+\frac{1}{\sqrt{18}}+\frac{1}{\sqrt{18}} \\
\text { symm } & & \frac{1}{3}+\frac{1}{12}+\frac{1}{12}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right] E A\right. \\
& P_{I}=P_{a}^{0}-P_{0}^{s e}=-a_{14}^{\top} F_{14}^{s f}=-\left[-\frac{1}{2} \sqrt{\frac{2}{3}} \frac{1}{2 \sqrt{3}}\right]^{\top}\left(k^{4} /\left(-\sigma_{14}^{s}\right)+R_{14}\left(-\delta_{L_{0}}^{\delta} / L_{0}^{s}\right)\right) \\
& =-\left[-\frac{1}{2} \sqrt{\frac{2}{3}} \frac{1}{2 \sqrt{3}}\right]^{T} \cdot\left(-35 * 10^{-5} \cdot E A\right)
\end{aligned}
$$

$$
\begin{aligned}
& P_{I}=E A * 10^{-5}\left[-\frac{35}{2} \quad 35 \sqrt{\frac{2}{3}} \frac{35}{2 \sqrt{3}}\right]^{T} \\
& \Delta_{I}=10^{-5}\left[\begin{array}{lll}
-35 & \frac{35}{\sqrt{6}} & \frac{35}{\sqrt{3}}
\end{array}\right]^{\top} m=\left[\begin{array}{cc:c}
-0.35 & 0.1429: 0.2021
\end{array}\right] \mathrm{mm} \\
& \operatorname{in}_{2}^{\uparrow}{ }_{C}^{Y} \\
& \text { drections. }
\end{aligned}
$$

