Instructions:

1. Attempt both questions.
2. Both questions carry equal weight.
3. Consider all members to be inextensible, with $E I=$ constant.
4. Make suitable assumptions, if necessary, and state the same clearly.
Q. 1. By using Slope Deflection Method, find shear force at joint \boldsymbol{A} of the plane frame shown in Fig. 1.

Fig. 1
Q. 2. By using Moment Distribution Method, find bending moment at joint \boldsymbol{A} of the plane frame shown in Fig. 2.

Fig. 2

- END -

CE317 QuIZ - I 2018
Q1 $\theta_{B}=\theta_{C} \Leftarrow$ antisymmetric loading.
For BA used modified stiffness " 3 ".

$$
\begin{aligned}
M_{B A}+M_{B C}=0 & =\frac{3 E I}{5}\left[\theta_{B}-\frac{\Delta}{0.8} \frac{1}{5}\right] \\
& +\frac{E I}{5}\left[6 \theta_{B}+6.2 \Delta \cdot \frac{3}{4} \cdot \frac{1}{5}\right]
\end{aligned}
$$

$$
\begin{equation*}
A O=\frac{A D / 2}{\sin \alpha}=\frac{55}{6} \tag{1}
\end{equation*}
$$

$$
\psi_{B A}=\frac{B B^{\prime}}{5}=\frac{\Delta / \cos \alpha}{5}
$$

Sway equation:

$$
\sum M_{0}=0=2 V_{A} \cdot \frac{55}{6}-10 \cdot\left(\frac{55}{6} \cdot \frac{4}{5}-4\right)
$$

$$
E\left[\left[\begin{array}{cc}
0.6+1.2 & 0.21 \\
-2.2 & 0.55
\end{array}\right]\left\{\begin{array}{c}
\theta_{B} \\
\Delta
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
100 / 3
\end{array}\right\} \Rightarrow \begin{array}{l}
\theta_{B}=-4.8209 / E_{I} ; \Delta=41.3223 / E I \\
V_{A}=-\frac{3}{5} E_{I}\left[\theta_{B}-\frac{\Delta}{4}\right] \frac{1}{5}=1.818 \mathrm{kN} .
\end{array}\right.
$$

Q2 $B C \rightarrow$ use modified stiffness " 3 " and modified (ie R'HS) FEM.

