DEPARTMENT OF CIVIL ENGINEERING CE-317 STRUCTURAL MECHANICS II 19/10/13 PAPER CODE: A

Note: Write your name & roll no. on answerbook and on summary answer sheet provided on the reverse. **You must submit the question-paper-cum-summary-answer-sheet along with the answerbook.** Closed book, closed notes test. No formula sheet allowed. No mobile phones allowed in the exam hall. Both questions carry equal marks. <u>All answers should be upto at least three significant digits.</u>

Must use only Stiffness Matrix Method in both questions.

Must use global coordinate system provided with the problem.

Problem 1

For this question, settlement must be handled only through self straining by including it in the load vector P_1 . Thus, settlement must not be handled through Δ_{II} term for this question.

Consider the 3-member <u>rigid-jointed</u> frame in Fig. 1. It is fixed supported at joint-1 and joint-3 and pin supported at joint-2 and joint-4. Note that all members are rigidly welded to each other at joint 2 which is then pin-supported.

The support at joint-4 settles 0.1m downward.

Quiz-2

Member-3 is 0.05m too long (i.e., misfit). It is heated/cooled such that $T_L = 50^{\circ}$ C, $T_U = -50^{\circ}$ C, both measured with respect to the ambient temperature.

For all members use data:

 $EI = 10^5 \text{ kNm}^2$; $GJ = 0.16 \times 10^5 \text{ kNm}^2$; $A/I = 300 \text{m}^{-2}$; h = 0.1 m = depth of member; $\alpha = 0.000012 / {}^0\text{C}$ Find: (i) \mathbf{K}_{II} ; (ii) \mathbf{P}_{I} (joint load vector); (iii) Δ_{I} (joint displacement vector)

Problem 2

The plane frame has a torque applied in the XY plane, at an angle $\theta = \cos^{-1}(0.8)$ as shown. Use data: $EI = 10^5 \text{kNm}^2$; $GJ = 0.16 * 10^5 \text{kNm}^2$; $A/I = 300 \text{m}^{-2}$,

Find: (i) \mathbf{K}_{II} ; (ii) \mathbf{P}_{I} (joint load vector); (iii) Δ_{I} (joint displacement vector)

PAPER CODE: A

Name:

Roll no:

Problem 1

<u>(i)</u> K₁₁

(ii) $P_I =$

(iii) $\Delta_{I} =$

Problem 2

<u>(ii)</u> K₁₁

(ii) $P_I =$

DEPARTMENT OF CIVIL ENGINEERING CE-317 STRUCTURAL MECHANICS II 19/10/13 PAPER CODE: B

Note: Write your name & roll no. on answerbook and on summary answer sheet provided on the reverse. **You must submit the question-paper-cum-summary-answer-sheet along with the answerbook.** Closed book, closed notes test. No formula sheet allowed. No mobile phones allowed in the exam hall. Both questions carry equal marks. <u>All answers should be upto at least three significant digits.</u>

Must use only Stiffness Matrix Method in both questions.

Must use global coordinate system provided with the problem.

Problem 1

For this question, settlement must be handled only through self straining by including it in the load vector P_1 . Thus, settlement must not be handled through Δ_{II} term for this question.

Consider the 3-member <u>rigid-jointed</u> frame in Fig. 1. It is fixed supported at joint-1 and joint-3 and pin supported at joint-2 and joint-4. Note that all members are rigidly welded to each other at joint 2 which is then pin-supported.

The support at joint-4 settles 0.05m downward.

Quiz-2

Member-3 is 0.1m too long (i.e., misfit). It is heated/cooled such that $T_L = 25^{\circ}$ C, $T_U = -25^{\circ}$ C, both measured with respect to the ambient temperature.

For all members use data:

 $EI = 10^5 \text{ kNm}^2$; $GJ = 0.16 \times 10^5 \text{ kNm}^2$; $A/I = 300 \text{m}^{-2}$; h = 0.1 m = depth of member; $\alpha = 0.000012 / {}^0\text{C}$ Find: (i) \mathbf{K}_{II} ; (ii) \mathbf{P}_{I} (joint load vector); (iii) Δ_{I} (joint displacement vector)

Problem 2

The plane frame has a torque applied in the XY plane, at an angle $\theta = \cos^{-1}(0.6)$ as shown. Use data: $EI = 10^5 \text{kNm}^2$; $GJ = 0.16 * 10^5 \text{kNm}^2$; $A/I = 300 \text{m}^{-2}$,

Find: (i) \mathbf{K}_{II} ; (ii) \mathbf{P}_{I} (joint load vector); (iii) Δ_{I} (joint displacement vector)

PAPER CODE: B

Name:

Roll no:

Problem 1

<u>(iii)</u> K₁₁

(ii) $P_I =$

(iii) $\Delta_{I} =$

Problem 2

<u>(iv)</u> K₁₁

(ii) $P_I =$

DEPARTMENT OF CIVIL ENGINEERING CE-317 STRUCTURAL MECHANICS II 19/10/13 PAPER CODE: C

Note: Write your name & roll no. on answerbook and on summary answer sheet provided on the reverse. **You must submit the question-paper-cum-summary-answer-sheet along with the answerbook.** Closed book, closed notes test. No formula sheet allowed. No mobile phones allowed in the exam hall. Both questions carry equal marks. <u>All answers should be upto at least three significant digits.</u>

Must use only Stiffness Matrix Method in both questions.

Must use global coordinate system provided with the problem.

Problem 1

For this question, settlement must be handled only through self straining by including it in the load vector P_1 . Thus, settlement must not be handled through Δ_{II} term for this question.

Consider the 3-member <u>rigid-jointed</u> frame in Fig. 1. It is fixed supported at joint-1 and joint-3 and pin supported at joint-2 and joint-4. Note that all members are rigidly welded to each other at joint 2 which is then pin-supported.

The support at joint-4 settles 0.2 downward.

Quiz-2

Member-3 is 0.05m too long (i.e., misfit). It is heated/cooled such that $T_L = 25^{\circ}$ C, $T_U = -25^{\circ}$ C, both measured with respect to the ambient temperature.

For all members use data:

 $EI = 10^5 \text{ kNm}^2$; $GJ = 0.16 \times 10^5 \text{ kNm}^2$; $A/I = 300 \text{ m}^{-2}$; h = 0.1 m = depth of member; $\alpha = 0.000012 / {}^0\text{C}$ Find: (i) \mathbf{K}_{11} ; (ii) \mathbf{P}_1 (joint load vector); (iii) Δ_1 (joint displacement vector)

Problem 2

The plane frame has a torque applied in the XY plane, at an angle $\theta = 45^{\circ}$ as shown. Use data: $EI = 10^{5} \text{kNm}^{2}$; $GJ = 0.16 * 10^{5} \text{kNm}^{2}$; $A/I = 300 \text{m}^{-2}$,

Find: (i) \mathbf{K}_{II} ; (ii) \mathbf{P}_{I} (joint load vector); (iii) Δ_{I} (joint displacement vector)

PAPER CODE: C

Name:

Roll no:

Problem 1

<u>(v)</u> K₁₁

(ii) $P_I =$

(iii) $\Delta_{I} =$

Problem 2

<u>(vi)</u> K₁₁

(ii) $P_I =$

DEPARTMENT OF CIVIL ENGINEERING CE-317 STRUCTURAL MECHANICS II 19/10/13 PAPER CODE: D

Note: Write your name & roll no. on answerbook and on summary answer sheet provided on the reverse. **You must submit the question-paper-cum-summary-answer-sheet along with the answerbook.** Closed book, closed notes test. No formula sheet allowed. No mobile phones allowed in the exam hall. Both questions carry equal marks. <u>All answers should be upto at least three significant digits.</u>

Must use only Stiffness Matrix Method in both questions.

Must use global coordinate system provided with the problem.

Problem 1

For this question, settlement must be handled only through self straining by including it in the load vector P_1 . Thus, settlement must not be handled through Δ_{II} term for this question.

Consider the 3-member <u>rigid-jointed</u> frame in Fig. 1. It is fixed supported at joint-1 and joint-3 and pin supported at joint-2 and joint-4. Note that all members are rigidly welded to each other at joint 2 which is then pin-supported.

The support at joint-4 settles 0.2m downward.

Quiz-2

Member-3 is 0.1m too long (i.e., misfit). It is heated/cooled such that $T_L = 50^{\circ}$ C, $T_U = -50^{\circ}$ C, both measured with respect to the ambient temperature.

For all members use data:

 $EI = 10^5 \text{ kNm}^2$; $GJ = 0.16 \times 10^5 \text{ kNm}^2$; $A/I = 300 \text{m}^{-2}$; h = 0.1 m = depth of member; $\alpha = 0.000012 / {}^0\text{C}$ Find: (i) \mathbf{K}_{II} ; (ii) \mathbf{P}_{I} (joint load vector); (iii) Δ_{I} (joint displacement vector)

Problem 2

The plane frame has a torque applied in the XY plane, at an angle $\theta = \cos^{-1}(0.5)$ as shown. Use data: $EI = 10^5 \text{kNm}^2$; $GJ = 0.16 * 10^5 \text{kNm}^2$; $A/I = 300 \text{m}^{-2}$,

Find: (i) $\mathbf{K}_{\mathbf{H}}$; (ii) $\mathbf{P}_{\mathbf{I}}$ (joint load vector); (iii) $\Delta_{\mathbf{I}}$ (joint displacement vector)

PAPER CODE: D

Name:

Roll no:

Problem 1

<u>(vii)</u> K₁₁

(ii) $P_I =$

(iii) $\Delta_{I} =$

Problem 2

<u>(viii)</u> K₁₁

(ii) $P_I =$

aL $a_{24} = \begin{bmatrix} -0.8 & -0.6 & 0 \\ 0.6 & -0.8 & 0 \end{bmatrix}$ 0 self straining in too long. $K_{II} = \begin{pmatrix} K_{22}(3,3) & K_{24}(3,3) \\ K_{42}(3,3) & K_{44}(3,3) \end{pmatrix}$ cettlement -> S AT=TL-Tu, Tavg=TL+Tu $K_{22} = EI \left(\begin{bmatrix} x & x & x \\ x & x & x \\ x & x & 4 \end{bmatrix} + \begin{bmatrix} x & x & x \\ x & x & x \\ 0 & -\frac{6}{21} & \frac{4}{3} \end{bmatrix} a_{23} + \begin{bmatrix} x & x & x \\ x & x & x \\ 0 & -\frac{6}{21} & \frac{4}{3} \end{bmatrix} a_{23} + \begin{bmatrix} x & x & x \\ x & x & x \\ 0 & -\frac{6}{21} & \frac{4}{3} \end{bmatrix} a_{23}$ $K_{24} = EI \left[\begin{array}{c} \times \times \times \\ \times \\ L \end{array} \right] a_{42} = \left[\begin{array}{c} \times \times \times \\ \times \\ \times \\ \times \\ \end{array} \right] a_{42} = \left[\begin{array}{c} \times \times \times \\ \times \\ \times \\ \times \\ \times \\ \end{array} \right] EI = F_{42}$ $K_{44} = EI \left[\begin{array}{c} x \times x \\ x \times x \\$ $= \begin{cases} X & (3) \\ X & (-0.6 & 0.8 & 0) \\ WL^{2} - PaL + EI \\ 12 & 8 & L \\ (-6) & (-0.6 & 0.8 & 0) \\ 0 & 0 & 1 \end{bmatrix} \left\{ + \begin{pmatrix} 0 \\ s \\ 0 \end{pmatrix} \right\}$ $+\left(\frac{2}{6}\right)\left(\propto\frac{\Delta T}{h} + L\right) = \left\{\times \times A\right\}^{T}$ $\mathcal{P}^{\mathcal{Q}} = \left\{ \underbrace{\mathrm{ET}}_{X} \left(\left(-\frac{G}{2} \right) \right) \left(\left(\left(-\frac{G}{2} \right) \right) \right) \left(\left(-\frac{G}{2} \right) \right) \left(-\frac{G}{2} \right) \left$

$P_{I} = \begin{cases} 0 \\ M \end{bmatrix} - \begin{cases} B_{0}(3) \\ P_{0}(3) \\ R \\ B \\ M \\ M$
$\Delta_{I} = K_{II} P_{I} = \frac{L}{EI} \cdot \frac{1}{(4(1+a^{+}b^{-})\frac{4}{b^{-}}-\frac{4}{b^{2}})(-2b^{-}-2b^$
Code A: M=200, w=12, P=80, $a=0.5, b=2$, $T_{L}=50, T_{L}=-50, s=0.1, m=0.05$
$K_{II} = 104 \begin{bmatrix} 14 & 1 \\ 1 & 2 \end{bmatrix} ; P_{I} = \begin{cases} 12.702 \\ -880 \end{bmatrix} , \Delta_{I} = \begin{cases} 0.01271 \\ -0.0503 \end{bmatrix}$
$\frac{\text{Code B}: M=300, W=24, P=40, T_{L}=25, T_{u}=-25, S=0.05, m=0.1, R=2, B=0.5}{K_{II}=10^{4} \begin{bmatrix} 14 & 4\\ 4 & 8 \end{bmatrix}; P_{I}=\begin{cases} 1460\\ 660 \end{bmatrix}; D_{I}=\begin{cases} 0.0094\\ 0.0035 \end{bmatrix}}$
$\frac{C_{ode}C}{K_{II}} = 10^{4} \begin{bmatrix} 8 & 1 \\ 1 & 2 \end{bmatrix}; P_{II} = \begin{bmatrix} 10402 \\ -260 \end{bmatrix}; D_{II} = \begin{bmatrix} 0.0562 \\ -0.0208 \end{bmatrix}$
$K_{II} = 10^{6} \begin{bmatrix} 8 & 1 \\ 1 & 2 \end{bmatrix}; P_{II} = \begin{cases} 10404 \\ -260 \end{bmatrix}; \Delta_{II} = \begin{cases} -0.0208 \end{bmatrix}$
$C.d. D: M=500, W=48, P=160, T_L=50, T_u=-50, S=0.2, M=0.1$
$K_{II} = 10^{4} \begin{bmatrix} 20 & 4 \\ 4 & 8 \end{bmatrix}; P_{II} = \begin{cases} 4.740 \\ 3140 \end{cases}; A_{II} = \begin{bmatrix} 0.0176 \\ 20.0304 \end{bmatrix}$
Be = {x x wir-Pai + EI (-xDT - 4.85)}
$B^{e} = \{x \times EI(x \Delta T - 4.85)\}^{T}$