- Show all working.
- Attempt all parts of a question in a contiguous manner, i.e., dont scatter parts of the same question all over the answerbook.
- Only one attempt per question will be graded. So cancel out any attempt you do not want graded. The first not-cancelled attempt will be graded by default.
- Open notes (in your handwriting only, no photocopies). No solved examples allowed.

P1. A pure shear state of stress referred to the $x y z$ coordinate system is given as

$$
\sigma_{i j}=\left(\begin{array}{lll}
a & 2 & 1 \\
2 & 0 & 1 \\
1 & 1 & b
\end{array}\right)
$$

Thus, there exists a transformation to a coordinate system $X Y Z$ such that the stress matrix in the $X Y Z$ system has zero diagonal entries. In addition, it is also given that there exist plane(s) on which the total stress is zero. Determine :
(i) $\quad a, b$, and direction cosines (referred to xyz coordinate system) of the plane(s) on which the total stress is zero.
(ii) The transformation from $x y z$ system to $X Y Z$ system.

P2. A long solid cylinder is restrained from longitudinal displacement at its two ends. It is subject to loads that are perpendicular to its longitudinal axis and that do not vary along the longitudinal axis. A strain rosette, having geometry as shown, is embedded at point P lying away from the two ends, so as to measure extensional strains along directions shown which are perpendicular to the longitudinal axis. The measured strains are $\varepsilon_{E A}=200, \varepsilon_{E B}=-100, \varepsilon_{E C}=400 \mu \mathrm{~mm} / \mathrm{mm}$. Material properties are $E=210 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$ and $v=0.25$. Assuming infinitesimal displacement gradients, determine the principal stresses at P.

Fig. P2

P3. Consider a bar of uniform cross-section suspended vertically by fixing the centroid of the upper base, as shown. Thus, an arbitrary line element at the centroid of the upper base has zero rotation. Obtain the stresses, strains, and displacements. (Hint: Assume a suitable distribution of stresses $\sigma_{i j}$ such that only one stress component is non-zero and it varies only with the x_{3} coordinate, the variation being linear. Check that your stress distribution satisfies boundary conditions, equilibrium, compatibility. Then, use this distribution to obtain strains and hence displacements).

Fig. P3

CE469 Midsem
2012
P. $(a) t=0$ on $n=\left(n_{1}, n_{2}, n_{3}\right)$

$$
\begin{align*}
\Rightarrow a n_{1}+2 n_{2}+n_{3} & =0 \\
2 n_{1}+n_{3} & =0 \tag{2}\\
n_{1}+n_{2}+6 n_{3} & =0 \tag{3}
\end{align*}
$$

$$
\underline{\underline{\sigma}}=\left(\begin{array}{lll}
a & 2 & 1 \\
2 & 0 & 1 \\
1 & 1 & b
\end{array}\right) \text { given }
$$

Pure sheer $\Rightarrow a+b=0$-(4)
also,

$$
n_{1}^{2}+n_{2}^{2}+n_{3}^{2}=1-5
$$

(1)-(5) $\Rightarrow n_{3}=-2 n_{1}$

$$
\begin{aligned}
& n_{2}=-n_{1}-b n_{3}=n_{1}(-1+2 b) \\
& n_{1}(a-2+4 b-2)=0 \Rightarrow a+4 b=4 \\
& \Rightarrow v=\frac{4}{3}, a=-\frac{4}{3} \\
& n_{1}^{2}\left(1+4 b^{2}+1-4 b+4\right)=1 \\
& n_{1}= \pm \sqrt{\frac{9}{70}}, n_{2}= \pm \sqrt{\frac{25}{70}}, n_{3}=\mp \sqrt{\frac{36}{70}}
\end{aligned}
$$

(b) Do rotation aft x_{2} axis (ie $\sigma_{22}=\sigma_{22}^{\prime}=0$) so that $\sigma_{11}^{\prime}=0$. Then $\because \sigma_{i i}$ invariant, $\sigma_{33}^{\prime}=0$. So find required θ.

$$
\left.\begin{array}{l}
\text { find required } \theta \text {. } \\
{\left[\begin{array}{ccc}
c \theta & 0 & s \theta \\
0 & 1 & 0 \\
-s \theta & 0 & c \theta
\end{array}\right]\left[\begin{array}{lll}
a & 2 & 1 \\
2 & 0 & 1 \\
1 & 1 & b
\end{array}\right]\left[\begin{array}{ccc}
c \theta & 0 & -s \theta \\
0 & 1 & 0 \\
s \theta & 0 & c \theta
\end{array}\right]=\sigma_{i j}^{\prime}} \tag{array}\\
\sigma_{11}^{\prime}=a c^{2} \theta+2 s \theta c \theta+b s^{2} \theta=0 \\
\sigma_{22}^{\prime}=a s^{2} \theta-2 s \theta c \theta+b c^{2} \theta=0-(7)
\end{array}\right] \text { use an set } \theta \text { a }
$$

-(6) use any one

P2 $\varepsilon_{i 3}=0$ (plane strain)
Linear theory $\rightarrow \varepsilon_{E}=\varepsilon_{i j} n_{i} n_{j}$

$$
\left.\left.\begin{array}{rl}
n_{i}=(1,0,0) \rightarrow \varepsilon_{E A} & =\varepsilon_{11}=200 * 10^{6} \\
n_{i}=\left(0.5, \frac{\sqrt{3}}{2}, 0\right) \rightarrow \varepsilon_{E B} & =\varepsilon_{11} n_{1} n_{1}+\varepsilon_{22} n_{2} n_{2}+2 \varepsilon_{12} n_{1} n_{2} . \\
& =0.75 \varepsilon_{22}+0.866 \varepsilon_{12}=-150 * 10^{-6} \\
n_{i}=\left(-0.5, \frac{\sqrt{3}}{2}, 0\right) \rightarrow \varepsilon_{E C} & =0.75 \varepsilon_{22}-0.866 \varepsilon_{12}=350 \times 10^{-6}
\end{array}\right\}\right\}
$$

$$
\begin{aligned}
& \text { Principal stramis } \rightarrow \\
& \\
& \\
& 10^{-6}\left|\begin{array}{ccc}
(200-\varepsilon) & -288.68 & 0 \\
-288.68 & (133.33-\varepsilon) & 0 \\
0 & 0 & -\varepsilon
\end{array}\right|=0 . \\
& \Rightarrow \varepsilon(3)=0
\end{aligned}
$$

$$
(200-\varepsilon)(133.33-\varepsilon)-288.68^{2}=0
$$

$$
\Sigma(1)=457 \cdot 26 * 10^{-6}
$$

$$
\varepsilon(2)=-123.94 * 10^{-6}
$$

Principal stresses $\rightarrow\left[\frac{1+\nu}{E} \sigma_{i j}-\frac{\nu}{E} \delta_{i j} \sigma_{k k}^{\frac{E}{1-22}} \varepsilon_{k k}-\delta_{i j} \varepsilon\right] n_{j}=0$.
p-stres

$$
\Rightarrow \sigma=\frac{E}{1+\nu}\left(\frac{\nu}{E} \cdot \frac{E}{1-2 \nu}, \varepsilon_{k k}+\varepsilon\right) \text { pistrain. }
$$

get same result by refernig $\Sigma_{i j}$ to p-axes system \& then using const law (1 -axes of $\sigma \& \varepsilon$ are same for is tropic material).

$$
\rightarrow\left\{\begin{array}{l}
\sigma(1)=\frac{E}{1+\nu}\left(\frac{\nu}{1-2 \nu} \Sigma_{R R}+\varepsilon(1)\right)=104.8 * 10^{6} \mathrm{~N} / \mathrm{m}^{2} \\
\sigma(2)=\frac{E}{1+\nu}\left(\frac{v}{1-2 \nu} \Sigma_{R R}+\varepsilon(2)\right)=7.18 * 10^{6} \mathrm{~N} / \mathrm{m}^{2} \\
\sigma(3)=\frac{E}{1+\nu}\left(\frac{\nu}{1-2 \nu} \varepsilon_{R R}+\varepsilon(3)\right)=28 * 10^{6} \mathrm{~N} / \mathrm{m}^{2}
\end{array}\right.
$$

P.3. Obviously σ_{33} is the ${ }_{k}$ non-zero cimponent of stress. Chorse $\sigma_{33}=k\left(L-x_{3}\right)$ (given that its linear variation).
At $x_{3}=0, \sigma_{33} A=R L A=$ wright $=A L \rho g$ (ie static equil)

$$
\Rightarrow k=\rho g
$$

So, $\sigma_{33}=\rho g\left(L-x_{3}\right)$
$B C^{\prime}$: $\left.\sigma_{33}\right|_{x_{3}=1}=0 \rightarrow$ satisfied. All ither σ_{i} 's zero everywhere. So assumed σ_{33} is correct.

$$
\begin{align*}
& \varepsilon_{11}=\varepsilon_{22}=-\frac{\nu}{E} \sigma_{33}=-\frac{v \rho g}{E}\left(L-x_{3}\right) \\
& \varepsilon_{33}=\frac{\sigma_{33}}{E}=\frac{\rho g}{E}\left(L-x_{3}\right) \\
& \varepsilon_{12}=\varepsilon_{23}=\varepsilon_{13}=0 . \\
& u_{1,1}=-\frac{\nu \rho g}{E}\left(L-x_{3}\right) \Rightarrow u_{1}=-\frac{v \rho g}{E}\left(L-x_{3}\right) x_{1}+F_{1}\left(x_{2}, x_{3}\right)- \tag{1}\\
& u_{2,2}=-\frac{\nu \rho g}{E}\left(L-x_{3}\right) \Rightarrow u_{2}=-\frac{\nu \rho g}{E}\left(L-x_{3}\right) x_{2}+F_{2}\left(x_{1}, x_{3}\right)- \tag{2}\\
& u_{3,3}=\frac{\rho g}{E}\left(L-x_{3}\right) \Rightarrow u_{3}=\frac{\rho g}{E}\left(L-\frac{x_{3}}{2}\right) x_{3}+F_{3}\left(x_{1}, x_{2}\right)- \tag{3}\\
& \varepsilon_{12}=0=F_{1,2}+F_{2,1} \\
& \varepsilon_{23}=0=\frac{\nu \rho g}{E} x_{2}+F_{2,3}+F_{3,2} \\
& \varepsilon_{13}=0=\frac{\nu \rho g}{E}+F_{1,3}+F_{3,1} \tag{6}
\end{align*}
$$

$((5), 1+(6), 2)$ inth (4),3 $\Rightarrow F_{3,12}=0$. (7)

$$
\begin{align*}
& \text { (5),2}=0=\frac{r \rho g}{E}+F_{3,22} \tag{8}\\
& \text { (6), }=0=\frac{\nu \rho g}{E}+F_{3,11} \tag{9}\\
& \text { (4), }=0=F_{2,11} \text { - (10 } \tag{10}\\
& \text { (4),2 }=0=F_{1,22} \tag{11}
\end{align*}
$$

(5), $=0=F_{2,33}$
(6) 2 $_{3}=0=F_{1,33}$
(5), $=0$ with (7) $\Rightarrow F_{2,13}=0$
(b) (2 $=0$ witt (7) $\Rightarrow F_{1,23}=0$
(11), (13), (15) $\Rightarrow F_{1}=a x_{2}+b x_{3}+c$
(10), (12), (14) $\Rightarrow F_{2}=d x_{1}+e x_{3}+f$

$$
\text { (7), (8), (9) } \Rightarrow \quad F_{3}=-\frac{1}{2} \frac{\nu g}{E}\left(x_{1}^{2}+x_{2}^{2}\right)
$$

$$
\begin{equation*}
(4),(17),(18) \Rightarrow a=-d-(20 \tag{19}
\end{equation*}
$$

$$
u_{1}=u_{2}=u_{3}=0 \text { at } x_{1}=x_{2}=x_{3}=0 \Rightarrow c=f=0
$$

$$
\omega_{13}=\frac{1}{2}\left(\frac{\nu \rho g}{E} x_{1}+b+\frac{\nu \rho g}{E} x_{1}\right)
$$

$$
\omega_{23}=\frac{1}{2}\left(\frac{\nu \rho g}{E} x_{2}+e+\frac{\nu \rho g}{E} x_{2}\right)
$$

$$
w_{12}=\frac{1}{2}(a-d)
$$

$$
\left.w_{13}\right|_{x_{1}=x_{2}=x_{3}=0}=0 \Rightarrow t=0
$$

$$
\begin{aligned}
& \left.w_{23}\right|_{x_{1}=x_{2}=x_{2}=x_{3}=0}=0 \Rightarrow e=0 \\
& \left.w_{12}\right|_{x_{1}=x_{2}=x_{3}}=0 \Rightarrow a=d
\end{aligned}
$$

(20), (21) $a=a=0$

$$
\Rightarrow\left\{\begin{array}{l}
u_{1}=-\frac{\nu \rho g}{E}\left(L-x_{3}\right) x_{1} \\
u_{2}=-\frac{\nu \rho g}{E}\left(L-x_{3}\right) x_{2} \\
u_{3}=\frac{\rho g}{E}\left[\left(L-\frac{x_{3}}{2}\right) x_{3}-\frac{1}{2} \nu\left(x_{1}^{2}+x_{2}^{2}\right)\right]
\end{array}\right\}
$$

Thus at $x_{3}=0$

$$
u_{1}=u_{2}=0 \quad \forall x_{1}, x_{2}
$$

but $u_{3}=0$ only for $x_{1}=x_{2}=0$
Solution for σ_{33} valid away frim $x_{3}=0$ end.

