1. The square plate of side 1m, shown in Fig. 1, is loaded so that it is in a state of plane strain (i.e., $\varepsilon_{13}=\varepsilon_{23}=\varepsilon_{33}=0$). The deformed plate is shown by dotted straight lines. Assume small displacement gradients. At corner B determine the following:
a) Maximum and minimum engineering extensional strains and the direction of the corresponding line elements on which they act.
b) Maximum change in angle between two elements originally at right angles. Also sketch the direction of these elements.

Fig. 1

2. The state of stress at a point, expressed in two Cartesian systems is,

$$
\sigma_{i j}=\left(\begin{array}{ccc}
5 & a & -a \\
a & 0 & b \\
-a & b & 0
\end{array}\right) \quad \sigma_{i j}^{\prime}=\left(\begin{array}{ccc}
c & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & d
\end{array}\right)
$$

where a, b, c, d are constants. If the magnitude of the maximum shearing stress at this point is 5.5 MPa ,
a) Determine the principal stresses at this point
b) Also find a and b (you need not solve for them, just give the equation(s) that yields their solution)
1)

$$
\begin{aligned}
& u_{1}=a x_{1}+b x_{2}+c x_{1} x_{2}+d \\
& u_{2}=f x_{1}+g x_{2}+h x_{1} x_{2}+i \\
& u_{1}(0,0)=0, u_{2}(0,0)=0 \Rightarrow d=i=0 . \\
& u_{1}(1000,0)=25=1000 a \Rightarrow a=0.025 \\
& u_{2}(1000,0)=12.5=1000 f \Rightarrow f=0.0125 \\
& u_{1}(0,1000)=0=1000 f \Rightarrow b=0 \\
& u_{2}(0,1000)=12.5=1000 g \Rightarrow g=0.0125 \\
& u_{1}(1000,1000)=-12.5=1000 a+10^{6} c \Rightarrow c=-3.75 E-5 \\
& u_{2}=(1000,1000)=12-5=1000 f+1000 g+10^{6} h \Rightarrow h=-1.25 E-5 .
\end{aligned}
$$

$$
\begin{aligned}
& \left(\varepsilon_{12}\right)_{\text {max }}=\frac{|12.5-0|}{2}=6.25 \text { in dirction } e_{1} \\
& \varepsilon_{11}=a+c x_{2}=-0.0125 \\
& \varepsilon_{22}=g+h x_{1}=0 \\
& \varepsilon_{12}=\frac{1}{2}\left[\left(b+c x_{1}\right)+\left(f+4 x_{2}\right)\right]=-0.01875 \\
& \varepsilon(\varepsilon+0.0125)-0.01875^{2}=0 \\
& \varepsilon(1)=-0.02601, \quad \varepsilon(2)=0.01351 \\
& \varepsilon(1)=-0.02601=(-1250+2601) n_{1}-1875 n_{2}=0 \\
& \Rightarrow n(1)=0.8113 e_{1}+0.5846 e^{2}
\end{aligned}
$$

$$
\begin{gathered}
\varepsilon(2)=0.01351:(-1250-1351) n_{1}-1875 n_{2}=0 \\
\Rightarrow n(2)=-0.5848 e_{1}+0.8112 e_{2} \\
\left(\varepsilon_{12}\right)_{\max }=\frac{(0.01351+0.02601)}{2}=0.01976
\end{gathered}
$$

lines (1) \& (2) corrspand to max shear stran.
P (2) $\quad I_{1}=c+d+2=5 \rightarrow c+d=3$

$$
\begin{align*}
& I_{3}=-5 b^{2}-a(a b)-a(a b)=-5 b^{2}-2 a^{2} b=2 c d \rightarrow \text { (2) } \tag{1}\\
& I_{2}=2 c+2 d+c d=-a^{2}-a^{2}-b^{2} \rightarrow \text { (3) } \tag{3}
\end{align*}
$$

(1), (3) $\rightarrow c d<0$, $\operatorname{san} c>0, d<0$
(1) , (4) $\rightarrow c>3 \Rightarrow S_{\text {max }}=\frac{c-d}{2}=5.5$
(1), ($) \rightarrow c=7, d=-4$
(3) $\rightarrow-2 a^{2}=-22+b^{2} \quad a= \pm i \sqrt{\frac{27}{2}}$,
(2), (5) $\rightarrow b^{3}-5 b^{2}-22 b+56=0 \rightarrow b=7,-4,2, \pm 3$

So a, b not unique.

