- Show all working.
- Attempt all parts of a question in a contiguous manner, i.e., dont scatter parts of the same question all over the answerbook.
- Only one attempt per question will be graded. So cancel out any attempt you do not want graded. The first not-cancelled attempt will be graded by default.
- Open notes (in your handwriting only, no photocopies). No solved examples allowed.

P1. A large plate has a small circular hole of radius $a$. The plate is loaded by uniform tension $q$ applied parallel to the $x$ - axis and by uniform pressure $p$ applied at the hole, as shown. Determine:
(a) The stresses in the plate
(b) The least value of $p$ for which $\sigma_{\theta}$ is tensile everywhere along the hole.

P2. The long gravity wall shown has a density $\rho$ and is subject to uniform shear $q$ along the right face. It is restrained at its two end faces (i.e., where $z$ is a constant). Assuming $\sigma_{x y}=f[x]$, determine the stresses in the wall.


Fig. P1


Fig. P2
P. 1
(a)

(I)
plate whole under thick walled cyl.
with $p_{i}=p, r_{0}=\infty$, $p_{0}=0$

(II) $\infty$ radius
(II) $\rightarrow$ put $p_{0}=0, r_{0}=\infty, p_{i}=p$ in formicas ae,

$$
\text { , } \sigma_{r \theta}=0
$$

$(I) \rightarrow$ directly from formulae (class notes...)

$$
\text { (I) }+ \text { (II) } \rightarrow \begin{aligned}
& \sigma_{r}=\frac{q}{2}\left(1-\frac{a^{2}}{r^{2}}\right)-p \frac{a^{2}}{r^{2}}+\frac{q}{2} \cos 2 \theta\left(1-\frac{a^{2}}{r^{2}}\right)\left(1-\frac{3 a^{2}}{r^{2}}\right) \\
& \sigma_{\theta}=\frac{q}{2}\left(1+\frac{a^{2}}{r^{2}}\right)+p \frac{a^{2}}{r^{2}}-\frac{q}{2} \cos 2 \theta\left(1+\frac{a^{4}}{r^{4}}\right) \\
& \sigma_{r \theta}=-\frac{q}{2} \sin 2 \theta\left(1-\frac{a^{2}}{r^{2}}\right)\left(1+\frac{3 a^{2}}{r^{2}}\right)
\end{aligned}
$$

Alternative method: (but longer).

(I)

Tinckwalled cyl,

$$
r_{0}=\infty, p_{0}=-\frac{q}{2}
$$

$$
p_{i}=p .
$$


loading $\left\{\begin{array}{l}\left.\sigma_{r}\right|_{r=\infty}=\frac{q}{2} \cos 2 \theta \\ \left.\sigma_{r \theta}\right|_{r=\infty}=-\frac{q}{2} \sin 2 \theta\end{array}\right.$

So you can add stree functions for these two basic problems as done in lass, ie,

$$
\begin{equation*}
\phi=(\underbrace{A \ln r}+B r^{2})+(\underbrace{C r^{2}+\frac{D}{r^{2}}+E}) \cos 2 \theta \tag{I}
\end{equation*}
$$

$$
\begin{align*}
& \sigma_{\theta}=\phi_{, \theta \theta}=-\frac{A}{r^{2}}+2 B+2 C \cos 2 \theta+\frac{6 D}{r^{4}} \cos 2 \theta  \tag{II}\\
& \sigma_{r}=\frac{1}{r} \phi_{1 r}+\frac{1}{r^{2}} \phi_{1 \theta \theta}=\frac{A}{r^{2}}+2 B+2 C \cos 2 \theta-\frac{2 D}{r^{4}} \cos 2 \theta-\frac{4}{r^{2}}\left(C r^{2}+\frac{D}{r^{2}}+E\right) \cos 2 \theta \\
& \sigma_{r \theta}=-\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial \phi}{\partial \theta}\right)=2 \sin 2 \theta\left(C-\frac{3 D}{r^{4}}-\frac{E}{r^{2}}\right)
\end{align*}
$$

$B C^{\prime} s \quad r=a: \sigma_{r}=-p \Rightarrow \frac{A}{a^{2}}+2 B=-p$

$$
-2 c-\frac{6 D}{a^{4}}-\frac{4 E}{a^{2}}=0
$$

$$
\begin{equation*}
\sigma_{r} \theta=0 \Rightarrow C-\frac{3 D}{a^{4}}-\frac{E}{a^{2}}=0 \tag{iv}
\end{equation*}
$$

$r=\infty: \sigma_{r}=\frac{q}{2}(\cos 2 \theta+1) \Rightarrow-2 C=q / 2,2 B=q / 2$

$$
\sigma_{r \theta}=-\frac{q}{2} \sin 2 \theta \Rightarrow 2 c=-q / 2 \text {-repeated. }
$$

(also if you do $\sigma_{\theta \theta}=\frac{q}{2}(1-\cos 2 \theta)$ you get repeat of (iv)).

$$
\begin{aligned}
& \text { (i) }- \text { (iv) } \rightarrow . A=\left(-p-\frac{q}{2}\right) a^{2}, B=\frac{q}{4}, C=-\frac{q}{4}, D=-\frac{q}{4} a^{4}, E=\frac{q}{2} a^{2} \\
& \Rightarrow Q=\left(-p-\frac{q}{2}\right) a^{2} \ln r+\frac{q}{4} r^{2}+\left(-\frac{q}{4} r^{2}-\frac{q}{4} \frac{a^{4}}{r^{2}}+\frac{q}{2} a^{2}\right) \cos 2 \theta
\end{aligned}
$$

use this \& ta get $\sigma_{r}, \sigma_{\theta}, \sigma_{r \theta}$ as in $\circledast$.
(b) $\left.\sigma_{\theta}\right|_{r=a}=q+p-2 q \cos 2 \theta$
least value of $p=q$ which make $\left.\sigma_{\theta}\right|_{r=a} \geqslant 0$ (i.e, er for $\theta=0, \pi$ ).
$\sigma_{x y}=f_{1}(x)$ (ie replace given $f(x)$ by $\left.f(x)\right)$.

$$
\sigma_{x y}=-\left(\frac{k x^{3}}{6}+3 A x^{2}+2 B x+C\right)
$$

$$
\sigma_{y y}=y\left(\frac{k x^{2}}{2}+6 A x+2 B\right)-\rho g y
$$

BC's: $y=0: \quad \sigma_{y y}=0 \rightarrow i . s$.

$$
\begin{align*}
& \sigma_{x y}=0 \rightarrow k=A=B=C=0  \tag{1}\\
& \sigma_{x x}=0 \rightarrow k=E=(6 F-\rho g)=G=0  \tag{2}\\
& \sigma_{x y}=q \rightarrow-\left(\frac{k h^{3}}{6}+3 A h^{2}+2 B h+C\right)=q  \tag{3}\\
& \sigma_{x x}=0 \rightarrow k=E=(6 F-\rho g)=G=0 \\
& \sigma_{x y}=0 \rightarrow C=0 \tag{5}
\end{align*}
$$

From physical considerations (ie cmplimentanity of $\sigma_{x y}$ at $(x, y)=(0, h)$ ) you see that ' $\left.\sigma_{x y}\right|_{y=0}=0$ is not satisfiable. Moreover, satisfying this would result in all coff being zero, ie $\phi=0$. \& hence $\left.\sigma_{x y}\right|_{x=h}=q$ not being satisfiable. Hence we relax (1), and instead satisfy

$$
\begin{align*}
\int_{0}^{h} \sigma_{x y} d x=0 & \Rightarrow-(f(h)-f(0))=0  \tag{6}\\
& \Rightarrow \frac{k h^{4}}{2 h}+A h^{3}+B h^{2}+C h=0
\end{align*}
$$

(2) -(6) $\rightarrow A=-\frac{q}{h^{2}}, B=\frac{q}{h}, k=C=E=(6 F-\rho g)=G=0$

$$
\begin{aligned}
& \Rightarrow-\phi_{x y}=f_{1}(x) \rightarrow \phi_{1 y}=f(x)+g_{1}(y) \longrightarrow \phi=y f(x)+g(y)+\phi(x) \\
& \nabla^{4} \phi=0 \Rightarrow y f^{\text {IV }}+g^{\text {IV }}=0 \\
& \Rightarrow f^{\text {IV }}=k, \quad g^{\text {IV }}=-k y \\
& \Rightarrow f=R \frac{x^{4}}{24}+A x^{3}+B x^{2}+C x+D
\end{aligned}
$$

$$
\begin{aligned}
& \text { wo loss of generality } \\
& \Rightarrow \sigma_{x x}=-\frac{R y^{3}}{6}+12 E y^{2}+6 F y+2 G-\rho g y
\end{aligned}
$$

p. 2

$$
\Rightarrow\left\{\begin{array}{l}
\sigma_{x x}=0 \\
\sigma_{y y}=y\left(-\frac{6 q}{h^{2}} x+\frac{2 q}{h}\right)-\rho g y \\
\sigma_{x y}=-\left(-\frac{3 q}{h^{2}} x^{2}+\frac{2 q}{h}\right)
\end{array}\right.
$$

