CE623 - HW2 - Solutions

D At boundary, $\tau_{xx} = \frac{x^2 t}{a^4}$, $\tau_{yy} = \frac{y^2 t}{a^4}$, $\tau_{zz} = \frac{z^3}{a^4}$

T2, P4, long way

X=rsocp, y=rsosp, z=rco

$$\begin{cases} e_{\phi} \\ e_{\phi} \end{cases} = \begin{cases} coc\phi & cos\phi - so \\ -s\phi & c\phi & o \\ soc\phi & sos\phi & co \end{cases} \begin{cases} \dot{L} \\ \dot{L} \\ \dot{R} \end{cases}$$

$$\left(\underline{\Gamma} \right)_{r,o,\phi} = \underline{\Box} \left(\underline{\Gamma} \right)_{x,y,z} \underline{a}^{T}$$

$$\begin{bmatrix}
\tau_{\theta\theta} & \tau_{\theta\phi} & \tau_{r\theta} \\
\tau_{\theta\phi} & \tau_{\phi\phi} & \tau_{r\theta}
\end{bmatrix} = \begin{bmatrix}
c\theta & c\theta & c\theta & -s\theta \\
-s\phi & c\phi & c\theta
\end{bmatrix} \begin{bmatrix}
x^{2}t \\
xyz \\
s\theta & c\phi
\end{bmatrix}$$

$$\begin{bmatrix}
x^{2}t \\
xyz \\
s\theta & c\phi
\end{bmatrix} \begin{bmatrix}
x^{2}t \\
xyz \\
xyz
\end{bmatrix}$$

$$\begin{bmatrix}
x^{2}t \\
xyz \\
xyz
\end{bmatrix}$$

$$\begin{bmatrix}
x^{2}t \\
xyz
\end{bmatrix}$$

$$\begin{bmatrix} x^{2}t & xyt & xt^{2} \\ xyt & y^{2}t & yt^{2} \end{bmatrix} \begin{bmatrix} c\theta c\phi & -s\phi & s\theta c\phi \\ c\theta s\phi & c\phi & s\theta s\phi \\ xt^{2} & yt^{2} & t^{2} \end{bmatrix} \begin{bmatrix} c\theta c\phi & -s\phi & s\theta c\phi \\ c\theta s\phi & c\phi & s\theta s\phi \\ -s\theta & 0 & c\theta \end{bmatrix}$$

Loading on surface: only components involving repartitions in b.c. Hence we need only orr, Tra, Tra, Tra.

$$\nabla_{+\phi} = \frac{1}{a} \left[-s\phi \left(\Box \right) + c\phi \left(\Box \right) \right]$$

$$\nabla_{r} = \frac{1}{\alpha} \left[\cos \phi(\mathbf{E}) + \cos \phi(\mathbf{E}) - \sin \phi(\mathbf{E}) \right]$$

Stes components on surface, Lence they represent the Loading

 $\Box = s^{3}\theta c\theta s\phi c^{2}\phi + s^{3}\theta c\theta s^{3}\phi + s\theta c^{3}\theta s\phi = s\theta c\theta s\phi$

= s'ococo + s'ocoso + c'o = c'o

Tr= (520 c0 c24 + 520 c0 524 + c30) + = c0/a

every latitudinal band cancels out => Fx=Fy=0. In Fig (add asod d) co = 2 Tra [SOc20 d0 = -2 Tra c30] Transfer (add asod dA) Fz = 27a Extra - I Fz = \(\left(\tau_r dA c\theta - \tau_r a dA s\theta \right) = \int \(\left(\tau_r c\theta - \tau_r a s\theta \right) \left(a^2 s\theta d\theta d\theta \right) \) In general, Fx = S (Trr dASOCO + TrodA cOCO - Tro dASO) = I ((Trr soco + Tro coco - Trp sp) (a sododo) Fy = [(TrrdAsOSP+TrodAcOSP+TrpdAcD) =] [(Trr 50 sq + Tro cosp + Tro co) (a'so dod) tive & much shorter method. Find stres retor on surface, ie, [== In] Surface = f(x, y, z) = x2+ y2+21-a2=0 12 = Vf = 2xi+2yj+2zk = xi+yj+zk 2/x2+4+22 $\Rightarrow I = \frac{1}{a^{1}} \begin{bmatrix} x^{2}z & xyz & xz^{2} \\ xyz & y^{2}z & yz^{2} \end{bmatrix} = \frac{1}{a^{5}} \left[(x^{3}z + xy^{2}z + xz^{3}) \frac{1}{2} + (x^{2}yz + y^{2}z + y^{2}z^{3}) \frac{1}{2} + (x^{2}yz + y^{2}z + y^{2}z + y^{2}z^{3}) \frac{1}{2} + (x^{2}yz + y^{2}z + y^{2}z + y^{2}z^{3}) \frac{1}{2} + (x^{2}yz + y^{2}z + y^{2}z + y^{2}z + y^{2}z^{3}) \frac{1}{2} + (x^{2}yz + y^{2}z + y^{2}z + y^{2}z + y^{2}z^{3}) \frac{1}{2} + (x^{2}yz + y^{2}z + y^{2}z + y^{2}z + y^{2}z^{3}) \frac{1}{2} + (x^{2}yz + y^{2}z + y^{2}z + y^{2}z + y^{2}z + y^{2}z^{3}) \frac{1}{2} + (x^{2}yz + y^{2}z + y^{2}$ + (x222+ y222+29)E] $\Rightarrow \sqrt{1} = \frac{1}{a^{5}} \left(x^{3} + xy^{2} + xz^{2} \right) = \frac{xz}{a^{5}} \left(x^{2} + y^{2} + z^{2} \right) = \frac{xz}{a^{5}} \left(x^{2} + y^{2} + z^{2} \right) = \frac{x}{a^{5}} \left($ Ty = 1 = (x2y2+y3 2+y23)= y2(x747+2)) ox Plan of a fristrum as 12 - odd ing. as

So we see that in every strip of annular area examinado, the entributions from opposite sides cancel when summing, ie, Fx = | Tx al A = 0 , Fy = | Ty al A = 0 Fz = \ \(\frac{1}{2} dA = \int \left[\left(\frac{2}{2} + \frac{1}{2} \frac^ = [] = 27a (20 (Add asd dp) = 27a (2000 = 27a) larger metted in volving It can be intuitively shown that u= ax + by + Cxy } -> Result. from the fact that straight edges remain straight. However, below it a rigorous proof fielding this r'= r+ y = x i + y j + ux i + y j dr = (dx + dux) = + (dy+duy)j Assume $u_x = ax + by + Cxy + f(x,y)$? $u_y = dx + ey + gxy + g(x,y) \rightarrow 0$ Corresponding to an initially vertical edge,

we have, $dr|_{x=k_1} = (b+cR_1+\frac{dP}{dy}|_{x=k_1})dyi+(1+e+gR_1+\frac{dq}{dy}|_{x=k_1})dyi$ Now Pa and RS are same rector, it dr = dy; , but corresponding to points at different locations y, along the x=k, edge. These deform to p'a'= (dr)pa and

P's' = (dr) Rs, which need not be same vector, since

Stretching can take place. However the orientations (d) of (dr') pe and (dr') Rs deformed edge remains must be same if straight line. This neary, 1+e+gk, + 2/2/x=k, = function of x only. b+ck, + dp/x=k, > g and p are linear in y. Considering mitially honzontal edge, we have (using similar procedure), dr/y=k2 = (+a+ck2+ dp/y=k2) dxi+(d+gk2+ dq/y=k2) dxj For line y=kz to remain straight after deformation, we require, (1+ a+ ck2+ dp/y=k2) = function of y only (d+gkz+dq/y-k) > gand pare linear in x > 9, p have bi-linear from (xy) which is already included in 4x, 4y. Hence P&Y), q(x,y) are discarded form $O \rightarrow QFD \rightarrow contdon$ [72, P6] P.3. You must use finite (large) strain theory, with given

So, $V_{x \geq} = 2V_{x \geq} = (1 + E_x)(1 + E_z) \cos \theta$ Where $\theta = \text{angle between } A^*C^* + A^*B^*$ (ie between two line clements originally lar) and E_x , E_z are engagext. strains of elements originally along $X \times Z$ directions (ie along AB + AC directions). $A \times Z = (1 + 0)(1 + EACE 1/\cos x - 177/AC) \cos \theta = \cos x = \cos x = \cos x$

Ux[1,0] = -0.002 = Ux[1,1] = -0.005 = a+b+c Ux = -0-002x -0-003y ux[0,1] =-0-003= 6 ⇒ d=0-001, e=0-0025, g=0 uy[1,0] = 0.001=d uy[1,1] = d+e+9=0-0035 Uy=0-001x + 0-0025y uy[0,1] = e = 0-0025 Note: The above expressions give ux, uy in metres if x,y are in metres (b) := (a,b, s,d) << 1, you can use infraitesmal displ. gradient theory (ie Linea theory) However we'll use nonlinear theory to startwith. $E_{xx} = u_{x,x} + \pm u_{x,x}^2 + \pm u_{x,x}^2 + \pm u_{y,x}^2 = -0.002 + 0.002 + 0.001^2$ $Eyy = u_{y,y} + \frac{1}{2}u_{x,y}^2 + \frac{1}{2}u_{y,y}^2 = 0.0025 + 8.003^2 + 0.0025^2 = 0.002507625$ Exy = = = (ux,y + uy,x + ux,xux,y + uy,xuy,y) $= \frac{1}{2} \left(-0.003 + 0.001 + \left[-0.002 \right] \left(-0.003 \right) + \left[0.001 \right] \left[0.0025 \right] \right)$ (E)= (-0.0019975 -0.00099575) [(-0.002 -0.001) = (E), -0.00099575 0-002507625) [(-0.001 0-0025) = (E), SO FROM HERE ON I USE LINEAR THEORY (E) FOR CONVENIENCE = - 0-00099575 (c) $(e)_{x,y} = a(e)_{x,y} a^{T} = (coso)(exx emy)(coso)(soco)$ = (exx c'0 + eyys'0 + 2 exy coso) (coso[-exx+eyy]+exy[c'0-s'0]) =30 (e) = (-0.001741 0.001449 (xy (0-001449 0.002241) (exx s'0+eyyc'0-2exycoso) (d) $|\underline{e} - \lambda \underline{I}| = 0$, scale up \underline{e} ky 10^3 $\begin{pmatrix} 2-\lambda & -1 \\ -1 & 2.5-\lambda \end{pmatrix} = 0$, so actual p-strains will be $10^{-3}\lambda$. 12-4.52 +4=0 => 1= 4-5± 14-5=16. $\lambda(1) = 3.2808, 1.2192 = \lambda(2)$ P-strains are e(1) = 3-2808 × 10-3, e(2)=1-2192 × 10-3 $(2-\lambda(1))n_1(1) - n_2(1) = 0 \rightarrow (1)$ $n_{1}(t) + n_{2}(t) = (t)$ $\Rightarrow N_1^2(1)[1+(2-\lambda(1))^2]=1$ \Rightarrow $n_1(1) = 0.6154$, $n_2(1) = -0.7882$ N(1) = (0-6154, -0-7882) La p-axis corresponding to e(1) $(2-\lambda(2))$ $n_{1}(2) - n_{2}(2) = 0$ $n_1^2(2) + n_2^2(2) = 1$ $\Rightarrow n^{2}(2) \left[1+(2-\lambda(2))^{2}\right]=1$ >> n1(2)=0-7882, n2(2)=0-6154 n(2)=(0-7882, 0-6154)

Observe that n(1). n(2) = 0; le p-arres are othogonal.

CE 623 HU12

is strains are hinear in a, az, az and compat egns involve double differentiation of strain components w.r.t. ai's, compat egns are satisfied identically. Hence it is a possible strain distribution

 $L_{11} = Za_{1} = \frac{\partial u_{1}}{\partial a_{1}} \Rightarrow u_{1} = a_{1}^{2} + f(a_{2}, a_{3})$

 $d_{22} = 2a_1 = \frac{\partial u_2}{\partial a_2} \Rightarrow u_2 = 2a_1a_2 + g[a_1, a_3]$

 $l_{12} = a_1 + 2a_2 = \frac{1}{2} \left[\frac{\partial u_1}{\partial a_2} + \frac{\partial u_2}{\partial a_1} \right] = \frac{1}{2} \left[\frac{\partial f}{\partial a_2} + 2a_2 + \frac{\partial g}{\partial a_1} \right]$

 $\Rightarrow \frac{\partial f[a_2, a_3]}{\partial a_2} + \frac{\partial g[a_1, a_3]}{\partial a_1} = 2a_1 + 2a_2 \longrightarrow 0$

 $L_{33} = 2a_3 = \frac{\partial u_3}{\partial a_3} \Rightarrow u_3 = a_3^2 + h[a_1, a_2]$

 $L_{13} = \frac{1}{2} \left(\frac{\partial u_1}{\partial a_3} + \frac{\partial u_3}{\partial a_4} \right) = \frac{1}{2} \left(\frac{\partial f}{\partial a_3} + \frac{\partial h}{\partial a_4} \right) = 0 \Rightarrow \frac{\partial f(a_2, a_3)}{\partial a_3} + \frac{\partial h(a_1, a_2)}{\partial a_4} = 0 \Rightarrow \widehat{a}$

 $L_{23} = \frac{1}{2} \left(\frac{\partial u_2}{\partial a_3} + \frac{\partial u_3}{\partial a_2} \right) = \frac{1}{2} \left(\frac{\partial g}{\partial a_3} + \frac{\partial h}{\partial a_2} \right) = 0 \implies \frac{\partial g[a_1, a_3]}{\partial a_3} + \frac{\partial h[a_1, a_2]}{\partial a_2} = 0 \longrightarrow 3$

Now $\frac{\partial O}{\partial a_3} = \frac{\partial^2 f}{\partial a_2 \partial a_3} + \frac{\partial^2 g}{\partial a_1 \partial a_3} = 0$

From $\frac{\partial \Theta}{\partial a_2} + \frac{\partial \Theta}{\partial a_1} = 0$ and the above we get $\frac{\partial^2 h}{\partial a_1 \partial a_2} = 0 \Rightarrow h = A + p(a) + q(a_1)$

From 389, $\frac{\partial g[a_1, a_2]}{\partial a_2} + 9'[a_2] = 0 \Rightarrow g = 9[a_1, a_2]$ that $9[a_2] = Ca_2$ constants on the delay

Thus, h= A+Ba,+Ca2 - 5

. 'A' already present

From @ &O, f = - Bas + r[a2] - @ 3- from O, r'+5' = 2a, +2a2

From (386), 9= - Ca3 + s[a,] - 7) => r = a2+D+Kas=a1+E-Ka,

So f = - Baz + az + D+Kaz, g = - Caz + a, + E - Ka,

Thus $u_1 = a_1^2 + a_2^2 - Ba_3 + D + Ka_2$ If origin has zero displ $(u_1 = u_2 = u_3 = 0)$

Uz = 2a, az + a; - Caz + E-Ka, (a) origin) => A=D=E=0

U3 = a3 + Ba, + Caz + A _ further, if an (artitrons) infiniterinal line element @ voijin has zero rotation,

> Wi and Lend Wij varish @ origin.

$$\widehat{W}_{13} = \frac{1}{2} (u_{1/3} - u_{3/1}) = -B = 0$$

$$\widehat{W}_{13} = \frac{1}{2} (u_{2/3} - u_{3/2}) = -C = 0$$

$$\widehat{W}_{12} = \frac{1}{2} (u_{1/2} - u_{2/1}) = 0$$

$$\widehat{W}_{12} = \frac{1}{2} (u_{1/2} - u_{2/1}) = 0$$

$$\widehat{W}_{13} = \frac{1}{2} (u_{2/3} - u_{3/2}) = -C = 0$$

$$\widehat{W}_{13} = \frac{1}{2} (u_{2/3} - u_{3/2}) = 0$$

Solu = 91+92 1 uz = 29,92 + 9,2

Working for change of angle between two arbitrary line elements. Result was given in class without details, method was outlined in class.

Problem (Axiv)
$$dx_{i}(z) = \sqrt{dx_{i}(t)dx_{i}(t)} \sqrt{dx_{j}(z)dx_{j}(z)} \cos \theta$$

LHS = $\left(\frac{\partial x_{i}}{\partial a_{j}}\right) \left(\frac{\partial x_{i}}{\partial a_{k}}\right) \left(\frac{\partial x_{i}}{\partial a$

		1
	For AB:	
	$da_1 = dL$; $da_2 = da_3 = 0$.	1
-	dy = da = dL	
	dy = 0; $dy = 0$.	(""
	$(dy)^2 - (da)^2 = da, da/ - da, da/ = 0.$	
	$(dy)^{2} - (dq)^{2} = 0.$	
	For AD: dq=0; da,=dL; da,=0.	
	(dy) - (da) = dy, dy, - da, da,	
	$= K^2 (dL)^2 - (dF)$	
	$\frac{(dy)^{2} - (da)^{2} = (x^{2} + x^{2} + x^{$	
	For AC :- da = dL; da, = dL; da, = 0.	(c-
	$(dy)^{2} - (da)^{2} = dy, dy, - da, da,$	
-	$= (dl + \kappa dl)^2 - (dl)^2$	
-	$= (dL)^{2} (1+k^{2}+2k-1)$	
	= (1(2 x 2k) (d1)2	
	For DB: da, = dl; da, = -d4; da, =0.	14
-	= (dy) = (da) = dy, dy, /- da, da,	
+	= (dL-xdL) - QL) -	
I	$= (K^2 - 2K)(dL)^2$	

(8)) & = U1, = \(\alpha\) (x2+x3) = a ; \(\xi\) = 2 = a ; \(\xi\) T2, P8 $\mathcal{E}_{12} = \mathcal{E}_{2,1} = \frac{1}{2} \frac{\alpha}{4} \left(\chi_{1}(\chi_{2} + \chi_{3}) + \chi_{2}(\chi_{1} + \chi_{3}) \right) = \alpha$ €13=€31 = €23 = €32 = a

Principal strains.

 $\Rightarrow (1-\lambda)[(1-\lambda)^{2}-1]-1[(1-\lambda)-1]+1[1-(1-\lambda)]=0$ $\Rightarrow (1-\lambda)^{3} - (1-\lambda) - (1-\lambda) + 1 + 1 - (1-\lambda) = 0$

 $\Rightarrow \frac{1}{3} + 3 + 3 + 3 + 3 + 2 = 0 \Rightarrow 1^{2} (3-1) = 0 \Rightarrow 1 = 0, 0, 3$ => E(1) = ID, E(2) = 0, E(3) = 0

When referred to the principal system, E' = E(1), E' = E(2), E' 33 = E(3), all other con

Then \(\xi = \in in_i n_j = \xi'_{ij} n'_i n'_j = \xi(1) n'_1^2 + \xi \alpha_1 n'_2^2 + \xi(3) n'_3^2

Thus (E)max = E(1) 12 = 3a -> occurs along p-direction corresponding to E(1) (D) min = E(2) 12 or E(3) 12 = 0 - 11 11

So there is no need to find q-directions. Anyway we will do it.

For E(1): $-2n_1(1) + n_2(1) + n_3(1) = 0$ $\Rightarrow -3n_2(1) + 3n_3(1) = 0 \Rightarrow n_2(1) = n_3(1)$ n,(1) -2 n2(1) + n3(1)=0 J

 $h_1^2(t) + h_2^2(t) + h_3^2(t) = 1 \Rightarrow h_1(t) \Rightarrow \left(\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}\right)$

For E(x): $n_1(z) + n_2(z) + n_3(z) = 1$ } so $n_1(z)$ has some arbitrariness, as expected. $n_1^2(z) + n_2^2(z) + n_3^2(z) = 1$ Choose as away direction orthogonal to $n_1(z)$.

Thus $n_1(z) \Rightarrow (0, \pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}})$

For E(3) = Similarly choose nicos to be orthogonal to nicos & xicos So n; (3) = (-2 + 1/6)

How $\mathcal{E}_{\text{max}} = \epsilon_{cj} \, n_{c}(1) \, n_{j}(0) = \frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} \right) *3 = 3$ Emi = Eij ni(2)nj(2) = \frac{1}{12} (\frac{1}{12} - \frac{1}{12}) - \frac{1}{12} (\frac{1}{12} - \frac{1}{12}) = 0 tr & nuin = fij ni 13) nj (3) = (= + + + + + + =)2 = 0

e 40 is multi-valued (ie, for the same physical point we can have 0=0*, 0* 101), the disployed is not compatible for abitrary constants.

In order to ensure finite displacements, A=0 if the origin is perfor the continuum

In order " " snigle valued displis, B=0

(a)
$$\vec{w}_i = \frac{1}{2} \in ijk \vec{w}_{kj} = \frac{1}{22} ijk (u_{k,j} - u_{j,k}) = \frac{1}{4} (\in ijk u_{k,j} - \in ijk u_{j,k}) = \frac{1}{4} (\in ijk u_{k,j} + \in ikj u_{j,k})$$

$$= \frac{1}{4} 2 \in ijk u_{k,j} = \frac{1}{2} \in ijk u_{k,j}$$
(where ',' is $\frac{1}{2}$

(t)
$$e_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i})$$

 $e_{ii} = 0$, $e_{1i} = 0$, $e_{33} = 0$, $e_{12} = CX_3$, $e_{23} = CX_1$, $e_{13} = CX_2$
 $w_{ij} = \frac{1}{2}(u_{i,j} - u_{j,i}) \rightarrow \text{get } w_{ij} = 0$
So this displacement field represents a case of pure straining.

(c)
$$du_i = \widetilde{w}_{ij} da_j$$
, $\widetilde{w}_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial a_j} - \frac{\partial u_j}{\partial a_i} \right)$

$$\widetilde{w}_{ij} \Rightarrow \begin{pmatrix} 0 & \frac{1}{2} (a_1 - a_2) & -ca_3 \\ \frac{1}{2} (a_2 - a_1) & 0 & -ca_3 \end{pmatrix}$$

$$\begin{array}{c} \text{The +wo pts}_{\lambda} \text{ lie on the line (in } \chi_1 \chi_2 \text{ plane)} \\ \text{makinj equal acute } L's \text{ with positive } \chi_1 L'x_2 - ca_3 \\ \text{makinj equal acute } L's \text{ with positive } \chi_1 L'x_2 - ca_3 \\ \text{makinj equal acute } L's \text{ with positive } \chi_1 L'x_2 - ca_3 \\ \text{makinj equal acute } L's \text{ with positive } \chi_1 L'x_2 - ca_3 \\ \text{makinj equal acute } L's \text{ with positive } \chi_1 L'x_2 - ca_3 \\ \text{makinj equal acute } L's \text{ with positive } \chi_1 L'x_2 - ca_3 \\ \text{makinj equal acute } L's \text{ with positive } \chi_1 L'x_2 - ca_3 \\ \text{makinj equal acute } L's \text{ with positive } \chi_1 L'x_2 - ca_3 \\ \text{makinj equal acute } L's \text{ with positive } \chi_1 L'x_2 - ca_3 \\ \text{makinj equal acute } L's \text{ with positive } \chi_1 L'x_2 - ca_3 \\ \text{makinj equal acute } L's \text{ with positive } \chi_1 L'x_2 - ca_3 \\ \text{makinj equal acute } L's \text{ with positive } \chi_1 L'x_2 - ca_3 \\ \text{makinj equal acute } L's \text{ with positive } \chi_1 L'x_2 - ca_3 \\ \text{makinj equal acute } L's \text{ with positive } \chi_1 L'x_2 - ca_3 \\ \text{makinj equal acute } L's \text{ with positive } \chi_1 L'x_2 - ca_3 \\ \text{makinj equal acute } L's \text{ with positive } \chi_1 L'x_2 - ca_3 \\ \text{makinj equal acute } L's \text{ with positive } \chi_1 L'x_2 - ca_3 \\ \text{makinj equal acute } L's \text{ with positive } L's$$

so du; = 0 ◀

T3, P3

For infinitesimal strains, $\tilde{D} = \frac{\Delta V}{V} = Lii = U_{1,1} + U_{2,2} + U_{3,3}$ For incompressibility, $\Delta V = 0 \Rightarrow \tilde{D} = 0$ $\therefore Lii = U_{1,1} + U_{2,2} + U_{3,3} = (1 - \chi_2^2)(b + 2c\chi_1) + U_{2,2} + 0 = 0$ $\Rightarrow U_2 = (\frac{\chi_2^3}{3} - \chi_2)(b + 2c\chi_1) + f(\chi_1\chi_3)$ $\Rightarrow U_2 = \chi_2(\frac{\chi_2^2}{3} - \chi_2)(b + 2c\chi_1) \Rightarrow U_2 = \chi_2(\frac{\chi_2^2}{3} - \chi_2)(b + 2c\chi_1)$

13)
$$\phi = -\frac{A}{6}x_1^3 - \frac{B}{6}x_1^2x_2^3 + \frac{C}{2}x_1^2x_2 - \frac{7}{4}x_1^2 + \frac{B}{30}x_2^5$$

(Shanes & agra, pp 64, Arrib 1.26)

$$\Gamma_{11} = P_{122} = -Ax_{2} - Bx_{1}^{2}x_{1} + \frac{2B}{3}x_{2}^{2}$$

$$\Gamma_{22} = P_{11} = -\frac{B}{3}x_{1}^{3} + Cx_{2} - \frac{9}{2}$$

$$\Gamma_{12} = -(-Bx_{1}x_{2}^{2} + Cx_{1})$$

(a)
$$\nabla^{4}\phi=0 \Rightarrow \text{Infane competibility equi setisfied. (ie., the i-j-1, |i-j-2 B-M, fr)}$$
 $i=1, j=2$ BM equi not set sped

 $i=3, j=3$ " satisfied (:-f;=0)

(b)
$$\frac{\mathcal{B} \cdot \mathcal{C}'s}{(\nabla_{12} = \nabla_{21})_{X_2 = \pm h/L}} = 0 \Rightarrow -\chi_1 \left(-\frac{\mathcal{B}h^2}{4} + c\right) = 0 \Rightarrow 0$$

$$(\nabla_{21})_{X_2 = \pm h/L} = -9 \Rightarrow -\frac{\mathcal{B}h^3}{24} + \frac{\mathcal{C}h}{2} - \frac{9}{2} = -9 \Rightarrow 0 \quad (\text{Both sputs identical})$$

$$(\nabla_{22})_{X_2 = -h/L} = 0 \Rightarrow -\left(-\frac{\mathcal{B}h^3}{24} + \frac{\mathcal{C}h}{2}\right) - \frac{9}{2} = 0$$

$$(\nabla_{11} \times_2 d \times_2) = 0 \quad (\text{if zero applied moment at left/right faces})$$

$$(\nabla_{11} \times_2 d \times_2) = 0 \quad (\text{if zero applied moment at left/right faces})$$

$$(\nabla_{11} \times_2 d \times_2) = -\frac{\mathcal{A}h^3}{24} - \frac{\mathcal{B}L^2}{24} \frac{h^3}{24} + \frac{2\mathcal{B}h^5}{24} = 0 \Rightarrow 0$$

$$(\nabla_{12} \times_2 d \times_2) = 0 \quad (\text{if zero applied moment at left/right faces})$$

$$(\nabla_{12} \times_2 d \times_2) = 0 \quad (\text{if zero applied moment at left/right faces})$$

$$(\nabla_{11} \times_2 d \times_2) = 0 \quad (\text{if zero applied moment at left/right faces})$$

$$(\nabla_{12} \times_2 d \times_2) = 0 \quad (\text{if zero applied moment at left/right faces})$$

$$(\nabla_{12} \times_2 d \times_2) = 0 \quad (\text{if zero applied moment at left/right faces})$$

$$(\nabla_{12} \times_2 d \times_2) = 0 \quad (\text{if zero applied moment at left/right faces})$$

$$(\nabla_{12} \times_2 d \times_2) = 0 \quad (\text{if zero applied moment at left/right faces})$$

$$(\nabla_{12} \times_2 d \times_2) = 0 \quad (\text{if zero applied moment at left/right faces})$$

$$(\nabla_{12} \times_2 d \times_2) = 0 \quad (\nabla_{12} \times_2 d \times$$

NOTE: $\left(\int_{-h/2}^{h/2} dx_2\right)_{x_1 = \pm \frac{1}{2}} = 0$ (i.e., zero axial force, identically satisfied in her, old pines of x_2) $\left(\int_{-h/2}^{h/2} dx_2\right)_{x_1 = \pm \frac{1}{2}} = \pm \frac{1}{2} \left(i.e., shear force is \pm \frac{1}{2} \text{ at left/hight faces, identically satisfied}\right)$ $\left(\int_{-h/2}^{h/2} dx_2\right)_{x_1 = \pm \frac{1}{2}} = \pm \frac{1}{2} \left(i.e., shear force is \pm \frac{1}{2} \text{ at left/hight faces, identically satisfied}\right)$ $\left(\int_{-h/2}^{h/2} dx_2\right)_{x_1 = \pm \frac{1}{2}} = \pm \frac{1}{2} \left(i.e., shear force is \pm \frac{1}{2} \text{ at left/hight faces, identically satisfied}\right)$

(C) Stress Distribution (subst A, B, C into
$$\Gamma_{11}$$
, Γ_{22} , Γ_{12} about)

$$\nabla_{11} = -\frac{9}{2L} \left[\left(\frac{L}{2} \right)^{2} - \frac{h^{2}}{10} - X_{1}^{2} + \frac{2}{3} X_{2}^{2} \right] X_{2}$$

$$\nabla_{22} = \frac{9}{2L} \left[\frac{X_{2}^{3}}{3} - \left(\frac{h}{2} \right)^{2} X_{2} - \frac{h^{3}}{12} \right]$$

$$\nabla_{12} = -\frac{9}{2L} \left[X_{1} X_{2}^{2} - \frac{h^{2}}{4} X_{1} \right]$$

$$\nabla_{13} = \nabla_{23} = \nabla_{33} = 0 \text{ (plane Stress assumed)}$$

$$\begin{cases} \lambda_{12} = -\frac{4}{2ET} \left[-(1+2y)\frac{x_{2}^{2}}{3} + \left(-y\frac{L^{2}}{4} + \frac{yh^{2}}{10} + \frac{h^{2}}{4} \right) x_{2} + yx_{1}^{2} x_{2} + \frac{h^{3}}{12} \right] \\ \lambda_{12} = -\left(\frac{1+y}{E} \right) \frac{9y}{2I} \left(x_{1}x_{2}^{2} - \frac{h^{2}}{4}x_{1} \right) \end{cases}$$

10

stress distribution not valid on left/right faces: Ti, Tiz non-sen on these faces.

$$2 \cdot l_{12} = \left(u_{1/2} + u_{2/1} \right) \Rightarrow -\frac{9}{2EI} \left[2(1+\nu) \left\{ x_1 x_2^2 - \frac{h^2}{4} x_1^2 \right\} \right] = -\frac{9}{2EI} \left[(2+\nu) x_1 x_2^2 + \left(\frac{l^2}{4} - \frac{h^2}{10} - \nu \frac{h^2}{4} \right) x_1 - \frac{x_1^3}{3} + f' \right]$$

$$\Rightarrow 3' + \left(\frac{l^2}{4} - \frac{h^2}{10} - \frac{\nu h^2}{4} \right) x_1 - \frac{x_1^3}{3} + 2(1+\nu) \frac{h^2}{4} x_1 = -f' = K \left(const \right)$$

Displacement BC's $U_2=0$ at $x_1=\frac{1}{2}$, $x_2=\frac{1}{2}$ $X_2=\frac{1}{2}$ $X_3=\frac{1}{2}$ $X_4=\frac{1}{2}$ $X_5=\frac{1}{2}$ $X_5=\frac{1}{2}$

$$\Rightarrow U_{2}[x_{1},0] = -\frac{9 L^{4}}{24EI} \left[(x_{1})^{4} - \frac{3}{2} (x_{1})^{2} + \frac{5}{16} + (\frac{h}{L})^{2} \left\{ (\frac{12}{5} + \frac{3\nu}{2}) \left(\frac{1}{4} - \left\{ \frac{x_{1}}{L} \right\}^{2} \right) + (\frac{3}{16} - \frac{\nu}{40}) \left(\frac{h}{L} \right)^{2} \right\} \right]$$

$$24u_{2}^{*}[x_{1},0]$$

(e) Slender-beam

put put h = 0 in $u_{1}^{*}(x_{1}, 0)$ and get, $u_{2}^{*}(x_{1}) = -\frac{1}{24} \left(\left(\frac{x_{1}}{L} \right)^{4} - \frac{3}{2} \left(\frac{x_{1}}{L} \right)^{2} + \frac{5}{16} \right]$

T3, P4

Hooks law after investing -> lij = It Tij - ETRE Sij . => Lek = 1-2× TRE

D LRE 1.869 ×10-4 = D

Now D= lin DV but strenstrain distr uniform throughout cube => 5 control throat cube => 5 V = 2.336 × 10-8 m²

T4, P2. Do by using strain compat eqns directly. Here it is done by Beltrami Michell compat egns, which was not done in class

(linear case) $Tij = \frac{E}{1+\nu} \left[eij + \frac{\nu}{1-2\nu} e_{kk} \sigma_{ij} \right] \Rightarrow T_{13} = T_{23} = 0$

B-M compatibility (includes equilibrium egn): i=j=1: $\nabla^2 \sigma_{11} + \frac{1}{1+\nu} \left(\sigma_{11,11} + \sigma_{22,11} + \sigma_{33,11} \right) + \tilde{J}_{1,11} + \tilde{J}_{1,11} + \frac{\nu}{1-\nu} \left(\tilde{f}_{1,11} + \tilde{f}_{2,12} + \tilde{f}_{3,13} \right) = 0$ $i \circ j = 2 : \nabla^2 \overline{\mathcal{I}}_{22} + \frac{1}{1+\nu} \left(\overline{\mathcal{I}}_{11,22} + \overline{\mathcal{I}}_{22,22} + \overline{\mathcal{I}}_{33,22} \right) + \overline{f}_{2,2} + \overline{f}_{3,2} + \frac{\nu}{1-\nu} \left(\overline{f}_{1,1} + \overline{f}_{2,2} + \overline{f}_{3,3} \right) = 0 \rightarrow \underline{\mathbb{C}}$ $i=1, j=2: \nabla^2 \sigma_{12} + \frac{1}{1+\nu} \left(\overline{\Gamma}_{11,12} + \overline{\Gamma}_{22,12} + \overline{\Gamma}_{33,12} \right) + \overline{f}_{1,2} + \overline{f}_{2,1} = 0$ i=j=3: \$\frac{7}{32} + \frac{1}{1+\nu} (\sigma_1\frac{1}{33} + \sigma_2\frac{1}{2},33 + \sigma_3\frac{1}{33},33) + f_3\frac{1}{33} + f_3\frac{1}{33} + \frac{1}{1-\nu} (f_{\nu}, + f_{2,2} + f_3\frac{1}{3}) = 0 > 6 i=1, j=3.7 identically satisfied (0=0) $Horker | c_{11} \rightarrow \sigma_{33} = \frac{E}{1+\nu} \left[e_{33}^{*} + \frac{\nu}{1-2\nu} \left(e_{11} + e_{22} + e_{33}^{*} \right) \right] = \frac{E\nu}{(1+\nu)(1-2\nu)} \left[\frac{1+\nu}{E} \left\{ \sigma_{11} + \sigma_{21} \right\} - \frac{2\nu}{E} \left\{ \sigma_{11} + \sigma_{22} \right\} + \frac{\nu}{33} \right\}$

 $\Rightarrow \sqrt{33} \left(1 + \frac{2\nu^2}{(1+\nu)(1-2\nu)} \right) = \frac{(1-\nu)\nu}{(1+\nu)(1-2\nu)} \left\{ \sqrt{1+\sqrt{2\nu}} \right\}$ > T33 = v (T1+ T22)

Subst. V33 vito eg O, and get,

$$\nabla^2 \sigma_{12} + (\sigma_{11} + \sigma_{22})_{12} + \tilde{f}_{1/2} + \tilde{f}_{2,1} = 0 \rightarrow 3^*$$

 $\begin{array}{c} \nabla_{11/1} + \nabla_{12/2} + \widetilde{f}_1 = 0 \longrightarrow \widehat{\mathbb{B}} \end{array} \begin{array}{c} \partial \widehat{\mathbb{B}} \\ \partial \widehat{\mathbb{B}} \end{array} \begin{array}{c} \partial \widehat{\mathbb{B}} \\ \partial \widehat{\mathbb{B}} \end{array} + \frac{\partial \widehat{\mathbb{B}}}{\partial x_1} + \frac{\partial \widehat{\mathbb{B}}}{\partial x_2} \end{array}$

So we can replace 3 hance 3* by the EDM's, ie, A, B.

Adding O, O & D, use Horkes law for T33 and get,

 $(1+\nu) \nabla^{2} \left(\overline{r}_{11} + \overline{r}_{22} \right) + \frac{1}{1+\nu} \left[(1+\nu) \nabla^{2} \left(\overline{r}_{11} + \overline{r}_{22} \right) \right] + 2 \left(1 + \frac{3\nu}{2(1-\nu)} \right) \left(\overline{f}_{11} + \overline{f}_{212} \right) = 0$

 $\Rightarrow \nabla^2(\nabla_{11} + \nabla_{22}) = -\frac{1}{1-\nu}(f_{1,1} + f_{2,2}) \rightarrow \bigcirc$

Thus B, B, O give exact sol. of p-strain problem

Now for conservative body for as, $T_{11} = \emptyset$, $z_2 = \emptyset$, $T_{22} = \emptyset$, $T_{12} = -\emptyset$, T_{12}

MITE: ruly " need to be solved in conjunction with appropriate BC's on ϕ .

for the p-strain problem. These p-strain problems exact sol reduces

For p-stresses 4 corresponding p-exes we solve, $(\overline{ij} - \overline{V} \delta ij) n_j = 0 \longrightarrow D$ Substitutive law for isotropic body, we get, $(\overline{E} [lij + \frac{\nu}{l-2\nu} \delta ij l_{mm}] - \overline{V} \delta ij) n_j = 0$

 $\Rightarrow \left(\lim_{j \to \infty} -\left\{ \frac{1+\nu}{E} \sigma - \frac{\nu}{1-2\nu} \lim_{j \to \infty} \sigma_{ij} \right) \right) = 0 \longrightarrow \mathbb{Z}$

Now for p-strains & corresponding p-cines we solve, (hij-loij) nj = 0 - 3

Now 3 & @ are of the same form. Their solution is obtained by solving either evalue problem O or 3. Hence e-rectors nj & it; must coincide (ie, paxes of stress (nj) coincide with paxes of strain (nj)).

F.15) This plate inclosed loads only. Since plate is then it implies that edge loads do not vary in the thickness direction. Furthermore $f_3=0$ (infact $f_1=f_2=0$ is given). Thus this can be approximated as a plane stress problem.

[T3, P5]

 $\begin{array}{l} l_{A}=-100 \times 10^{-6} = l_{ij} \, n_{i} \, n_{j} \quad \left(\begin{array}{c} n_{i}=[1,0,0] \right) \Rightarrow l_{A}=-100 \times 10^{-6} = l_{11} \\ l_{C}=400 \times 10^{-6} = l_{ij} \, n_{i} \, n_{j} \quad \left(\begin{array}{c} n_{i}=[0,0,1] \right) \Rightarrow l_{C}=400 \times 10^{-6} = l_{22} \\ l_{B}=-200 \times 10^{-6} = l_{ij} \, n_{i} \, n_{j} \quad \left(\begin{array}{c} n_{i}=[\frac{1}{12},\frac{1}{12},0] \right) \Rightarrow l_{B}=-200 \times 10^{-6} = \frac{l_{11}}{2} + l_{22} + l_{12} \\ \Rightarrow l_{12}=-350 \times 10^{-6} \end{array}$ From constitutive law $l_{13}=l_{23}=0$ ("- $l_{13}=l_{23}=0$)

Also, $l_{33}=0=\frac{E}{l+\nu} \left[\begin{array}{c} l_{33}+\frac{\nu}{l-2\nu} \left(\begin{array}{c} l_{11}+l_{22}+l_{33} \end{array}\right)\right] \Rightarrow l_{33}=-128.6 \times 10^{-6} \end{array}$

Thus $\sigma_{11} = \frac{E}{1+\nu} \left[l_{11} + \frac{\nu}{1-2\nu} \left(l_{11} + l_{22} + l_{33} \right) \right] = 658.85 \text{ psi}$ $\sigma_{12} = \frac{E}{1+\nu} \left[l_{22} + \frac{\nu}{1-2\nu} \left(l_{11} + l_{22} + l_{33} \right) \right] = 12197.3 \text{ psi}$ $\sigma_{12} = \frac{E}{1+\nu} \left[l_{12} = -8076.9 \text{ psi}. \right]$

(3)

Phow
$$l_{11} = c$$
, $l_{22} = -c\nu$, $l_{33} = -c\nu$, $l_{12} = l_{13} = l_{23} = 0$
 $\Rightarrow l_{ij}$ are const $\Rightarrow \sigma_{ij}$ are const $\Rightarrow \tilde{f}_i = 0$ (from equil equs).

(b)
$$M = \frac{E}{2(1+\nu)} + K = \frac{E}{3(1-2\nu)}$$

For $E > 0$, $4M > 0$, $\nu \ge -1$
For $E > 0$, $4K > 0$, $\nu \le \frac{1}{2}$ $\Rightarrow -1 \le \nu \le \frac{1}{2}$