$C E 623-H W 2$ - Solutims
(1) At boundary, $\sigma_{x x}=\frac{x^{2} z}{a^{4}}, \quad \sigma_{y y}=\frac{y^{2} z}{a^{4}}, \quad \sigma_{z z}=\frac{z^{3}}{a^{4}}$

$$
\sigma_{x y}=\frac{x y z}{a^{4}}, \quad \sigma_{y z}=\frac{y z^{2}}{a^{4}}, \quad \sigma_{x z}=\frac{x z^{2}}{a^{4}} .
$$

$$
x=r \operatorname{sic\phi }, \quad y=r \operatorname{sis} \phi, \quad z=r c \theta
$$

$$
\left\{\begin{array}{l}
e_{v} \\
e_{\phi} \\
e_{r}
\end{array}\right\}=\left[\begin{array}{ccc}
c \theta c \phi & c \theta s \phi & -s \theta \\
-s \phi & c \phi & 0 \\
s \theta c \phi & s \theta s \phi & c \theta
\end{array}\right]\left\{\begin{array}{l}
\frac{i}{2} \\
\dot{j} \\
\underset{\sim}{k}
\end{array}\right\}
$$

$\underline{\underline{a}}$

$$
(\bar{\sigma})_{r, \theta, \varphi}=\underline{\underline{a}}(\underline{\sigma})_{x, y, z} a^{\top}
$$

$\left[\begin{array}{lll}\sigma_{\theta \theta} \sigma_{\theta \phi} \sigma_{r \theta} \\ \sigma_{\theta \phi} \sigma_{\phi \phi} \sigma_{r \phi} \\ \sigma_{r \theta} & \sigma_{r \phi} & \sigma_{r r}\end{array}\right] \frac{1}{a^{4}}\left[\begin{array}{ccc}c \theta c \phi & c \theta s \phi & -s \theta \\ -s \phi & c \phi & 0 \\ s \theta c \phi & s \theta s \phi & c \theta\end{array}\right]\left[\begin{array}{ccc}x^{2} z & x y z & x z^{2} \\ x y z & y^{2} z & y z^{2} \\ x z^{2} & y z^{2} & z^{3}\end{array}\right]\left[\begin{array}{ccc}c \theta<\phi & -s \phi & s \theta c \phi \\ c \theta s \phi & c \phi & s \theta s \phi \\ -s \theta & 0 & c \theta\end{array}\right]$
Loading on surface: only components involving r patipite i $b . c$. Hence we reed only $\sigma_{r r}, \sigma_{r \theta},{ }_{1} \sigma_{r \phi}$.

$$
\begin{aligned}
& \sigma_{r r}=\left[\begin{array}{l}
s \theta c \phi\left(s \theta c \phi \cdot s^{2} \theta c^{2} \phi c \theta+s \theta s \phi \cdot s \theta c \phi s \theta s \phi c \theta+c \theta \cdot s \theta c \phi c^{2} \theta\right) \\
+s \theta s \phi\left(s \theta c \phi \cdot s \theta c \phi s \theta s \phi c \theta+s \theta s \phi \cdot s^{2} \theta s^{2} \phi c \theta+c \theta \cdot s \theta s \phi c^{2} \theta\right)+\frac{1}{a} \\
\left.+c \theta\left(\begin{array}{c}
\text { III } \\
s \theta c \phi \\
\text { (II) }
\end{array}\right] \cdot s \theta c \phi c^{2} \theta+s \theta s \phi \cdot s \theta s \phi c^{2} \theta+c \theta \cdot c^{3} \theta\right)
\end{array}\right] \\
& \sigma_{r \phi}=\frac{1}{a}[-s \phi(\text { II })+c \phi(\text { (II) })] \\
& \sigma_{r \theta}=\frac{1}{a}[\operatorname{coc\phi } \text { (II) }+\cos \phi \text { (III) }-\operatorname{si} \theta \text { (III) }] \\
& \text { (III) } 7 \text { (} \begin{array}{l}
\text { sites components on } \\
\text { turfece, hence the }
\end{array} \\
& \begin{array}{l}
\text { surface, Len u then } \\
\text { represent the Lacing }
\end{array} \\
& \text { (I) }=s^{3} \theta c \theta c^{3} \phi+s^{3} \theta c \theta s^{2} \phi c \phi+s \theta c^{3} \theta c \phi=s \theta c \theta c \phi \\
& \text { (II) }=s^{3} \theta c \theta s \phi c^{2} \phi+s^{3} \theta c \theta s^{3} \phi+s \theta c^{3} \theta s \phi=s \theta c \theta s \phi \\
& \text { (ai) }=s^{2} \theta c^{2} \dot{\theta} c^{2} \phi+s^{2} \theta c^{2} \theta s^{2} \phi+c^{4} \theta=c^{2} \theta \\
& \sigma_{r_{r}}=\left(s^{2} \theta c \theta c^{2} \phi+s^{2} \theta c \theta s^{2} \phi+c^{3} \theta\right) \times \frac{1}{a}=c \theta / a \\
& \sigma_{r \phi}=(-s \theta \cos \phi c \phi+s \theta c \theta s \phi c \phi) / a=0 \\
& \begin{array}{l}
\sigma_{r \phi}=\left(s \theta c^{2} \theta c^{2} \phi+s \theta c^{2} \theta s^{2} \phi-s \theta c^{2} \theta\right) / a=0
\end{array}
\end{aligned}
$$

$\because \sigma_{r r}$ is function of \& alone, the sties distributim $\sigma_{r r}$ ald every latitudinal band cancels out $\Rightarrow F_{x}=F_{y}=0$

$$
\begin{aligned}
& \text { every latitudinal band cancels int } \Rightarrow F_{x}=r_{y}=0 \\
& F_{z}=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} r_{r r}(a d \theta a \sin \theta d \phi) c \theta=2 \pi a \int_{0}^{\pi / 2} \delta \theta c^{2} \theta d \theta=-\left.\frac{2 \pi a}{3} c^{3} \theta\right|_{0} ^{\pi / 2} \\
& F_{z}=\frac{2 \pi a}{3}
\end{aligned}
$$

Extra - I

$$
\begin{aligned}
& \frac{x+r a-1}{\text { In general, }} \\
& F_{z}=\iint\left(\sigma_{r r} d A c \theta-\sigma_{r \theta} d A s \theta\right)=\iint_{0}^{2 \pi} \int_{0}^{\pi / 2}\left(\sigma_{r r} c \theta-\sigma_{r \theta} s \theta\right)\left(a^{2} s \theta d \theta d \phi\right) \\
& F_{x}
\end{aligned}=\iint_{0}\left(\sigma_{r r} d A s \theta c \phi+\sigma_{r \theta} d A c \theta c \phi-\sigma_{r \phi} d A s \phi\right) .
$$

Extra-2. Alternative $\&$ much shorter method. Find stress motor in surface, ie, $\sigma=\underline{\sigma} \underline{I}$

$$
\begin{aligned}
& \text { sufare } \equiv f(x, y, z)=x^{2}+y^{2}+z^{2}-a^{2}=0 \text {. } \\
& v=\frac{\nabla f}{|\nabla f|}=\frac{2 x i+2 y j+2 z k}{2 \sqrt{x^{2}+y^{2}+z^{2}}}=a=\frac{x}{a} i+\frac{y}{a} j+\frac{z}{a} k \\
& \Rightarrow \underline{I}=\frac{1}{a^{4}}\left[\begin{array}{ccc}
x^{2} z & x y z & x z^{2} \\
x y z & y^{2} z & y z^{2} \\
x z^{2} & y z^{2} & z^{2}
\end{array}\right] \perp\left\{\begin{array}{l}
x \\
y
\end{array}\right\}=\frac{1}{a^{5}}\left[\left(x^{3} z+x y^{2} z+x z^{3}\right) \underline{i}\right. \\
& +\left(x^{2} y z+y^{3} z+y z^{3}\right) \underline{j} \\
& \left.+\left(x^{2} z^{2}+y^{2} z^{2}+z^{4}\right) \underline{R}\right] \\
& \Rightarrow \sigma_{x}=\frac{1}{a^{5}}\left(x^{3} z+x y^{2} z+x z^{3}\right)=\frac{x z}{a^{5}}\left(x^{2}+y^{2}+z^{2}\right)! \\
& =\frac{x z}{a^{3}}=\text { odd in } x \text {. } \\
& \sigma_{y}=\frac{1}{a^{5}}\left(x^{2} y z+y^{3} z+y z^{3}\right)=\frac{y z}{a^{5}}\left(x^{2}+y^{2}+z^{2}\right) \\
& =\frac{y z}{-3}=\text { odd in. } \\
& \text { Plan of a frustum } \\
& \overrightarrow{\sigma_{y}} \text { of sphere at betitule }
\end{aligned}
$$

So we see that in every strip of annular a ea Itasinioado, the contributions form opposite sides cancel when summing, ie,

$$
\begin{aligned}
& F_{x}=\int_{A} \sigma_{x} d A=0, \quad F_{y}=\int_{A} \sigma_{y} d A=0 \\
& F_{z}=\int \sigma_{z} d A=\frac{1}{a^{5}} \iint\left(x^{2} z^{2}+y^{2} z^{2}+z^{4}\right) d A=\frac{1}{a^{5}} \iint a^{2} z^{2} d A \\
& \quad=\iint \frac{a^{2} a^{2} a^{2} c^{2} \theta}{a^{5}}(h d \theta \cos \theta d \phi)=2 \pi a \int_{0}^{\pi / 2} c^{2} \theta s \theta=\frac{2 \pi}{3}
\end{aligned}
$$

$t_{\text {same as by }}$ loper mett.d inuotoing stores transf.
TR, Ps
(2). It cen be intuitively sham that
(a)

$$
\left.\begin{array}{l}
u_{x}=a x+b y+c x y \\
y=d x+e y+a x y
\end{array}\right\}
$$

$$
\left.\begin{array}{l}
u_{x}=a x+b y+c x y \\
u_{y}=d x+e y+g x y
\end{array}\right\} \rightarrow \text { Result } .
$$

from the fact that straight edges remain straight. Howere, below is a rigors proof yielding this teut.

$$
\begin{aligned}
& r^{\prime}=r+u=x \underline{i}+y \underline{j}+u_{x} \underline{i}+u_{y} \underline{j} \\
& \underline{d r}=\left(d x+d u_{x}\right) \underline{i}+\left(d y+d u_{y}\right) \underline{j}
\end{aligned}
$$

Assume $\left.u_{x}=a x+b y+c x y+p(x, y)\right\}$

$$
\left.u_{y}=d x+e y+g x y+q(x, y)\right]
$$

corresponding to an virtually vertical edge, we have,

$$
\text { dr }\left.\right|_{x=k_{1}}=\left(b+c k_{1}+\left.\frac{\partial p}{\partial y}\right|_{x=k_{1}}\right) d y i+\left(1+e+g k_{1}+\left.\frac{d q}{\partial y}\right|_{x=k_{1}}\right) d y j
$$

Now $P Q$ and $R S$ are same rector, ie $\underline{d_{r}}=d_{y j}$, but corresponding to points at different locations y, alone the
 $\underline{R}^{\prime} s^{\prime}=\left(\frac{d r}{}\right)_{\text {RS }}$, which reed not be same vector, since

Stretching can take place. However the orientations (Id) of $\left(d r^{\prime}\right)_{P Q}$ and $\left(d^{\prime}\right)_{R S}$ mont be same if deformed edge remains straight line. This means,

$$
1+e+g k_{1}+\left.\frac{\partial g}{\partial y}\right|_{x=k_{1}}=\text { function of } x \text { only. }
$$

$$
b+c k_{1}+\left.\frac{\partial p}{\partial y}\right|_{x=k_{1}}
$$

$\Rightarrow q$ and p are linear in y.
considering mitially horizontal edge, we Lave (using similar procedure),
$\left.\stackrel{d r}{-}\right|_{y=k_{2}}=\left(1+a+c k_{2}+\left.\frac{\partial p}{\partial x}\right|_{y=k_{2}}\right) d x i+\left(d+g k_{2}+\left.\frac{\partial q}{\partial x}\right|_{y=k_{2}}\right) d x j$
For line $y=k_{L}$ to remain straight after deformation, we require,

$$
\frac{\left(1+a+c k_{2}+\left.\frac{\partial p}{\partial x}\right|_{y=k_{2}}\right)}{\left(d+g k_{2}+\left.\frac{\partial q}{\partial x}\right|_{y=k_{2}}\right)}=\text { fin tin of } y \text { on } l y
$$

$\Rightarrow q$ and p are liar in x
\Rightarrow q, p Lave bi-hinear from $(x y)$ which is already wichaded in u_{x}, u_{y}. Hence $p(x, y)$, $q(x, y)$ are discarded from (1) \rightarrow QED \rightarrow anton TR, Pb
P.3. You mast use finite (large) strain theory, with given assumptions.
So, $\gamma_{x z}=2 E_{x z}=\left(1+\varepsilon_{x}\right)\left(1+\varepsilon_{z}\right) \cos \theta$
where $\theta=$ angle between $A^{*} C^{k} \& A^{*} B^{*}$ (ie between two linieleme of origuially $t^{a r}$) and ε_{x}, ε_{z} are ing ext. stramis of elements origialh, dong $\times \& z$ driectimi ((ie along $A B \& A C$ directions).
$\Rightarrow \gamma_{x z}=(1+0)(1+\{A C(1) c o n)$

$$
\begin{aligned}
& X^{x} z \text { dirctinic (ie along } A B \& A C \text { directing) } \\
& \Rightarrow \gamma_{x z}=(1+0)(1+\{A C[1 / \cos \alpha-1]\} / A C) \cos \theta=\frac{1}{\cos \alpha} \cos \theta=\frac{1}{\cos \alpha} \sin x=\tan \alpha .
\end{aligned}
$$

Note : The above expressions give u_{x}, u_{y} in metres if x, y are in metres
(b) $\because(a, b, b, d) \ll 1$, you can use infraitesmal dipl. gradient theory (ie linear theory) However we' M use nombinea therm to startwith.

$$
\binom{e}{=}_{x, Y}=\underline{a}(\underline{e})_{x, y} a^{\top}=\left(\begin{array}{cc}
c \theta & s \theta \\
-s \theta & c \theta
\end{array}\right)\left(\begin{array}{ll}
e_{x x} & e_{x y} \\
e_{x y} & e_{y y}
\end{array}\right)\left(\begin{array}{cc}
c \theta & -s \theta \\
s \theta & c \theta
\end{array}\right)
$$

$$
\theta=30^{\circ}
$$

(C)

$$
\begin{array}{ll}
=\left(\begin{array}{ll}
\left(e_{x x} c^{2} \theta+e_{y y} s^{2} \theta+2 e_{x y} \cos \theta\right) & \left(\cos \theta\left[-e_{x x}+e_{y y}\right]+e_{x y}\left[c^{2} \theta-s^{2} \theta\right]\right) \\
\text { symmetric } & \left(e_{x x} s^{2} \theta+e_{y y} c^{2} \theta-2 e_{x y} \cos \theta\right)
\end{array}\right) \\
\left(\begin{array}{ll}
-0.001741 & 0.001449
\end{array}\right)
\end{array}
$$

$$
\left(\frac{e}{=}\right)_{X Y}=\left(\begin{array}{cc}
-0.001741 & 0.001449 \\
0.001449 & 0.002241
\end{array}\right)
$$

$$
\begin{aligned}
& \begin{aligned}
E_{x x}=u_{x, x}+\frac{1}{2} u_{x, x}^{2}+\frac{1}{2} u_{y, x}^{2} & =-0.002+\frac{0.002^{2}+0.001^{2}}{2} \\
& =-0.0019975
\end{aligned} \\
& \begin{aligned}
E_{y y}=u_{y, y}+\frac{1}{2} u_{x, y}^{2}+\frac{1}{2} u_{y, y}^{2} & =0.0025+\frac{0.003^{2}+0.0025^{2}}{2} \\
& =0.002507625
\end{aligned} \\
& E_{x y}=\frac{1}{2}\left(u_{x, y}+u_{y, x}+u_{x, x} u_{x, y}+u_{y, x} u_{y, y}\right) \\
& =\frac{1}{2}(-0.003+0.001+[-0.002][-0.003]+[0.001][0.0025]) \\
& =-0.00099575 \\
& (E)_{x, y}=\left(\begin{array}{cc}
-0.0019975 & -0.00099575 \\
-0.00099575 & 0.002507625
\end{array}\right) \simeq\left(\begin{array}{cc}
-0.002 & -0.001 \\
-0.001 & 0-0025
\end{array}\right)=\left(\begin{array}{l}
(\underline{l})_{x y}
\end{array}\right. \\
& \text { SO FrOM HERE ON I USE LINFAF THTEOKY (}!\text {) FOR CONVENIENCE }
\end{aligned}
$$

$$
\begin{aligned}
& u_{x}[1,0]=-0.002=a \\
& \text { T2, P5, contd } \\
& u_{\times}[1,1]=-0.005=a+b+c \\
& \Rightarrow a=-0.002, b=-0.003, c=0 \\
& u_{x}=-0.002 x-0.003 y \\
& u_{x}[0,1]=-0.003=b \\
& u_{y}[1,0]=0.001=d \quad \Rightarrow d=0.001, e=0.0025, \mathrm{~g}=0 \\
& u_{y}[1,1]=d+e+g=0.0035 \\
& u_{y}[0,1]=e=0.0025
\end{aligned}
$$

(d)
$|l-\lambda I|=0$, for convenience,
$\left(\begin{array}{cc}2-\lambda & -1 \\ -1 & 2.5-\lambda\end{array}\right)=0$, so actual p-strais will

$$
\begin{aligned}
\lambda^{2}-4.5 \lambda+4=0 \Rightarrow \lambda & =\frac{4.5 \pm \sqrt{4.5^{2}-16}}{2} \\
\lambda(1) & =3.2808,1.2192=\lambda(2)
\end{aligned}
$$

p-strans are $e(1)=3-2808 * 10^{-3}, e(2)=1-2192 * 10^{-3}$
p-axes : $(2-\lambda(1)) n_{1}(1)-n_{2}(1)=0 \rightarrow$ (i)

$$
\begin{align*}
& n_{1}^{2}(1)+n_{2}^{2}(1)=1 \quad \rightarrow(i i) \tag{ii}\\
\Rightarrow & n_{1}^{2}(1)\left[1+(2-\lambda(1))^{2}\right]=1 \\
\Rightarrow & n_{1}(1)=0.6154, \quad n_{2}(1)=-0.7882 \\
& n(1)=(0.6154,-0.7882)^{\top}
\end{align*}
$$

$\rightarrow p$-axis comesponding to $e(1)$

$$
\begin{aligned}
& \left(2-\lambda(2) n_{1}(2)-n_{2}(2)=0\right. \\
& n_{1}^{2}(2)+n_{2}^{2}(2)=1 \\
& \Rightarrow n_{1}^{2}(2)\left[1+(2-\lambda(2))^{2}\right]=1 \\
& \Rightarrow n_{1}(2)=0.7882, n_{2}(2)=0.6154 \\
& n(2)=(0.7882,0.6154)^{\top}
\end{aligned}
$$

sbreve that $n(1) \cdot n(2)=0$; ie p-axes are orthojonel.

CE 623
Porblem (5)
\because stranins are hisear in a_{1}, a_{2}, a_{3} and compat egns involve double differentiation of strain compments w.r.t. a_{i} 's, compat egins are satisfied identially. Hence it is a possible strain distribution

$$
\begin{align*}
l_{11} & =2 a_{1}=\frac{\partial u_{1}}{\partial a_{1}} \Rightarrow u_{1}=a_{1}^{2}+f\left[a_{2}, a_{3}\right] \\
l_{22} & =2 a_{1}=\frac{\partial u_{2}}{\partial a_{2}} \Rightarrow u_{2}=2 a_{1} a_{2}+g\left[a_{1}, a_{3}\right] \\
l_{12} & =a_{1}+2 a_{2}=\frac{1}{2}\left[\frac{\partial u_{1}}{\partial a_{2}}+\frac{\partial u_{2}}{\partial a_{1}}\right]=\frac{1}{2}\left[\frac{\partial f}{\partial a_{2}}+2 a_{2}+\frac{\partial g}{\partial a_{1}}\right] \\
& \Rightarrow \frac{\partial f\left[a_{2}, a_{3}\right]}{\partial a_{2}}+\frac{\partial g\left[a_{1}, a_{3}\right]}{\partial a_{1}}=2 a_{1}+2 a_{2} \longrightarrow \text { (1) } \tag{1}\\
l_{33} & =2 a_{3}=\frac{\partial u_{3}}{\partial a_{3}} \Rightarrow u_{3}=a_{3}^{2}+h\left[a_{1}, a_{2}\right] \\
l_{13} & =\frac{1}{2}\left(\frac{\partial u_{1}}{\partial a_{3}}+\frac{\partial u_{3}}{\partial a_{1}}\right)=\frac{1}{2}\left(\frac{\partial f}{\partial a_{3}}+\frac{\partial h}{\partial a_{1}}\right)=0 \Rightarrow \frac{\partial f\left[a_{2}, a_{3}\right]+\frac{\partial h\left[a_{1}, a_{2}\right]}{\partial a_{1}}=0-}{l_{23}}=\frac{1}{2}\left(\frac{\partial u_{2}}{\partial a_{3}}+\frac{\partial u_{3}}{\partial a_{2}}\right)=\frac{1}{2}\left(\frac{\partial g}{\partial a_{3}}+\frac{\partial h}{\partial a_{2}}\right)=0 \Rightarrow \frac{\partial g}{\partial a_{3}}\left[a_{1}, a_{3}\right]+\frac{\partial h\left[a_{1}, a_{2}\right]}{\partial a_{2}}=0- \tag{2}
\end{align*}
$$

Now $\frac{\partial D}{\partial a_{3}}=\frac{\partial^{2} f}{\partial a_{2} \partial a_{3}}+\frac{\partial^{2} g}{\partial a_{1} \partial a_{3}}=0$
From $\frac{\partial(2)}{\partial a_{2}}+\frac{\partial(3)}{\partial a_{1}}=0$ and the abrove we set $\frac{\partial^{2} h}{\partial a_{1} \partial a_{2}}=0 \Rightarrow h=A+p\left(a^{2}\right)+\underbrace{q\left(a_{2}\right]}_{>(4)}$
Fron (2)\& (4), $\frac{\partial f}{\partial a_{3}}\left[a_{2}, a_{3}\right]+p^{\prime}\left[a_{1}\right]=0 \Rightarrow \because f=f\left[a_{2}, a_{3}\right]$ that $p\left[a_{1}\right]=B a_{1}$
From (3) \& (4), $\frac{\partial g\left[a_{1}, a_{3}\right]+q^{\prime}\left[a_{2}\right]=0 \Rightarrow \because g=g\left[a_{1}, a_{3}\right] \text { that } q\left[a_{2}\right]=\left(a_{2}\right)}{\text { constants omitted }}$
Thu, $h=A+B a_{1}+C a_{2}$
From (2) \&(S), $f=-\beta a_{3}+r\left[a_{2}\right] \rightarrow$ (6) $3 \rightarrow$ from (1), $r^{\prime}+s^{\prime}=2 a_{1}+2 a_{2}$
From (3) \&(5), $g=-C a_{3}+s\left[a_{1}\right] \rightarrow(7) \Rightarrow r=a_{2}^{2}+D+K a_{2} s=a_{1}^{2}+E-K a_{1}$
So $f=-B a_{3}+a_{2}^{2}+D+K a_{2}, g=-C a_{3}+a_{1}^{2}+E-K a_{1}$
Thus $u_{1}=a_{1}^{2}+a_{2}^{2}-B a_{3}+D+K a_{2}$ If origin has zero displ $\left(u_{1}=u_{2}=u_{3}=0\right.$

$$
u_{2}=2 a_{1} a_{2}+a_{1}^{2}-C a_{3}+E-K a_{1} \text { (a) origin } \Rightarrow A=D=E=0
$$

$u_{3}=a_{3}^{2}+B a_{1}+C a_{2}+A$ further, if an (artition) infinitesimal line element (1) orifin has zer rotation, $\Rightarrow \widetilde{w}_{i}$ and hence $\tilde{w}_{i j}$ varish © origni.

$$
\begin{array}{ll}
\tilde{w}_{13}=\left.\frac{1}{2}\left(u_{1,3}-u_{3,1}\right)\right|_{a_{1}=a_{2}=a_{3}=0}=-B=0, \\
\tilde{w}_{12}=\left.\frac{1}{2}\left(u_{1,2}-u_{2,1}\right)\right|_{a_{1}=a_{2}=a_{3}=0}= & K=\left.\frac{1}{2}\left(u_{2,3}-u_{3,2}\right)\right|_{a_{1}=a_{2}=a_{3}=0}=-C=0 \\
& =0 \\
\begin{array}{ll}
\text { Working for change of angle between two } \\
\text { arbitrary line elements. Result was given in class } \\
\text { without details, method was outlined in class. }
\end{array}
\end{array}
$$

Problem 4) $d x_{i}^{(1)}$ Consider $d \times(1) \cdot d x(2)$. We have,

$$
\begin{aligned}
\text { LH } & =\left(\frac{\partial x_{i}}{\partial a_{j}} d a_{j}\right)_{(1)}\left(\frac{\partial x_{i}}{\partial a_{k}} d a_{k}\right)_{(2)}=\left(\frac{\partial\left(a_{i}+u_{i}\right)}{\partial a_{j}} d a_{j}\right)\left(\frac{\partial\left(a_{i}+u_{i}\right)}{\partial a_{k}} d a_{k}\right)_{(2)} \\
& =\left(d a_{i}+\partial u_{i} d a_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(d a_{i}+\frac{\partial u_{i}}{\partial a_{j}} d a_{j}\right)_{(1)}\left(d a_{i}+\frac{\partial u_{i}}{\partial a_{k}} d a_{k}\right)_{(2)}^{(1)} \\
& a_{i}(1) d a_{k}^{(2)} u_{i, k}+d a_{j}(1) d a_{i}(2) u_{i, j}+d a_{i(1)}
\end{aligned}
$$

$$
\begin{aligned}
\text { LHS } & =d a_{i}(1) d a_{i}(2)+d a_{i}(1) d a_{k}(2) u_{i, k}+d a_{j}(1) d a_{i}(2) u_{i, j}+d a_{j}(1) d a_{k}(2) u_{i, j} u_{i, k} \\
& =d a_{i}(1) d a_{i}(2)+d a_{i}(1) d a_{j}(2)\left[u_{i, j}+u_{j, i}+u_{m, i} u_{m, j}\right] \\
\text { RHS } & =\sqrt{d a_{i}(1) d a_{i}(1)+2 L_{i b} d a_{i}(1) d a_{1}(1)}
\end{aligned}
$$

RHS $=\sqrt{d a_{i}(1) d a_{i}(1)+2 L_{i} d a_{i}(1) d a_{k}(1)} \sqrt{d a_{j}(2) d a_{j}(2)+2 L_{j m} d a_{j}(2) d a_{m}(2)} \cos \theta$ ('used $(d x)^{2}-(d a)^{2}$ frmina given).

$$
\begin{aligned}
& \text { Now } \frac{L H S}{d a(1) d a(2)}=\frac{R H S}{d a(1) d a(2)} \quad\left(N_{0}+e d a(1)=\mid \underline{d a(1) \mid}\right. \text { etc.). } \\
& \Rightarrow n_{i}(1) n_{i}(2)+n_{i}(1) n_{j}(2)\left[2 L_{i j}\right]=\sqrt{n_{i}(1) n_{i}(1)+2 L_{i k} n_{i}(1) n_{k}(1)} * \\
& \cos \theta_{0} \\
& \Rightarrow \cos \theta=\frac{\sqrt{n_{j}(2) h_{j}(2)+2 L_{j m} n_{j(2)} n_{m}(2)}}{\cos \theta_{0}+2 L_{i j} n_{l}(1) n_{j}(2)} \\
& \sqrt{1+2 L_{i k} n_{i}(1) n_{k}(1)} \sqrt{1+2 L_{j m} n_{j}(2) n_{m}(2)}
\end{aligned}
$$

T2, P7
(1.6)
f

$$
\begin{aligned}
& \varepsilon_{i j}=\frac{1}{2}\left(u_{i, j}+u_{j, i}+u_{m, i} u_{m, j}\right) \rightarrow \text { nonl } \\
& \varepsilon_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial a_{j}}+\frac{\partial u_{j}}{\partial a_{i}}\right) \rightarrow \text { hirear } \\
& \therefore \boldsymbol{\varepsilon}_{i j}=\left(\begin{array}{ccc}
0 & \frac{1}{2} k & 0 \\
\frac{1}{2} k & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\frac{1}{2}\left(\begin{array}{lll}
0 & k & 0 \\
k & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& (d y)^{2}-(d a)^{2}=2 \varepsilon_{r s} d a_{r} d a_{s} \\
& =d y_{i} d y_{i}-d a_{i} d a_{i} \\
& \text { Now } d y_{1}=\frac{\partial y_{1}}{\partial a_{1}} d a_{1}+\frac{\partial y_{1}}{\partial a_{2}} d a_{2}+\frac{\partial y_{1}}{\partial a_{3}} d a_{3} \\
& =d a_{1}+k d a_{2}+0 \\
& d y_{1}=d a_{1}+k d a_{2}+0 \\
& d y_{2}=d a_{2} ; \quad d y_{3}=d a_{3} .
\end{aligned}
$$

For $A B$:-

$$
\begin{aligned}
& d a_{1}=d L ; d a_{2}=d a_{3}=0 . \\
& \therefore d y_{1}=d a_{1}=d l . \\
& d y_{2}=0 ; d y_{3}=0 . \\
& \therefore(d y)^{2}-(d a)^{2}=d a_{1} d a_{1}-d a_{1} d a_{1}=0 . \\
& \therefore(d y)^{2}-(d a)^{2}=0 .
\end{aligned}
$$

For AD:- $d a_{1}=0 ; d a_{2}=d L ; d a_{3}=0$.

$$
\begin{aligned}
\therefore(d y)^{2}-(d a)^{2} & =d y_{1} d u_{1}-d a, d a, \\
& =k^{2}(d L)^{2}-0 \\
(d y)^{2}-(d a)^{2} & =k^{2}(d L)^{2} \\
\therefore(d y)^{2}-(d a)^{2} & =k^{2}(d L)^{2}
\end{aligned}
$$

For $A C: \quad d a_{1}=d l ; \quad d a_{2}=d l ; \quad d a_{3}=0$.

$$
\begin{aligned}
(d y)^{2}-(d a)^{2} & =d y_{1} d y_{1}-d a, d a \\
& =(d L+K d L)^{2}-(d L)^{2} \\
& =(d l)^{2}\left(1+L^{2}+2 k-1\right) \\
& =\left(k^{2}+2 k\right)(d L)^{2}
\end{aligned}
$$

For $D B:-d a_{1}=d l ; d a_{2}=-d \psi ; d a_{3}=0$.

$$
\begin{aligned}
\therefore(d y)^{2}-(d a)^{2} & =d y_{1} d y_{1}-d a_{,} d a_{1}= \\
& =(d L-k d L)^{2}-(d L)^{2} \\
& =\left(k^{2}-2 k\right)(d L)^{2}
\end{aligned}
$$

$$
\lambda=\frac{d y}{d a}
$$

$$
\begin{aligned}
& \therefore \frac{(d y)^{2}-(d a)^{2}}{(d a)^{2}}=\lambda^{2}-1 . \\
& \therefore \lambda=\left[1+\frac{(d y)^{2}-(d a)^{2}}{(d a)^{2}}\right]^{1 / 2} \\
& \therefore E=\frac{d y-d a}{d a}=\lambda-1=\text { unitextestion. }
\end{aligned}
$$

in linear theng $K=\varepsilon_{i j} n_{i} n_{j}$
For $A B$:-
6

$$
\lambda_{A_{8}}=(1+0)^{1 / 2} / 1
$$

$\begin{aligned} \therefore \lambda_{A B} & =1 . \\ E_{A B} & =0 \text { by bitt lineer tumbinear }\end{aligned}$ thernes.
For $A D:-$

$$
\begin{aligned}
& \lambda_{A B}=\left[1+\frac{k^{2}(d L)^{2}}{(d L)^{2}}\right]^{1 / 2} \\
& \therefore \lambda_{A D}=(1+k)^{1 / 2}
\end{aligned}
$$

$\varepsilon_{\text {Ai }}=\left(1+k^{2}\right)^{1 / 2}-1 \rightarrow$ nonhiniar theory?

For $A C$:-

$$
\lambda_{A C}=\left[1+\frac{\left(k^{2}+2 k\right)(d l)^{2}}{2(d L)^{2}}\right]^{1 / 2}
$$

$$
\lambda_{A C}=\left(1+k+\frac{k^{2}}{2}\right)^{1 / 2}
$$

same 执 $k \lll \varepsilon_{A C}=\sum_{1,1} n_{1} n_{1}+\varepsilon_{1}=2 \times \frac{k_{1}}{2} \times \frac{1}{\sqrt{2}} \frac{1}{2} \frac{1}{\sqrt{2}}=\frac{k}{2}+\varepsilon_{21} n_{1} n_{2}+\xi_{22} n_{2} n_{2}, n_{1}=\frac{1}{\sqrt{2}}$
we pulinal For DB

$$
\begin{aligned}
& \sum_{B B}=\left(1+\frac{\left(k^{2}-2 k\right)(d c)^{2}}{2(d l)^{2}}\right)^{1 / 2} . \\
& \lambda_{D B}=\left(1-k+\frac{k^{2}}{2}\right)^{1 / 2} \\
& \left\{\begin{array}{l}
\varepsilon_{A B}=\left(1-k+\frac{k^{2}}{2}\right)^{1 / 2}-1 \rightarrow \text { honle. } \\
\varepsilon_{D B}=\varepsilon_{i j} n_{i} n_{j}=2 * \frac{k}{2} * \frac{1}{\sqrt{2}}\left(-\frac{1}{\sqrt{2}}\right)=-\frac{k}{2}
\end{array}\right.
\end{aligned}
$$

(818)

$$
\begin{aligned}
& \varepsilon_{11}=u_{1,1}=\frac{a}{4}\left(x_{2}+x_{3}\right)^{2}=a ; \varepsilon_{22}=a ; \quad \varepsilon_{33}=a \quad \text { TR, P8 } \\
& \varepsilon_{12}=\varepsilon_{21}=\frac{1}{2} \frac{a}{4}\left(\not x x_{1}\left(x_{2}+x_{3}\right)+\not x_{2}\left(x_{1}+x_{3}\right)\right)=a \\
& \varepsilon_{13}=\varepsilon_{31}=\varepsilon_{23}=\varepsilon_{32}=a
\end{aligned}
$$

Principal straws.

$$
\begin{aligned}
a^{3} \operatorname{det}\left|\begin{array}{ccc}
1-\lambda & 1 & 1 \\
1 & 1-\lambda & 1 \\
1 & 1 & 1-\lambda
\end{array}\right|=0 & \Rightarrow(1-\lambda)\left[(1-\lambda)^{2}-1\right]-1[(1-\lambda)-1]+1[1-(1-\lambda)]=0 \\
& \Rightarrow(1-\lambda)^{3}-(1-\lambda)-(1-\lambda)+1+1-(1-\lambda)=0 \\
& \Rightarrow \lambda-3 \lambda+3 \lambda^{2}-\lambda^{3}-\lambda^{3}+3 \lambda+2=0 \Rightarrow \lambda^{2}(3-\lambda)=0 \Rightarrow \lambda=0,0,3 \\
& \Rightarrow \in(1)=3 a, \in(2)=0, \in(3)=0
\end{aligned}
$$

When referred to the provicipal system, $\epsilon_{11}^{\prime}=\epsilon(1), \epsilon_{22}^{\prime}=\epsilon(2), \epsilon_{33}^{\prime}=\epsilon(3)$, all ot he components
Then $\mathcal{E}=\epsilon_{i j} n_{i} n_{j}=\epsilon_{i j}^{\prime} n_{i}^{\prime} n!=\epsilon(1) n^{\prime 2}, \epsilon_{1}^{\prime 2}$ Then $\mathcal{E}=\epsilon_{i j} n_{i} n_{j}=\epsilon_{i j}^{\prime} n_{i}^{\prime} n_{j}^{\prime}=\epsilon(1) n_{1}^{\prime 2}+\epsilon(2) n_{2}^{\prime 2}+\epsilon(3) n_{3}^{\prime 2}$

$$
\left(E_{m i n}=E(2) 1^{2} \text { or } E(3) 1^{2}=0 \rightarrow\right.
$$

For $\left.\begin{array}{rl}\epsilon(1):-2 n_{1}(1)+n_{2}(1)+n_{3}(1)=0 \\ n_{1}(1)-2 n_{2}(1)+n_{3}(1)=0\end{array}\right\} \Rightarrow-3 n_{2}(1)+3 n_{3}(1)=0 \Rightarrow n_{2}(1)=n_{3}(1)$

$$
n_{1}^{2}(1)+n_{2}^{2}(1)+n_{3}^{2}(1)=1 \Rightarrow n_{i}(1) \Rightarrow\left(\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}\right)
$$

For $\left.\epsilon(2): \begin{array}{l}n_{1}(2)+n_{2}(2)+n_{3}(2)=1 \\ \\ n_{1}^{2}(2)+n_{2}^{2}(2)+n_{3}^{2}(2)=1\end{array}\right\}$ So $n_{i}(2)$ has some arbitrariness, as expected.
5
+
2
2 choose a, any direction orth goral to $n_{i}(1)$. Tum $n_{i}(2) \Rightarrow\left(0, \pm \frac{1}{\sqrt{2}}, \mp \frac{1}{\sqrt{2}}\right)$
For $\in(3)$: Similarly choose $n_{i}+3$, to he orthiginel to $n_{i}(1) \& i_{i}(2)$ So $n_{i}(3) \Rightarrow\left(-\frac{2}{\sqrt{6}}, \pm \frac{1}{\sqrt{6}}, \pm \frac{1}{\sqrt{6}}\right)$
Now

$$
\begin{aligned}
& E_{\text {max }}=\epsilon_{i j} n_{i}(1) n_{j}(1)=\frac{1}{\sqrt{3}}\left(\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}\right) * 3=3 \\
& E_{\text {mai }}=\epsilon_{i j} n_{i}(2) n_{j}(2)=\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right)-\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right. \\
& \text { or } E_{m \text { min }}=\epsilon_{i j} n_{i}(3) n_{j}(3)=\left(-\frac{2}{\sqrt{6}}+\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{6}}\right)^{2}=0
\end{aligned}
$$

as expected.

PQ, side u_{θ} is malti-valued (ie, for the same physical point we can have $\left.\theta=\theta^{*}, \theta^{*}+m \pi\right)$, the displfield is not compatible for abitrany constant.
In order ensure finite displacements, $A=0$ if the origin is pets f the contimumen
In order" "single valued displ:'s, $B=0$
(10) 1

$$
\begin{aligned}
\widetilde{w}_{i} & =\frac{1}{2} \epsilon_{i j k} \tilde{w}_{k j}=\frac{1}{2} \frac{1}{2} \epsilon_{i j k}\left(u_{k, j}-u_{j, k}\right)=\frac{1}{4}\left(\epsilon_{i j k} u_{k, j}-\epsilon_{i j k} u_{j, k}\right)=\frac{1}{4}\left(\epsilon_{i j k} u_{k, j}+\epsilon_{i k j} u_{j, k}\right) \\
& \left.=\frac{1}{4} 2 \epsilon_{i j k} u_{k, j}=\frac{1}{2} \epsilon_{i j k} u_{k, j} \quad \text { (where', is } \frac{\partial}{\partial a}\right)
\end{aligned}
$$

(t)

$$
\begin{aligned}
& e_{i j}=\frac{1}{2}\left(u_{i, j}+u_{j, i}\right) \\
& e_{11}=0, e_{22}=0, e_{33}=0, e_{12}=c x_{3}, e_{23}=c x_{1}, e_{13}=c x_{2} \\
& w_{i j}=\frac{1}{2}\left(u_{i, j}-u_{j, i}\right) \rightarrow \text { get } w_{i j}=0
\end{aligned}
$$

So this displacement field represents a case of pure straining.
(c)

$$
\begin{aligned}
& d u_{i}=\tilde{w}_{i j} d a_{j} \quad, \quad \tilde{w}_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial a_{j}}-\frac{\partial u_{j}}{\partial a_{i}}\right) \\
& \tilde{w}_{i j} \Rightarrow\left(\begin{array}{ccc}
0 & \frac{c}{2}\left(a_{1}-a_{2}\right) & -c a_{3} \\
\frac{c}{2}\left(a_{2}-a_{1}\right) & 0 & -c a_{3}
\end{array}\right) \text { The two pass }{ }^{P Q} \text { lie on the lime (in } x_{1} x_{2} \text { plane) } \\
& \text { making real acute } L \text { 's with positive } x_{1} i x_{2} \text { - } \\
& \text { axes. } \\
& \text { Hence } a_{1}=a_{2}, a_{3}=0 \Rightarrow \widetilde{w}_{i j}=0 \text { © } P(\text { also \& } \\
& \text { So } d u_{i}=0
\end{aligned}
$$

Th, P3
(P-11) For infinitessial strains, $\tilde{D}=\frac{\Delta v}{v}=l_{i i}=u_{1,1}+u_{2,2}+u_{3,3}$
For incompressibility, $\Delta v=0 \Rightarrow \tilde{D}=0$

$$
\begin{aligned}
& \therefore l_{i i}=u_{1,1}+u_{2,2}+u_{3,3}=\left(1-x_{2}^{2}\right)\left(b+2 c x_{1}\right)+u_{2,2}+0=0 \\
& \Rightarrow u_{2}=\left(\frac{x_{2}^{3}}{3}-x_{2}\right)\left(b+2\left(x_{1}\right)+f\left(x_{1}, x_{3}\right) \quad \Rightarrow \quad u_{2}=x_{2}\left(\frac{x_{2}^{2}}{2}-1\right)\left(b+2 c x_{1}\right)\right. \\
& \text { Now } \left.\left.u_{2}\right|_{x_{2}}= \pm \sqrt{3}=f\left(x_{1}, x_{c}\right)=0-\text { siva }\right)
\end{aligned}
$$

(2.13)

$$
\begin{aligned}
& \phi=-\frac{A}{6} x_{2}^{3}-\frac{B}{6} x_{1}^{2} x_{2}^{3}+\frac{C}{2} x_{1}^{2} x_{2}-\frac{9}{4} x_{1}^{2}+\frac{B}{30} x_{2}^{5} \\
& \sigma_{11}=\phi_{22}=-A x_{2}-B x_{1}^{2} x_{2}+\frac{2 B}{3} x_{2}^{3} \\
& \sigma_{22}=\phi_{11}=-\frac{B}{3} x_{2}^{3}+C x_{2}-\frac{q}{2} \\
& \sigma_{12}=-\left(-B x_{1} r_{2}^{2}+C x_{1}\right)
\end{aligned}
$$

(Shamesficge, pp 64, Probl 1.26)
(G) B.C's

$$
\left.\begin{array}{ll}
\left(\sigma_{12}=\sigma_{21}\right)_{x_{2}= \pm h / 2}=0 & \Rightarrow-x_{1}\left(-\frac{B h^{2}}{4}+c\right)=0 \tag{1}\\
\left(\sigma_{22}\right)_{x_{2}}=+h / 2=-q & \Rightarrow-\frac{B h^{3}}{24}+\frac{C h}{2}-\frac{q}{2}=-q \\
\left(\sigma_{22}\right) x_{2}=-h / 2=0 & \Rightarrow-\left(-\frac{B h^{3}}{24}+\frac{C h}{2}\right)-\frac{q}{2}=0
\end{array}\right\} .
$$

$$
\left(\sigma_{22}\right)_{x_{2}=+h / 2}=-q \Rightarrow-\frac{B h^{3}}{24}+\frac{C h}{2}-\frac{q}{2}=-q \quad \rightarrow \text { (Bothequs identical) }
$$

$\left(\int_{-h / 2}^{h / 2} \sigma_{11} x_{2} d x_{2}\right)_{x_{1}= \pm \frac{L}{2}}=0 \quad$ (ie zeo applied monent at
$\frac{-A h^{3}}{12}-\frac{B L^{2}}{4} \frac{h^{3}}{12}+\frac{2 B}{3} \frac{h^{5}}{80}=0$
(1) (2), (3) $\Rightarrow A=\frac{6 q}{h^{3}}\left(\frac{L^{2}}{4}-\frac{h^{2}}{10}\right), B=-\frac{6 q}{h^{3}}, C=-\frac{3}{2} \frac{q}{h}$

NOTE: $\left(\int_{-h / 2}^{h / 2} \sigma_{11} d x_{2}\right)_{x_{1}= \pm \frac{L}{2}}=0 \quad\left(1 . e\right.$, veroaxial force ${ }_{h}$ identicall satisfied $\because T_{11}$ hain odd pivess $\left.J^{\prime} X_{2}\right)$
$\left(\int_{-h / 2}^{h / 2} \sigma_{12} d x_{2}\right)_{x_{1}= \pm \frac{L}{2}}= \pm q \frac{L}{2}$ (i.e, shear force is $\pm \frac{q L}{2}$ at leftirightfaces, identically satisfied \rightarrow (rifect this condt. grive epr identical to (2))
(C) Stress Distrib tim (subst A, B, C into $\sigma_{11}, T_{22}, \sigma_{12}$ abrore)

$$
\left.\begin{array}{l}
\sigma_{11}=-\frac{q}{2 I}\left[\left(\frac{L}{2}\right)^{2}-\frac{h^{2}}{10}-x_{1}^{2}+\frac{2}{3} x_{2}^{2}\right] x_{2} \\
\sigma_{22}=\frac{q}{2 I}\left[\frac{x_{2}^{3}}{3}-\left(\frac{h}{2}\right)^{2} x_{2}-\frac{h^{3}}{12}\right] \\
\sigma_{12}=\frac{-q}{2 I}\left[x_{1} x_{2}^{2}-\frac{h^{2}}{4} x_{1}\right]
\end{array}\right\} I=\frac{t h^{3}}{12}=\frac{h^{3}}{12}
$$

$\sigma_{13}=\sigma_{23}=\sigma_{33}=0$ (plave stees assumed)
strain Distrilutim (Horkeslaw used, $\lambda_{i j}=\frac{1+y}{E} \sigma_{i j}-\frac{\nu}{E} \sigma_{k k} \delta_{i j}$

$$
l_{11}=\frac{-q}{2 E I}\left[(2+\nu) \frac{x_{2}^{3}}{3}+\left(\frac{L^{2}}{4}-\frac{h^{2}}{10}-\frac{\nu h^{2}}{4}\right) x_{2}-x_{1}^{2} x_{2}-\frac{\nu h^{3}}{12}\right]
$$

$$
\begin{aligned}
& i=1, j=2 \mathrm{BM}_{\text {ispan }}^{(\text {compat })} \text { unt satisfid } \\
& r=3, j=3 \quad \text { " satisfied }\left(\because f_{i}=0\right)
\end{aligned}
$$

$$
\begin{aligned}
& l_{22}=-\frac{\nu}{2 E}\left[-(1+2 \nu) \frac{x_{2}^{3}}{3}+\left(-\nu \frac{L^{2}}{4}+\frac{\nu h^{2}}{10}+\frac{h^{2}}{4}\right) x_{2}+\nu x_{1}^{2} x_{2}+\frac{h^{3}}{12}\right] \\
& l_{12}=-\left(\frac{1+\nu}{E}\right) \frac{q}{2 I}\left(x_{1} x_{2}^{2}-\frac{h^{2}}{4} x_{1}\right)
\end{aligned}
$$

Sires distritutim nat valid on left/right faces $\because \sigma_{11}, \sigma_{12}$ nin-ven on these faces.
(d) Displacements

$$
\begin{aligned}
& \Lambda_{11}=\frac{\partial u_{1}}{\partial x_{1}} \Rightarrow u_{1}=-\frac{q}{2 E I}\left[(2+\nu) \frac{x_{1} x_{2}^{3}}{3}+\left(\frac{L^{2}}{4}-\frac{h^{2}}{10}-\frac{\nu h^{2}}{4}\right) x_{1} x_{2}-\frac{x_{1}^{3} x_{2}}{3}-\frac{\nu h^{3}}{12} x_{1}+f\left[x_{2}\right]\right] \\
& \Lambda_{22}=\frac{\partial u_{2}}{\partial x_{2}} \Rightarrow u_{2}=-\frac{q}{2 E I}\left[-(1+2 \nu) \frac{x_{2}^{4}}{12}+\left(-\frac{\nu L^{2}}{4}+\frac{\nu h^{2}}{10}+\frac{h^{2}}{4}\right) \frac{x_{2}^{2}}{2}+\frac{\nu x_{1}^{2} x_{2}^{2}}{2}+\frac{h^{3}}{12} x_{2}+g\left[x_{1}\right]\right]
\end{aligned}
$$

silos u_{1}, u_{2} into b_{12} :

$$
\begin{aligned}
& 2 l_{12}=\left(u_{1,2}+u_{2,1}\right) \Rightarrow-\frac{a}{r E I}\left[2(1+\nu)\left\{x_{1} x_{2}^{2}-\frac{h^{2}}{4} x_{1}\right\}\right]=-\frac{g}{2 E I}\left[(2+\nu) x_{1} x_{2}^{2}+\left(\frac{h^{2}}{4}-\frac{h^{2}}{10}-\frac{\nu h^{2}}{4}\right) x_{1}-\frac{x_{1}^{3}}{3}+f^{\prime}\right. \\
& \Rightarrow g^{\prime}+\left(\frac{h^{2}}{4}-\frac{h^{2}}{10}-\frac{\nu h^{2}}{4}\right) x_{1}-\frac{x_{1}^{3}}{3}+2(1+\nu) \frac{h^{2}}{4} x_{1}=-f^{\prime}=k \text { (constr) } \\
& \Rightarrow f=-k x_{2}+c_{1} \quad, \quad g=k x_{1}+\frac{x_{1}^{4}}{12}-\left(\frac{L^{2}}{4}+\frac{2}{5} h^{2}+\frac{1}{4} \nu h^{2}\right) \frac{x_{1}^{2}}{2}+c_{2}
\end{aligned}
$$

Displacement $B C^{\prime}$ s
\rightarrow prevent $R B$ transl in x_{2} dir and $1+B$ rot. in $x_{1} x_{2} p / a \operatorname{ce}$ $u_{2}=0$ at $\left.x_{1}=\frac{L}{2}, x_{2}=-\frac{h}{2}\right\} \Rightarrow \frac{F}{k=0}$ in er direct RB transl in x_{1} chi , put $\left.u_{1}\right|_{x_{1}=\frac{L}{2}}=0$, find

$$
\left.\begin{array}{ll}
u_{2}=0
\end{array} \text { at } x_{1}=-\frac{L}{2}, x_{2}=-\frac{h}{2}\right] \Rightarrow k=0 \quad 1 \quad c_{2}=\frac{5}{192} L^{4}+\left(\frac{1}{20}+\frac{\nu}{32}\right) h^{2} L^{2}+h^{4}\left(\frac{1}{64}-\frac{\nu}{480}\right) \quad, \begin{aligned}
& x_{1}=\frac{L}{2} \\
& x_{2}=-\frac{h}{2}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow u_{2}\left[x_{1}, 0\right]= & -\frac{9 L^{4}}{24 E I}\left[\left(\frac{x_{1}}{L}\right)^{4}-\frac{3}{2}\left(\frac{x_{1}}{L}\right)^{2}+\frac{5}{16}+\left(\frac{h}{L}\right)^{2}\left\{\left(\frac{12}{5}+\frac{3 v}{2}\right)\left(\frac{1}{4}-\left\{\frac{x_{1}}{L}\right\}^{2}\right)+\left(\frac{3}{16}-\frac{\nu}{40}\right)\left(\frac{h}{L}\right)^{2}\right\}\right] \\
& 24 u_{2}^{*}\left[x_{1}, 0\right]
\end{aligned}
$$

(e) Slender-bearn
put put $\frac{h}{L} \simeq 0$ in $u_{2}^{*}\left[x_{1}, 0\right]$ and get,

$$
u_{2}^{*}\left[x_{1}\right]=-\frac{1}{24}\left[\left(\frac{x_{1}}{L}\right)^{4}-\frac{3}{2}\left(\frac{x_{1}}{L}\right)^{2}+\frac{5}{16}\right]
$$

TS, P4
(1.12) Hooke law after investing $\rightarrow \lambda_{i j}=\frac{1+\gamma}{E} \sigma_{i j}-\frac{\nu}{E} \sigma_{k k} \delta_{i j} \Rightarrow l_{k k}=\frac{1-2 \nu}{E} \sigma_{k R}$

$$
\Rightarrow l_{R k}=1.869 * 10^{-4}=\tilde{D}
$$

Now $\bar{D}=\lim _{v \rightarrow 0} \frac{\Delta V}{V}$ bat stres/strain distr uniform throughout cube $\Rightarrow S$ credent theront cube $\Rightarrow \Delta V=S V=2.336 * 10^{-8} \mathrm{~m}^{3}$

$$
\hat{f}_{1}=\bar{f}_{1}\left[x_{1}, x_{2}\right], \tilde{f}_{2}=\tilde{f}_{2}\left[x_{1}, x_{2}\right], \tilde{f}_{3}=0
$$

$$
\begin{aligned}
& \text { Horkes law } \rightarrow \sigma_{i j}=\frac{E}{1+\nu}\left[e_{i j}+\frac{\nu}{1-2 \nu} e_{k k} \delta_{i j}\right] \Rightarrow \sigma_{13}=\sigma_{23}=0.0 \text { (linear case) }
\end{aligned}
$$

T4, P2. Do by using strain compat eqns directly. Here it is done by Beltrami Michell compat eqns, which was not done in class

B-Mcompatilility (inchudes equalibricum epn):

$$
\begin{aligned}
& i=j=1: \nabla^{2} \sigma_{11}+\frac{1}{1+\mu}\left(\sigma_{11,11}+\sigma_{22,11}+\sigma_{33,11}\right)+\tilde{f}_{1,1}+\tilde{f}_{1,1}+\frac{\nu}{1-\nu}\left(f_{1,1}+F_{2,2}+f_{3,3}\right)^{0}=0 \\
& i-j=2: \nabla^{2} \sigma_{22}+\frac{1}{1+\nu}\left(\sigma_{11,22}+\sigma_{22,22}+\sigma_{33,22}\right)+\tilde{f}_{2,2}+\tilde{f}_{2,2}^{1-\nu}+\frac{\nu}{1-\nu}\left(\tilde{f}_{1,1}+\tilde{f}_{2,2}+f_{3,3}\right)=0 \rightarrow \text { ® } \\
& i=1, j=2: \nabla^{2} \sigma_{12}+\frac{1}{1+\nu}\left(\sigma_{11,12}+\sigma_{22,12}+\sigma_{33,12}\right)+F_{1,2}+F_{2,1}=0 \\
& \begin{array}{l}
i=j=3: \nabla^{2} \sigma_{33}+\frac{1}{1+\nu}\left(\sigma_{11},,_{33}^{0}+\sigma_{2 / 2,33}^{0}+\sigma_{3 \beta}, 33\right)+f_{\beta, 3}^{0}+f_{\beta, 3}^{0}+\frac{\nu}{1-\nu}\left(f_{21}+f_{2,2}+f_{\beta, 3}^{0}\right)=0 \rightarrow \text { (3) } \\
i=1, j=3:\} \text { identicale atisfied }(0=0)
\end{array}
\end{aligned}
$$

$i=1, j=3: 3$
$i=2, j=3=j$ identicall, satisfied $(0=0)$

$$
\begin{aligned}
\text { Horkes lam } & \rightarrow \sigma_{33}=\frac{E}{1+\nu}\left[e_{\beta 3}^{*}+\frac{\nu}{1-2 \nu}\left(e_{11}+e_{22}+e_{\beta 3}^{0}\right)\right]=\frac{\varepsilon_{\nu}}{(1+\nu)(1-2 \nu)}\left[\frac{1+\nu}{E}\left\{\sigma_{11}+\sigma_{22}\right\}-\frac{2 \nu}{E}\left\{\sigma_{11}+\sigma_{22}-\sigma_{33}\right\}\right. \\
& \Rightarrow \sigma_{33}\left(1+\frac{2 \nu^{2}}{(1+\nu)(1-2 \nu)}\right)=\frac{(1-\nu) \nu}{(1+\nu)(1-2 \nu)}\left\{\sigma_{11}+\sigma_{22}\right\} \\
& \Rightarrow \sigma_{33}=\nu\left(\sigma_{11}+\sigma_{22}\right)
\end{aligned}
$$

Subse. σ_{33} into egr (3), and get,

$$
\nabla^{2} \sigma_{12}+\left(\sigma_{11}+\sigma_{22}\right)_{12}+\tilde{f}_{1,2}+\tilde{f}_{2,1}=0 \rightarrow(3)^{*}
$$

EOM's are,

$$
\left.\begin{array}{rl}
\sigma_{11,1}+\sigma_{12,2}+\tilde{f}_{1} & =0 \rightarrow(A) \\
\sigma_{12,1}+\sigma_{22,2}+\tilde{f}_{2} & =0 \rightarrow \text { (B) } \\
0 & =0
\end{array}\right\} \text { Thus (3) } \equiv \frac{\partial(A)}{\partial x_{2}}+\frac{\partial(B)}{\partial x_{1}}
$$

So we can replace (3) Lence (3) by the EOM's, ie, (A), (B).
Adding (1), (2) \& (4), use Horkes lan for σ_{33} and get,

$$
\begin{align*}
& (1+\nu) \nabla^{2}\left(\sigma_{11}+\sigma_{22}\right)+\frac{1}{1+\nu}\left[(1+\nu) \nabla^{2}\left(\sigma_{11}+\sigma_{22}\right)\right]+2\left(1+\frac{3 \nu}{2(1-\nu)}\right)\left(\tilde{f}_{1,1}+\tilde{f}_{2,2}\right)=0 \\
& \Rightarrow \nabla^{2}\left(\sigma_{11}+\sigma_{22}\right)=-\frac{1}{1-\nu}\left(\tilde{f}_{1,1}+\tilde{f}_{2,2}\right) \rightarrow \text { (C) } \tag{C}
\end{align*}
$$

Thus (A), (B), (C) give exact sol. of p-stranin problem.
Now for conservative body forces, $\sigma_{11}=\phi, 22-\psi, \sigma_{22}=\phi_{11}-\psi, \sigma_{12}=-\phi, 12$,
the solutive which satisfies where $f_{3}=0, f_{i}=\psi\left[x_{1}, x_{2}\right], i$ for $i=1,2$ (Mid-term
miscortir. he substined into (c) yield,

$$
\nabla^{4} \phi=\left(\frac{1-2 \nu}{1-x}\right) \nabla^{2} \psi
$$

MTE: Faly 'heed to be colved in worjumctim with appropricte BC's on ϕ, for the p-strain problem. Thes p-itrami problems exact sol reduce. If solving this qu .
(1.14) For p-streses \& corresponding p-axes we solve,

$$
\begin{equation*}
\left(\sigma_{i j}-\sigma \delta_{i j}\right) n_{j}=0 \tag{1}
\end{equation*}
$$

subst. crost tative law for isut oppic body, we get,

$$
\begin{align*}
& \left(\frac{E}{1+\nu}\left[l_{i j}+\frac{\nu}{1-2 \nu} \delta_{i j} l_{m m}\right]-\sigma \delta_{i j}\right) n_{j}=0 \\
\Rightarrow & \left(l_{i j}-\left\{\frac{1+\nu}{E} \sigma-\frac{\nu}{1-2 \nu} l_{m m}\right\} \delta_{i j}\right) n_{j}=0 \tag{2}
\end{align*}
$$

Now for p-stran's \& corresprindaig p-axes we solve,

$$
\begin{equation*}
\left(l_{i j}-l \delta_{i j}\right) n_{j}^{*}=0 \tag{3}
\end{equation*}
$$

Now (3) \& (2) are of the same form. Reir sohetim is ottained by sotuning either evalue protlem (1) or (3). Hence e-vectris $n_{j} \& n_{j}^{*}$ must coniside (ie., p-axer of stres (n_{j}) coricide with p-axe of strain (h_{j}^{*})).
(9.15) Thin plate implage loade only. Sirice plate is ther it implies that edge loads 'do nut vary in the thicknes directim. Furthermire $F_{3}=0$ (infact $F_{1}=F_{2}=0$ is given). Thus this can be approximated as a plane stress problem.
Hence $\sigma_{i 3}=0, \frac{\partial}{\partial x_{3}}=0$
T3, P5

$$
\begin{aligned}
& l_{A}=-100 * 10^{-6}=l_{i j} n_{i} n_{j} \quad\left(n_{i}=[1,0,0]\right) \Rightarrow l_{A}=-100 * 10^{-6}=l_{11} \\
& l_{C}=400 * 10^{-6}=l_{i j} n_{i} n_{j} \quad\left(n_{i}=[0,0,1]\right) \Rightarrow l_{C}=400 * 10^{-6}=l_{22} \\
& l_{B}=-200 * 10^{-6}=l_{i j} n_{i} n_{j} \quad\left(n_{i}=\left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right]\right) \Rightarrow l_{B}=-200 * 10^{-6}=\frac{l_{11}}{2}+\frac{l_{22}}{2}+l_{12} \\
& \\
& \text { From constitutive lam } \quad l_{13}=l_{23}=0 \quad \because l_{12}=-350 * 10^{-6}
\end{aligned}
$$

Arom constitutive law $l_{13}=l_{23}=0 \quad\left(\because \sigma_{13}=\sigma_{23}=0\right)$
Also, $\sigma_{33}=0=\frac{E}{1+\mu}\left[l_{33}+\frac{\nu}{1-2 \nu}\left(l_{11}+l_{22}+l_{33}\right)\right] \Rightarrow l_{33}=-128.6 * 10^{-6}$
Thens $\sigma_{11}=\frac{E}{1+v}\left[l_{11}+\frac{\nu}{1-2 v}\left(l_{11}+l_{22}+l_{33}\right)\right]=658.85 \mathrm{psi}$

$$
\begin{aligned}
& \Gamma_{22}=\frac{E}{1+\nu}\left[l_{22}+\frac{\nu}{1-2 \nu}\left(l_{11}+l_{22}+l_{33}\right)\right]=12197.3 \mathrm{psi} \\
& \sigma_{12}=\frac{E}{1+\nu} l_{12}=-8076.9 \text { psi }
\end{aligned}
$$

$$
\begin{aligned}
& \left|r_{1 j}-\sigma_{i j}\right|=0 \Rightarrow-\sigma\left[\left(\sigma-\sigma_{11}\right)\left(\sigma-\sigma_{22}\right)-\sigma_{12}^{2}\right]=0 \\
& \Rightarrow \sigma(3)=0, \& \sigma_{(1)}^{2}=\frac{\left(\sigma_{11}+\sigma_{22}\right) \pm \sqrt{\left(\sigma_{11}+\sigma_{22}\right)^{2}-4\left(\sigma_{11} \sigma_{22}-\sigma_{12}^{2}\right)}}{2} \\
& \Rightarrow \sigma(1)=16353.8 \text { psi }, \sigma(2)=-3497.7 \text { psi, } \sigma(3)=0
\end{aligned}
$$

(1.16) (a) $l_{11}=c, l_{22}=-c \nu, l_{33}=-c \nu, l_{12}=l_{13}=l_{23}=0$
$\Rightarrow l_{i j}$ are crnst $\Rightarrow \sigma_{i j}$ are const $\Rightarrow \tilde{f}_{i}=0$ (from epuil egns).
(v) $\mu=\frac{E}{2(1+\nu)} \quad \& \quad k=\frac{E}{3(1-2 \nu)}$
$\left.\begin{array}{l}\text { For } E>0, \& \mu>0, \nu \geqslant-1 \\ \text { For } E>0, \& k>0, \nu \leq \frac{1}{2}\end{array}\right\} \Rightarrow-1 \leq \nu \leq 1 / 2$

