- Each question worth $\mathbf{2 0}$ marks
- Show all working.
- Attempt all parts of a question in a contiguous manner, i.e., dont scatter parts of the same question all over the answerbook.
- Only one attempt per question will be graded. So cancel out any attempt you do not want graded. The first not-cancelled attempt will be graded by default.
- Formula sheet not really required. If you have one, it must be submitted with the answer book. No solved examples allowed on formula sheet.

1. The principal stresses at point P are $4,5,6$. Determine the unit normal for the plane upon which the normal stress is 5 and shearing stress is $\frac{1}{2}$.
(Hint: use a convenient coordinate system)
2. Given the displacement field

$$
u_{x}=k\left(x^{2}+2 z\right) ; \quad u_{y}=k\left(4 x+2 y^{2}+z\right) ; \quad u_{z}=4 k z^{2}
$$

where $k=0.001$ can be assumed as very small. Determine:
(a) The engineering extensional strains at the point $P \equiv(2,2,3)$, along the directions $\vec{n}(1) \equiv(0,1 / \sqrt{2}, 1 / \sqrt{2}), \vec{n}(2) \equiv(1,0,0), \vec{n}(3) \equiv(0.6,0,0.8)$
(b) The change in angle after deformation between two line elements $P Q$ lying along $\vec{n}(1)$ and $P R$ lying along $\vec{n}(2)$ before deformation.
(c) The change in angle after deformation between two line elements $P Q$ lying along $\vec{n}(1)$ and $P R$ lying along $\vec{n}(3)$ before deformation.

3 A body is subject to uniform pressure such that the state of stress is $\sigma_{x x}=\sigma_{y y}=\sigma_{z z}=-p, \quad \sigma_{x y}=\sigma_{y z}=\sigma_{z x}=0$. Assume the elastic constants as E and v. Given that the displacement and the rotation at the origin are zero, determine the displacements as a function of x, y, z.
(Hint: start with the constitutive law, obtain all 6 strain components, integrate the strain displacement equations to find the displacements, use the conditions at the origin to obtain the constants of integration)

