- Marks: $\mathrm{Q} 1=15, \quad \mathrm{Q}=15, \quad \mathrm{Q}=20$.
- Show all working.
- Show finally only one attempt per question (i.e., cancel out multiple attempts that you do not want to be graded).
- Open notes exam

1. The linear state of strain at a point in a solid is given as

$$
e_{i j}=\left(\begin{array}{ccc}
1 & -3 & \sqrt{2} \\
-3 & 1 & -\sqrt{2} \\
\sqrt{2} & -\sqrt{2} & 4
\end{array}\right)
$$

Determine:
(a) The extensional strain in the direction $(1,-1, \sqrt{2})$
(b) The angle after deformation between two line elements originally along $(1,-1, \sqrt{2})$ and $(-1,1, \sqrt{2})$.
2. Find the direction of the total force acting on the surface of a cylinder due to the stress distribution given below. The cylinder lies in the region $x>0$, has radius $R=1$ and length $L=1$, and its longitudinal axis is the x-axis. The stress distribution is

$$
\sigma_{i j}=\left(\begin{array}{ccc}
3 x y & 5 y^{2} & 0 \\
5 y^{2} & 0 & 2 z \\
0 & 2 z & 0
\end{array}\right)
$$

3. Consider a beam of uniform cross-section subject to couple M at its ends, as shown. The couple is applied by means of a linear distribution of $\sigma_{z z}$ along the boundaries $z=0$ and $z=L$. Obtain the stresses, strains, and displacements. The beam is restrained from rigid body displacement.
(Hint: From basic solid mechanics, assume a solution of the stress tensor $\sigma_{i j}$ having only one non-zero component, with the non-zero component varying linearly with the x coordinate only. Check that your stress distribution satisfies boundary condition, equilibrium, compatibility. Then, use this distribution to obtain strains and hence displacements.)

Quiz-I
CE 623
FALL 2007
P.I. (a) Linear theong $\rightarrow \varepsilon_{E}=M=e_{i j} n_{i} n_{j}=\underline{n}^{\top} \underline{\underline{e}} \underline{n}$

$$
\begin{aligned}
\varepsilon_{E}=\frac{1}{\sqrt{4}} & \left(\begin{array}{lll}
1 & -1 & \sqrt{2}
\end{array}\right)\left(\begin{array}{c}
6 \\
-6 \\
6 \sqrt{2}
\end{array}\right)=\frac{24}{(\sqrt{4})^{2}}=
\end{aligned} \begin{aligned}
& \left(\text { If e was given as } * \text { ky } 10^{-6}\right. \text {, say, } \\
& \text { then } \left.\varepsilon_{E}=6 * 10^{-6}\right) .
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \text { For diection } \frac{(-1,1, \sqrt{2})}{\sqrt{4}}=\underline{n}(2) \\
& \qquad \operatorname{en} n(2)=\left(\begin{array}{ccc}
1 & -3 & \sqrt{2} \\
-3 & 1 & -\sqrt{2} \\
\sqrt{2} & -\sqrt{2} & 4
\end{array}\right)\left(\begin{array}{c}
-1 \\
1 \\
\sqrt{2}
\end{array}\right) * \frac{1}{2}=\frac{1}{2}\left(\begin{array}{c}
-2 \\
2 \\
2 \sqrt{2}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Also } \cos \theta_{0}=\underline{n}(1)^{\top} \underline{n}(2)=\frac{1}{2}\left(\begin{array}{ll}
1 & -1 \\
\sqrt{2}
\end{array}\right)\left(\begin{array}{c}
-1 \\
1 \\
\sqrt{2}
\end{array}\right) * \frac{1}{2}=0 \\
& \Rightarrow \cos \theta=\left[\begin{array}{ll}
\cos \theta_{0}+2 n(1)^{\top} \underline{n}(2) \\
\left(1+2 n(1)^{\top} e n(1)\right)^{1 / 2}\left(1+2 n(2)^{\top} \underline{e} n(2)\right)^{1 / 2}
\end{array}\right]=0 \Rightarrow \theta=90^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{n}=\frac{\nabla \phi}{|\underline{\nabla} \phi|}, \phi=y^{2}+z^{2}-1=0 . \\
& \underline{n}=\frac{2(y \underline{j}+z \underline{k})}{2\left(y^{2}+z^{2}\right)=1 \text { on sufoce. }}=y \underline{j}+z \underline{k}=(0, y, z) \\
& \underline{\sigma}=\underline{\sigma} \underline{n}=\left(\begin{array}{ccc}
3 x y & 5 y^{2} & 0 \\
5 y^{2} & 0 & 2 z \\
0 & 2 z & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
5 y^{3} \\
2 z^{2} \\
2 y^{z}
\end{array}\right)
\end{aligned}
$$

x-comprient of σ

$$
\sum F_{x}=0
$$

So total force acts in y-diection
P.3. Assume $\sigma_{z z}=a x, a=-\frac{M}{I}$, all other stresses zen. This solution satisfies equilibrium (\because allothe stress zens, body forces neglected, $\sigma_{z z, z}=0$), compatibility (\because stresses are linear functions of coordinates, no body forces, so BM compatibility equs satisfied), and boundary conditions
 $\begin{gathered}\text { otter stresses }\end{gathered}=0$ satisfy $\left.\sigma_{z x}\right|_{x=0, L}=0,1=\frac{a h^{3}}{12}=\frac{-M / 2}{\bar{y}} \frac{h^{3} / 2}{1 / 2}$ for $t=1$
$=0,\left.\sigma_{z x}\right|_{x=1}=0$

$$
\begin{equation*}
\left|\sigma_{x x}\right|_{x= \pm \frac{h}{2}}=0,\left.\quad \sigma_{z x}\right|_{x= \pm \frac{h}{2}}=0 \tag{array}
\end{equation*}
$$

So THIS IS THE ONLY POSSTBLE SOLITION.
Constitutive equations (Hoke's law):

$$
\begin{align*}
& e_{x x}=e_{y y}=-\frac{v}{E} \sigma_{z z}=b x, b=-\frac{v}{E} a, \\
& e_{z z}=\frac{\sigma_{z z}}{E}=c x, c=\frac{a}{E} \\
& e_{x y}=e_{y z}=e_{z x}=0 . \\
& u_{x, x}=b x \Rightarrow u_{x}=\frac{b x^{2}}{2}+f_{x}(y, z) \rightarrow u_{y}=b x y+f_{y}(x, z) \rightarrow(1) \tag{1}\\
& u_{y, y}=b x \Rightarrow u_{z}=c x z+f_{z}(x, y) \rightarrow \text { (3) } \tag{2}\\
& u_{z, z}=c x \Rightarrow \frac{\partial f_{x}}{\partial z}+\frac{\partial f_{z}}{\partial x}+c z=0 \rightarrow \text { (4) } \tag{3}\\
& e_{x z}=0 \Rightarrow \frac{\partial f_{y}}{\partial z}+\frac{\partial f_{z}}{\partial y}=0 \rightarrow(5) \tag{4}\\
& e_{y z}=0 \Rightarrow \frac{\partial f_{x}}{\partial y}+\frac{\partial f_{y}}{\partial x}+b y=0 \rightarrow(6) \tag{5}\\
& e_{x y}=0 \Rightarrow \frac{\partial_{x}}{\partial y \partial z}+\underbrace{\partial x \partial y}_{=0}+\frac{\partial^{2} f_{z}}{\partial x \partial z}=0 \tag{6}\\
& \frac{\partial(4)}{\partial y}+\frac{\partial(6)}{\partial z}=0 \Rightarrow \frac{\partial(5)}{\partial x}=0 .
\end{align*}
$$

$$
\Rightarrow f_{x}=p_{y}(y)+p_{z}(z)+k_{1}
$$

(7) in (4), (6)

$$
\begin{aligned}
& p_{z}^{\prime}+\frac{\partial f_{z}}{\partial x}+c z=0 \Rightarrow \underbrace{p_{z}^{\prime}}_{f_{n} o f z}+c z=\underbrace{-\frac{\partial f_{z}}{\partial x}}_{f_{n} g(x, y)}=k_{2} \\
& p_{y}^{\prime}+\frac{\partial f_{y}}{\partial x}+b y=0 \Rightarrow \underbrace{p_{y}^{\prime}+b_{y}}_{f_{n} \text { of } y}=-\underbrace{\frac{\partial f_{y}}{\partial x}}_{f_{n} g(x, z)}=k_{3}
\end{aligned}
$$

So

$$
\begin{align*}
\text { So } & p_{z}^{\prime}+c z=k_{2} \Rightarrow p_{z}=k_{2} z-\frac{c}{2} z^{2} \rightarrow \\
& p_{y}^{\prime}+b_{y}=k_{3} \Rightarrow p_{y}=k_{3} y-\frac{b}{2} y^{2} \rightarrow \tag{9}\\
- & \frac{\partial f_{z}}{\partial x}=k_{2} \Rightarrow f_{z}=-k_{2} x+q_{y}(y)+k_{y} \tag{10}\\
- & \frac{\partial f_{y}}{\partial x}=k_{3} \Rightarrow f_{y}=-k_{3} x+q_{z}(z)+k_{5} \tag{in}
\end{align*}
$$

$$
q_{z}^{\prime}+q_{y}^{\prime}=0 \Rightarrow q_{z}^{\prime}=-q_{y}^{\prime}=k_{b}
$$

$$
\begin{align*}
& q_{z}=k_{6} z+k_{7} \tag{12}\\
& q_{y}=-k_{6} y+k_{8} \tag{13}
\end{align*}
$$

(1, (7), (8), (9) $\rightarrow u_{x}=\frac{b x^{2}}{2}-\frac{b y^{2}}{2}-\frac{c z^{2}}{2}+i k_{3} y+k_{2} z ;$
(2), (11), (12) $\rightarrow u_{y}=b x y+1 k_{6} z+k_{7}-k_{3} x+k_{5}$
(3), (10), (13) $\rightarrow u_{z}=c x z-k_{6} y+k_{8}-k_{2} x+k_{4}^{\prime} \quad{ }^{\prime}$ seabelow
N_{0} rigid body translation $\Rightarrow u_{x}(0,0)=u_{y}(0,0)=u_{z}(0,0)=0$

$$
\Rightarrow k_{7}+k_{5}=k_{8}+k_{4}=0
$$

Remaining lisee, terme $=\left(-k_{6} i+k_{2} j-k_{3} k\right) \times(x \underline{i}+y \underline{j}+z k)$
$=\underline{\omega} \times r \rightarrow$ set tozen for no ngid body rotation.
Explanction: Consider deformation of edges of rectanguler crissection

$\xrightarrow{\text { defomed }}$ at $z=$ constant.
, ie curvature along sf an and alonf widt in opposite dir.

