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Abstract

General circulation models (GCMs), the climate models often used in assessing the impact of climate change, operate on a coarse scale
and thus the simulation results obtained from GCMs are not particularly useful in a comparatively smaller river basin scale hydrology.
The article presents a methodology of statistical downscaling based on sparse Bayesian learning and Relevance Vector Machine (RVM)
to model streamflow at river basin scale for monsoon period (June, July, August, September) using GCM simulated climatic variables.
NCEP/NCAR reanalysis data have been used for training the model to establish a statistical relationship between streamflow and cli-
matic variables. The relationship thus obtained is used to project the future streamflow from GCM simulations. The statistical method-
ology involves principal component analysis, fuzzy clustering and RVM. Different kernel functions are used for comparison purpose.
The model is applied to Mahanadi river basin in India. The results obtained using RVM are compared with those of state-of-the-art
Support Vector Machine (SVM) to present the advantages of RVMs over SVMs. A decreasing trend is observed for monsoon streamflow
of Mahanadi due to high surface warming in future, with the CCSR/NIES GCM and B2 scenario.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Modeling hydrologic impacts of climate change involves
simulation results from General Circulation Models
(GCMs), which are the most credible tools designed to sim-
ulate time series of climate variables globally, accounting
for the effects of greenhouse gases in the atmosphere.
GCMs perform reasonably well in simulating climatic vari-
ables at larger spatial scale (>104 km2), but poorly at the
smaller space and time scales relevant to regional impact
analyses [5]. Such poor performances of GCMs at local
and regional scales have led to the development of Limited
Area Models (LAMs) in which fine computational grid
over a limited domain is nested within the coarse grid of
a GCM [24]. This procedure is also known as dynamic
0309-1708/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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downscaling. The major drawback of dynamic downscal-
ing, which restricts its use in climate change impact studies,
is its complicated design and high computational cost.
Moreover, it is inflexible in the sense that expanding the
region or moving to a slightly different region requires
redoing the entire experiment [11]. Another approach to
downscaling, termed statistical downscaling, involves
deriving empirical relationships that transform large scale
features of the GCM (Predictors) to regional scale vari-
ables (Predictands) such as precipitation and streamflow.
There are three implicit assumptions involved in statistical
downscaling [18]. Firstly, the predictors are variables of rel-
evance and are realistically modeled by the host GCM. Sec-
ondly, the empirical relationship is valid also under altered
climatic conditions. Thirdly, the predictors employed fully
represent the climate change signal.

Statistical downscaling methodologies can be broadly
classified into three categories [31,54]: weather generators,
weather typing and transfer function. Weather generators
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are statistical models of observed sequences of weather
variables. They can also be regarded as complex random
number generators, the output of which resembles daily
weather data at a particular location [26]. There are two
fundamental types of daily weather generators, based on
the approach to model daily precipitation occurrence: the
Markov chain approach [21–23,30] and the spell-length
approach [56]. In the Markov chain approach, a random
process is constructed which determines a day at a station
as rainy or dry, conditional upon the state of the previous
day, following given probabilities. In case of spell-length
approach, instead of simulating rainfall occurrences day
by day, spell-length models operate by fitting probability
distribution to observed relative frequencies of wet and
dry spell lengths. In either case, the statistical parameters
extracted from observed data are used along with some
random components to generate a similar time series of
any length. Weather typing approaches [7] involve group-
ing of local, meteorological variables in relation to different
classes of atmospheric circulation. Future regional climate
scenarios are constructed either by resampling from the
observed variable distribution (conditioned on the circula-
tion pattern produced by a GCM), or by first generating
synthetic sequences of weather pattern using Monte Carlo
techniques and then resampling from the generated data.
The mean, or frequency distribution of the local climate
is then derived by weighting the local climate states with
the relative frequencies of the weather classes. The most
popular approach of downscaling is the use of transfer
Fig. 1. Flowchart of th
function which is a regression based downscaling method
[11,9,53,42] that relies on direct quantitative relationship
between the local scale climate variable (predictand) and
the variables containing the large scale climate information
(predictors) through some form of regression. Individual
downscaling schemes differ according to the choice of
mathematical transfer function, predictor variables or sta-
tistical fitting procedure. Todate, linear and nonlinear
regression, Artificial Neural network (ANN), canonical
correlation, etc. have been used to derive predictor–predit-
and relationship. Among them, ANN based downscaling
techniques have gained wide recognition owing to their
ability to capture nonlinear relationships between predic-
tors and predictand [11,19,45,41,51].

Despite a number of advantages, the traditional neural
network models have several drawbacks including possibil-
ity of getting trapped in local minima and subjectivity in
the choice of model architecture [43]. Recently, Vapnik
[46,47] pioneered the development of a novel machine
learning algorithm, called Support Vector Machine
(SVM), which provides an elegant solution to these prob-
lems. The SVM has found wide range of applications in
the fields of classification and regression analysis. SVM
has some drawbacks of rapid increase of basis functions
with the size of training data set and absence of probabilis-
tic interpretation [15]. Recently Tipping [44] developed Rel-
evance Vector Machine (RVM), a new methodology for
classification and regression using the concept of probabi-
listic bayesian learning framework, which can predict accu-
e proposed model.
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rately utilizing dramatically fewer basis functions than a
comparable SVM while offering a number of additional
advantages.

In a recent study [42], SVM has been used as a down-
scaling technique for predicting subdivisional precipitation
of different regions in India. In that study, the GCM gen-
erated large scale output (predictors) are converted into
principal components using Principal Component Analysis
(PCA) and used directly as an input to SVM with Gaussian
RBF as the kernel function. Ghosh and Mujumdar [13]
found that a heuristic classification of large scale GCM
outputs based on fuzzy clustering, prior to regression,
improves the model performance and thus in the present
study both SVM and RVM coupled with PCA and fuzzy
clustering are used to downscale GCM output to stream-
flow. The flowchart of the model is presented in Fig. 1.
The large scale GCM outputs are converted into principal
components using PCA, which is further classified into
fuzzy clusters using fuzzy c-mean clustering. The member-
ship in each of the clusters along with the principal compo-
nents is used as input to SVM/RVM. The relationship
between the climate variables and streamflow is complex
and nonlinear. Standard regression methods such as linear
regression fail to model such nonlinear processes, and
therefore SVM and RVM are used in the present study.
Gaussian RBF, Laplacian RBF and heavy tailed RBF have
been used as the kernel functions to compare the results.
The National Center for Environmental Prediction/
National Center for Atmospheric Research (NCEP/
NCAR) reanalysis data have been used for training the
downscaling model and GCM output is used for projecting
future streamflow with the trained model. The performance
of RVM is compared with SVM for downscaling in the
present study. Results are obtained with different kernel
functions. The model is applied to the case study of Maha-
nadi river basin in India to model the reservoir inflow to
the Hirakud dam from large scale GCM output. Details
Fig. 2. NCEP grids superposed
of the case-study, data and the analysis performed prior
to the training of SVM or RVM, is presented in the follow-
ing section.

2. Data and input to vector machine

The Hirakud dam is located at Mahanadi River in
Orissa at east coast of India (Fig. 2). The latitude and
the longitude of the location are 21.32�N and 83.45�E,
respectively. The monthly inflow to Hirakud dam from
1961 to 1990, is obtained from Department of Irrigation,
Government of Orissa, India. Due to the absence of any
major control structure upstream to Hirakud dam, the
inflow to the dam is considered as unregulated flow. Maha-
nadi is a rain-fed river with high streamflow in monsoon
(June, July, August and September) due to heavy rainfall
and therefore the ground water component with infiltration
is insignificant compared to the streamflow during the
monsoon season. In the non-monsoon season, infiltration
to ground water is quite significant in absence of rainfall,
resulting in low streamflow in Mahanadi with almost dry
conditions. Thus, only for the monsoon season the stream-
flow can be modeled with the climatological variables with-
out considering ground water component. Therefore the
monthly monsoon flow data of Mahanadi from year 1961
to year 1990 is used in the downscaling model as predict-
and. Selection of predictor is an important step in statisti-
cal downscaling. The predictors, used for downscaling
[49,52] should be: (1) reliably simulated by GCMs, (2) read-
ily available from archives of GCM outputs, and (3)
strongly correlated with the surface variables of interest.
Cannon and Whitfield [9] have used MSLP, 500 hPa geo-
potential height, 800 hPa specific humidity, and 100–
500 hPa thickness field as the predictors for downscaling
GCM output to streamflow. Monsoon streamflow can be
considered broadly as the resultant of rainfall and evapora-
tion. Rainfall is a consequence of Mean Sea Level Pressure
on Mahanadi River Basin.
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(MSLP) [2,3,22,49], geopotential height and humidity
whereas evaporation is mainly guided by temperature
and humidity. Therefore, The present study considers 2 m
surface air temperature, MSLP, 500 hPa geopotential
height and surface specific humidity as the predictors for
modeling Mahanadi streamflow in monsoon season. It is
worth mentioning that land use is the single most impor-
tant factor in generating the flow from the rainfall. In the
present study, land use pattern is assumed to remain the
same in future and therefore the statistical relationship
between the predictors and the streamflow will remain
unaltered in future. Gridded climate variables are obtained
from the National Center for Environmental Prediction/
National Center for Atmospheric Research (NCEP/
NCAR) reanalysis project [25] (http://www.cdc.noaa.gov/
cdc/reanalysis/reanalysis.shtml). Reanalysis data are out-
puts from a high resolution atmospheric model that has
been run using data assimilated from surface observation
stations, upper-air stations, and satellite-observing plat-
forms. Results obtained using these fields therefore repre-
sent those that could be expected from an ideal GCM [9].
Monthly climatological data from 1961 to 1990 were
obtained for a region spanning 15�N–25�N in latitude
and 80�E–90�E in longitude. Fig. 2 shows the NCEP grid
points superposed on the map of Mahanadi river basin.
A statistical relationship based on fuzzy clustering and vec-
tor machine is developed between large scale climatic vari-
ables and inflow to Hirakud dam, with reanalysis data as
regressor and observed streamflow as regressand. This rela-
tionship is used to model the future streamflow using GCM
output. GCM developed by Center for Climate System
Research/ National Institute for Environmental Studies
(CCSR/NIES), Japan, with B2 scenario is used for projec-
tion of future streamflow. The grid size of the GCM is 5.5�
latitude · 5.625� longitude. The monthly output for B2 sce-
nario is extracted for CCSR–NIES GCM for the region of
interest covering all the NCEP grid points extending from
13.8445�N to 30.4576�N in latitude and 78.7500�E to
95.6250�E in longitude from IPCC data distribution center
(http://www.mad.zmaw.de/IPCC_DDC/html/ddc_gcmdata.
html).

Standardization [54] is used prior to statistical down-
scaling to reduce systematic biases in the mean and vari-
ances of GCM outputs relative to the observations or
NCEP/NCAR data. The procedure typically involves sub-
traction of mean and division by standard deviation of the
predictor variable for a predefined baseline period for both
NCEP/NCAR and GCM output. The period 1961–1990 is
used as a base-line because it is of sufficient duration to
establish a reliable climatology, yet not too long, nor too
contemporary to include a strong global change signal
[54]. A major limitation of standardization is that it consid-
ers the bias in only mean and variance. There is a possibil-
ity that the reanalysis data and GCM output may deviate
from normal distribution, and there may exist bias in other
statistical parameters. For Mahanadi river basin, four pre-
dictor variables (MSLP, 2 m surface air temperature, spe-
cific humidity, and 500hPa geopotential height) at 25
NCEP grid points with a dimensionality of 100, are used
which are highly correlated with each other. Principal
Component Analysis (PCA) [21,13] is performed to trans-
form the set of correlated N-dimensional predictors
(N = 100) into another set of N-dimensional uncorrelated
vectors (called principal components) by linear combina-
tion, such that most of the information content of the ori-
ginal data set is stored in the first few dimensions of the
new set. In the present study, it is observed that first 10
Principal Components (PCs) represent 98.1% of the infor-
mation content (or variability) of the original predictors,
and therefore they are used in downscaling. The advantage
of PCA is that it reduces the dimensionality of the predic-
tors and at the same time there is no redundant informa-
tion and correlation among the predictors, which may
lead to multicollinearity. Fuzzy clustering is used to classify
the principal components into classes or clusters. Fuzzy
clustering assigns membership values of the classes to var-
ious data points, and it is more generalized and useful to
describe a point not by a crisp cluster, but by its member-
ship values in all the clusters [35,16].

The important parameters required for fuzzy clustering
algorithm are number of clusters (c) and fuzzification
parameter (m). Fuzzification parameter controls the degree
of fuzziness of the resulting classification, which is the
degree of overlap between clusters. The minimum value
of m is 1 which implies hard clustering. Number of clusters
and fuzzification parameter are determined from cluster
validity indices like Fuzziness Performance Index (FPI)
and Normalized Classification Entropy (NCE) [36]. FPI
estimates the degree of fuzziness generated by a specified
number of classes and is given by

FPI ¼ 1� cF � 1

c� 1
ð1Þ

where

F ¼ 1

T

Xc

i¼1

XT

t¼1

ðlitÞ
2 ð2Þ

lit is the membership in cluster i of the principal compo-
nents in month t. NCE estimates the degree of disorganiza-
tion created by a specified number of classes and given as

NCE ¼ H
log c

ð3Þ

where

H ¼ 1

T

Xc

i¼1

XT

t¼1

�lit � logðlitÞ ð4Þ

The optimum number of classes/clusters is established on
the basis of minimizing these two measures given by Eqs.
(1)–(3). The FPI and NCE attain their minimum values
when the number of clusters is 3 for almost all cases with
different m values. The value of FPI should be chosen in
such a way that the resulting clustering is neither too fuzzy
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Fig. 3. Cluster validity test.
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nor too hard. The clustering becomes non-fuzzy when
FPI = 0 and fully fuzzy when FPI = 1 [16]. Guler and Thy-
ne [16] have recommended an FPI value of 0.25 for the pur-
pose of selection of number of clusters and fuzzification
parameter in fuzzy clustering. In this work, FPI and
NCE are plotted with number of clusters c, for different
values of fuzzification parameter, m (Fig. 3). It is found
that FPI value of almost 0.25 is achieved for m = 1.4 and
c = 3. These values are used for fuzzy clustering. The
sum of the membership of a data point in three clusters
is equal to 1 and thus the membership of only two clusters
will automatically fix the other and are sufficient to be used
as an input to vector machine. Thus, the number of input
variables used in the SVM and RVM is 12 (10 principal
components along with two memberships). The following
section presents the Support Vector (SV) regression used
for statistical downscaling with training and testing.

3. Training and testing with support vector machine

The foundations of Support Vector Machine (SVM)
have been developed by Vapnik [46] and are gaining popu-
larity due to many attractive features, and promising
empirical performance. The formulation embodies Struc-
tural Risk Minimization (SRM) principle, which has been
proved to be superior [17] to traditional Empirical Risk
Minimization (ERM) principle, employed by conventional
neural networks. SRM minimizes an upper bound on the
expected risk, as opposed to ERM that minimizes the error
on the training data. This difference equips SVM with a
greater ability to generalize, which is the goal of statistical
learning. A brief introduction to statistical learning with
the concept of SRM may be found in Vapnik [47] and
Dibike et al. [12].

Given a training data fðx1; y1Þ; . . . ; ðxl; ylÞ;X 2 Rn;
Y 2 Rg, the SV regression equation can be given by [37]

y ¼ f ðxÞ ¼
Xl

i¼1

wi � Kðxi; xÞ þ b ð5Þ

where K(xi,x) and wi are the kernel functions and the cor-
responding weights used in the SV regression. b is a con-
stant known as bias. The ith input xi for training is called
support vector if wi 5 0 for that particular i. Naturally,
in Eq. (5) the inputs other than support vectors will be van-
ished. The architecture of an SVM is presented in Fig. 4.
The loss function considered for SVM is an e-insensitive
loss function (Fig. 5) described as

jnje ¼ jy � f ðxÞje ¼
0 if jy � f ðxÞj 6 e

jy � f ðxÞj � e otherwise

�
ð6Þ

The methodology for computation of weights and bias is
presented in Appendix 1. Gaussian, Laplacian and heavy
tailed Radial Basis Functions (RBF) are used as kernel in
the present study. Details of these kernel functions are pre-
sented in Appendix 2. Selection of a suitable RBF is an
important task in SVM as it has a high sensitivity on model
performance [10]. All the above mentioned kernels are used
in the present analysis to compare and select the SVM
regression model with the best kernel for downscaling
purpose.

SVM regression models with all the kernels are trained
to determine the relationship between NCEP/NCAR out-



Fig. 4. Architecture of an SVM.

Fig. 5. e-Insensitive loss function.
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put of large scale climate variables and Mahanadi mon-
soon streamflow where the principal components, member-
ship in fuzzy clusters and seasonal components are used as
input. For training and testing K-fold cross validation
(K = 10) procedure is used. According to this methodol-
ogy, the training set is partitioned into K disjoint sets.
The model is trained, for a chosen kernel, on all the subsets
except for one, which is left for testing. The procedure is
repeated for a total of K trials, each time using a different
subset for testing. The average R values (Correlation coef-
ficient between observed and predicted streamflow) over all
the training and testing are considered as the goodness of
the model fit to assess the performance of the model. The
model resulting in the highest R value for testing is consid-
ered as the best model with a minimum chance of overfit-
ting. Before training, both the input and output data are
standardized to [0, 1]. The parameters of SVM, C, r and
e (Appendices 1 and 2) is considered as 100, 1 and 0.01
for training of the standardized data. The results obtained
for the developed SVM model with different kernels are
presented in Table 1, which shows that SVM with heavy
tailed RBF kernel produces maximum R value in testing



Table 1
Results obtained from training and testing of SVM based downscaling
model

Kernel used R value for
training

R value for
testing

Number of
support vectors
(% of training data
set)

Gaussian RBF 0.9975 0.5572 96.20
Laplacian

RBF
0.9992 0.6133 93.61

Heavy tailed
RBF

0.9995 0.6173 93.24
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involving minimum support vectors. Based on this criterion
the SVM with heavy tailed RBF kernel is selected as the
best SVM regression model. It is observed that for all the
kernels the model suffers from severe overfitting and there-
fore it is not acceptable. It should be noted that rigorous
post-modeling sensitivity analysis by perturbing all the
three parameters, C, r and e may reduce the overfitting,
but this is computationally expensive. To improve the per-
formance by reducing the overfitting, RVM is used for sta-
tistical downscaling. The following section presents the
mathematical development of RVM.

4. Relevance vector machine

Despite of excellent modeling performance of SVM, it
has some practical and significant drawbacks. They are
[44]:

• Although relatively sparse, SVMs make unnecessarily
liberal use of basis functions since the number of sup-
port vectors required typically grows linearly with the
size of the training set. Some form of post-processing
is often required to reduce computational complexity
[8].

• Predictions are not probabilistic. In regression the SVM
outputs a point estimate, whereas the conditional distri-
bution of target given input (p(tjx)) is desired.

• There is no straightforward method to estimate C and �.
Sometimes cross validation is used to estimate them
which is wasteful for both data and computation.

• The kernel function K(x, xi) must satisfy Mercer’s
condition.

Relevance Vector Machine developed by Tipping [44] is
a Bayesian treatment of Eq. (5) which does not suffer from
any of the limitations stated above. In RVM, a fully prob-
abilistic framework is adopted and introduced a priori over
the model weights governed by a set of hyperparameters,
associated with weights, whose most probable values are
iteratively estimated from the data. Sparsity is achieved
because in practice the posterior distributions of many of
the weights are sharply (indeed infinitely) peaked around
zero. The remaining training vectors associated with non-
zero weights are termed as relevance vectors. The most
compelling feature of the RVM is that, while capable of
generalization performance comparable to an equivalent
SVM, it typically utilizes dramatically fewer kernel func-
tions. Following Tipping [44], the mathematical back-
ground of RVM is presented here.

RVMs have identical functional form as SVMs (Eq. (5)),
but use kernel terms that correspond to fixed nonlinear
basis function [44,28,27]. Seeking to forecast y for given
x according to y = f(x) + �n, involving weights
w = (w0, w1, . . ., wl)

T, where �n � Nð0; r2
�n
Þ, the likelihood

of the complete data set can be written as

pðyjw; r2
�n
Þ ¼ ð2pr2

�n
Þ�l=2 exp � 1

2r2
�n

ky� Uwk2

( )
ð7Þ

where U(xi) = [1, K(xi, x1), K(xi, x2), . . ., K(xi, xl)]
T. Maxi-

mum likelihood estimation of w and r2
�n

often results in se-
vere overfitting. Tipping [44] suggested imposition of some
prior constraints on the parameters, w, by adding a com-
plex penalty to the likelihood or the error function. This
is a prior information that controls the generalization abil-
ity of the learning system. Typically, higher-level hyperpa-
rameters are used to constrain an explicit zero-mean
Gaussian prior probability distribution over the weights, w:

pðwjaÞ ¼
Yl

i¼0

Nðwij0; a�1
i Þ ð8Þ

where a is a hyperparameter vector that controls how far
from zero each weight is allowed to deviate. For comple-
tion of hierarchical prior specifications, hyperpriors over
a and the noise variance, r2

�n
, are defined. Consequently,

using Bayes rule, the posterior overall unknowns could
be computed given the defined noninformative prior
distributions:

pðw; a; r2
�n
jyÞ ¼

pðyjw; a; r2
�n
Þ � pðw; a; r2

�n
ÞR

pðyjw; a; r2
�n
Þpðw; a; r2

�n
Þdwdadr2

�n

ð9Þ

Computation of pðw; a; r2
�n
jyÞ in Eq. (9) is not possible di-

rectly as the integral in the right-hand side can not be per-
formed. Instead the posterior can be decomposed as

pðw; a; r2
�n
jyÞ ¼ pðwjy; a; r2

�n
Þpða; r2

�n
jyÞ ð10Þ

The posterior distribution of the weight can be given by

pðwjy; a; r2
�n
Þ ¼

pðyjw; r2
�n
Þ � pðwjaÞ

pðyja; r2
�n
Þ ¼ ð2pÞ�l=2jRj�1=2

� exp � 1

2
ðw� lÞTR�1ðw� lÞ

� �
ð11Þ

where the posterior covariance and mean are respectively:

R ¼ ðr�2
�n

UTUþ AÞ�1 ð12Þ
l ¼ r�2

�n
RUTy ð13Þ

with A = diag(a0, . . ., al). Therefore, machine learning be-
comes a search for the hyperparameter posterior most
probable, i.e., the maximization of pða; r2

�n
jyÞ / pðyja; r2

�n
Þ



Table 2
Results obtained from training and testing of RVM based downscaling
model

Kernel used R value for
training

R value for
testing

Number of
relevant vectors
(% of training data
set)

Gaussian RBF 0.9423 0.6019 71.30
Laplacian

RBF
0.8417 0.6418 25.56

Heavy tailed
RBF

0.7937 0.6998 8.06
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pðaÞpðr2
�n
Þ with respect to a and r2

�n
. For uniform hyperp-

riors, it is required to maximize the term pðyja; r2
�n
Þ, which

is computable and given by

pðyja; r2
�n
Þ ¼

Z
pðyjw; r2

�n
ÞpðwjaÞdw

¼ ð2pÞ�l=2jr2
�n

I þ UA�1UTj1=2

� expf� 1

2
yTðr2

�n
I þ UA�1UTÞ�1

yg ð14Þ

Tipping [44] contended that all the evidence from several
experiments suggests that this predictive approximation is
very effective. Bayesian models refer to Eq. (9) as the mar-
ginal likelihood, and its maximization is known as the type
II-maximum likelihood method [6,48]. As argued by Tip-
ping [44], MacKay [29] refers to this term as the evidence
for hyperparameter and its maximization as the evidence
procedure. Hyperparameter estimation is typically carried
out with an iterative formula such as a gradient ascent
on the objective function [44,29].

At convergence of the hyperparameter estimation proce-
dure, predictions can be made based on the posterior distri-
bution over the weights, conditioned on the maximized
most probable values of a and r2

�n
, aMP and r2

MP respec-
tively. The predictive distribution for a given x* can be
computed using Eq. (11):

pðy�jy; aMP; r
2
MPÞ ¼

Z
pðy�jw; r2

MPÞpðwjy; aMP; r
2
MPÞdw

ð15Þ
Since both terms in the integrand are Gaussian, this can be
readily computed, giving

pðy�jy; aMP; r
2
MPÞ ¼ Nðy�jt�; r2

�Þ ð16Þ
with

t� ¼ lTUðx�Þ; ð17Þ
r2
� ¼ r2

MP þ Uðx�ÞTRUðx�Þ ð18Þ

The outcome of the optimization involved in RVM (i.e.
maximization of pðyja; r2

�n
Þ), is that many elements of a

go to infinity such that w will have only a few nonzero
weights that will be considered as relevant vectors. The rel-
evant vectors (RVs) can be viewed as counterparts to sup-
port vectors (SVs) in SVMs; therefore, the resulting model
enjoys the properties of SVMs (i.e., sparsity and generaliza-
tion) and, in addition, provides estimates of uncertainty
bounds in the predictions they make [28].
4.1. Training and testing with RVM

Principal components and fuzzy cluster memberships
derived from NCEP/NCAR reanalysis data are used as
input to RVM. Similar to SVM, Gaussian RBF, Laplacian
RBF and Heavy tailed RBF are used as kernels in the
RVM regression model for downscaling with K-fold cross
validation. The results obtained from training and testing
are presented, with r = 1, in Table 2. Compared to SVM,
RVM involves very few relevant vectors for the regression
with all the kernels and thus minimizing the possibility of
overtraining as well as computational time. This is reflected
in the differences between R values for training and testing
with all the kernels. A comparatively small difference
between the R value of training and testing shows the
reduction of overtraining which is not achieved by SVM.
Among the RVM kernels the model with heavy tailed
RBF shows the highest R value for testing among all the
RVM models and thus selected as the best model for down-
scaling. The selection of the width of the kernel is one of
the major criterion in selecting the appropriate model.
The kernel width can not be computed with the Bayesian
treatment of RVM and therefore a post-modeling sensitiv-
ity analysis is required to compute kernel width that results
in minimum overfitting. Sensitivity analysis of the training
and testing R values and the number of RVs involved in
the model is carried out, with variation in the kernel width,
and presented in Fig. 6. As RVM involves only kernel
width as a parameter, the computational effort of post-
modeling sensitivity analysis is significantly less compared
to SVM. It is observed that the testing R value achieved
its maximum at a kernel width of 1.9, involving minimum
number of RVs. The training and testing R values are
obtained as 0.7745 and 0.7256, respectively, using only
7.41% of the data set as relevant vectors. Therefore RVM
using heavy tailed RBF with the width of 1.9 is used for
statistical downscaling in the present study. After the selec-
tion of model the whole data set is trained using RVM
based regression with heavy tailed RBF as the kernel.
The overall R value is obtained as 0.8226. The observed
and predicted monsoon streamflow from June 1961 to
August 1990 with scatter plot are presented in Fig. 7. It
is clear that even RVM is not able to mimic the extreme
rainfall observed in the record. Possibly this could be
because regression based statistical downscaling models
often cannot explain entire variance of the downscaled var-
iable [54,42]. The goodness of fit of the model is also tested
with Nash–Sutcliffe coefficient [32], which has been recom-
mended by ASCE Task Committee on definition of Crite-
ria for evaluation of watershed models of the watershed
management committee, Irrigation and Drainage Division
[1]. The Nash–Sutcliffe coefficient (E) is given by



Fig. 6. Sensitivity analysis with the width of kernel in RVM.

Fig. 7. Observed and RVM modeled monthly streamflow of Mahanadi River.

140 S. Ghosh, P.P. Mujumdar / Advances in Water Resources 31 (2008) 132–146



S. Ghosh, P.P. Mujumdar / Advances in Water Resources 31 (2008) 132–146 141
E ¼ 1�
P

tðQot � QptÞ
2P

tðQot � QoÞ
2

ð19Þ

where Qot and Qpt are the observed and predicted stream-
flow in time t, and Qo is the mean observed streamflow.
Nash–Sutcliffe coefficient can vary from 0 to 1 with 0 indi-
cating that the model predics no better than the average of
the observed data, and 1 indicating a perfect fit. It is ob-
tained as 0.67 for the present model which is satisfactory.
Wetterhall et al. [49] have tested the long term seasonal
mean, and standard deviation for verification of a down-
scaling model. In the present analysis also, similar test
has been performed. The long term mean and standard
deviation of observed streamflow are 7332.0 Mm3 and
5995.6 Mm3 and those of predicted streamflow are
7384.1 Mm3 and 4607.6 Mm3, which shows a good match
in mean but difference in standard deviation. This may be
because the regression based statistical downscaling models
often cannot explain entire variance of the downscaled var-
iable [54] and therefore the present model can not mimic
the high streamflow in 1961. Other limitation of the meth-
od is that assuming constant error variance (homoscedasi-
ty) may prove to be a limitation when streamflow is the
response variable as it is often observed that streamflow er-
ror variance is related to the magnitude of the flow, and,
the hierarchical structure cannot accommodate Markovian
dependence in the flows easily. After the verification, the
RVM regression model is used for modeling of future
streamflow time series from the predictor variables as pro-
jected by GCM developed by CCSR/NIES with B2
scenarios.
Fig. 8. Projected future Streamflow for CCSR/NIES GC
5. Future streamflow projection

GCM developed by Center for Climate System Research/
National Institute for Environmental Studies (CCSR/
NIES), Japan, with B2 scenario is used for projection of
future streamflow. The grid size of the GCM is 5.5�
latitude · 5.625� longitude. The monthly output for B2
scenario is extracted for CCSR/NIES GCM for the region
of interest covering all the NCEP grid points extending from
13.8445�N to 30.4576�N in latitude and 78.7500�E to
95.6250�E in longitude from IPCC data distribution center.
GCM grid points do not match with NCEP grid points and
thus interpolation is required to obtain the GCM output at
NCEP grid points. Interpolation is performed with a linear
inverse square procedure using spherical distances [57]. The
predictor variables for CCSR/NIES GCM are then interpo-
lated to the 25 NCEP grid points. Using the principal direc-
tions or eigen vectors obtained from PCA of NCEP data,
principal components are obtained for the GCM output.
The membership of the principal components of GCM
output in each of the fuzzy clusters are then computed using
the cluster centers obtained from fuzzy clustering. Principal
components and cluster membership of GCM output are
then used in the developed RVM regression model to project
the monsoon streamflow of Mahanadi for future.

For validation purpose, the monsoon streamflow is also
computed for the base-line period of years 1961–1990 with
the GCM output. The CDFs obtained from NCEP data,
GCM output and the observed data, using Weibull’s prob-
ability plotting formula, are presented in Fig. 8(a).
Although the CDF obtained from GCM matches quite
M with B2 scenario using RVM based downscaling.
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well, there is considerable bias near zero flow values and at
the extreme cases. This is because standardisation may
reduce the bias in the mean and variance of the predictor
variable but it is much harder to accommodate the biases
in large scale patterns of atmospheric circulation in GCMs
(e.g. shifts in the dominant storm track relative to observed
data) or unrealistic inter-variable relationships [50]. More-
over, regression based statistical downscaling models often
cannot explain entire variance of the downscaled variable,
which is also reflected in terms of bias near zero flow and
high flow conditions. While modeling monsoon streamflow
such biases should be taken care otherwise it will propagate
in the computation of future seasons [14]. To remove such
bias from a given downscaled output the following meth-
odology is used:

• CDFs are obtained with the downscaled GCM gener-
ated and observed streamflow for the years 1961–1990
using Weibull’s probability plotting position formula.

• For a given value of GCM generated streamflow
(XGCM), the value of CDF (CDFGCM) is computed.

• Corresponding to CDFGCM the observed streamflow
value is obtained from the CDF of observed data.

• The GCM generated streamflow is replaced by the
observed data, thus computed, having the same CDF
value.

• The CDFs of GCM generated and observed streamflow,
obtained for the years 1961–1990, act as reference, and
based on them the correction is applied to the stream-
flow values obtained from GCM for future.

A major drawback of the method described above is
that, if the future GCM streamflow is out of the range
of historical GCM streamflow, the methodology of bias
correction with Weibull’s plotting position will fail. If such
cases appear, then different parametric probability distri-
bution (with upper bound of random variable as 1) can
be fitted to the observed GCM streamflow and the best
pdf can be selected among them with Akaike Information
Criteria (AIC) or v2-test. As the new range is now
extended to1, it is possible to perform the quantile trans-
formation even if the future GCM streamflow is out of the
range of historical GCM streamflow. In the present case,
the future GCM streamflows are all within the range of
observed GCM streamflow and therefore the bias is cor-
rected with Weibull’s plotting position and quantile trans-
formation. The long term mean and standard deviation of
observed streamflow are 7332.0 Mm3 and 5995.6 Mm3 and
those of GCM projected streamflow before bias correction
were 7194.2 Mm3 and 5607.2 Mm3. After bias correction
mean and standard deviation of GCM projected stream-
flow are 7331.7 Mm3 and 6009.4 Mm3, respectively, which
shows bias has been significantly reduced. The CDFs pro-
jected future streamflow is plotted for standard 30 year
time slices 2020 s, 2050 s and 2080 s in Fig. 8b–d, which
clearly shows a decrease in the high flows of the monsoon
season in Mahanadi. The occurrence of extreme high flow
events will reduce significantly and therefore there is a
decreasing trend in the monthly peak flow. The projection
of CCSR/NIES GCM with B2 scenario presents a favor-
able condition for Hirakud dam in future for flood control
operation. Earlier study [34] on Mahanadi river also
revealed decrease in monsoon streamflow for the historic
period with an increasing trend in surface temperature.
It is concluded in that study, that due to increase in tem-
perature, the water yields in the river is adversely affected.
Following the study, it can be inferred that one of the
probable reason of such decreasing trend in streamflow
may be significant increase in temperature due to climate
warming.

Analysis of instrumental climate data revealed that the
mean surface temperature over India has warmed at a rate
of about 0.4 �C. per century [20,39,40], which is statistically
significant. The increasing trend of temperature in Maha-
nadi river basin due to climate change is more severe.
Rao [33] found that the surface air temperature over this
basin is increasing at a rate of 1.1 �C per century, which
is more than double of that of entire India. Fig. 9a presents
box plots of the temperature projected by CCSR/NIES
with B2 scenario for historic base period (1961–1990),
2020s, 2050s and 2080s. The box plot presents the median,
upper and lower quartiles and the outliers. The middle line
of the box gives the median whereas the upper and lower
edge give the 75 percentile and 25 percentile of the data
set, respectively. A significant increasing trend is observed
in the surface air temperature. The corresponding box
plots for the monsoon streamflow are presented in
Fig. 9b. The result shows that although there is no signif-
icant change in the median of the monsoon flow, the occur-
rence of high flows will reduce significantly because of high
surface warming and therefore there is a decreasing trend
in the monthly peak flow. The reason may be the insensi-
tivity of climatic variables towards low flow because of sig-
nificant ground water component and therefore only the
effect on high flow, which is of interest, is reflected in the
results. It is worth mentioning that the projected stream-
flow presented, is due to a single GCM using a single sce-
nario and it is widely acknowledged that disagreements
between different GCMs over regional climate changes rep-
resents a significant source of uncertainty [55,14]. There-
fore overreliance on a single GCM could lead to
inappropriate planning and adaptation responses. Thus
future decision making should incorporate all the GCMs
with scenarios to model the underlying GCM and scenario
uncertainty.

6. Concluding remarks

Downscaling of GCM output to monsoon streamflow is
performed using SVM and RVM in the present analysis.
Standardisation is performed to remove the biases present
in the mean and the variances of the predictor variables.
PCA and fuzzy clustering are performed prior to training
to improve the model performance. As the model is a



Fig. 9. (a) Box plot of projected temperature of the case-study area by CCSR/NIES GCM with B2 Scenario and (b) box plot of downscaled streamflow
from CCSR/NIES GCM output with B2 Scenario.
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combination of classification and regression, it can be cat-
egorized into a hybrid model of weather typing and trans-
fer function. It has been observed that RVM not only
involves probabilistic reasoning but also outperforms
SVM for regression based statistical downscaling in terms
of goodness of fit. RVM involves fewer number of relevant
vectors and the chance of overfitting is less than that of
SVM. The model developed in the present study is capable
of producing a satisfactory value of goodness of fit in
terms of R value and Nash–Sutcliffe coefficient. However,
from Fig. 7 it is found that even RVM is not able to mimic
the extreme streamflow observed in the record. Possibly
this could be because regression based statistical downscal-
ing models often cannot explain entire variance of the
downscaled variable [54]. Bias resulting from the drawback
is corrected at the end of downscaling. The GCM CCSR/
NIES with B2 scenario projects a decreasing trend in
future monsoon streamflow of Mahanadi. In Rao [34], a
decreasing trend in the streamflow of Mahandi River with
an increasing trend in surface temperature is observed, and
it is concluded in that study that due to increase in temper-
ature, the water yields in the river is adversely affected.
Following the study, it can be inferred that one of the pos-
sible reasons for such a decrease in Mahanadi River
streamflow may be increase in surface temperature. Such
a decrease in streamflow may cause a critical situation
for Hirakud dam in meeting the future irrigation and
power demand. The methodology developed can be used
to project the streamflow for other GCMs and scenarios
also and there is a possibility of mismatch in the projec-
tions resulting GCM and scenario uncertainty. Modeling
of such uncertainty is necessary for future decision mak-
ing. The methodology presented, does not limit its useful-
ness only for modeling streamflow. It is adaptable and can
be used to model any other hydrologic variable, viz. pre-
cipitation, evaporation, etc. to assess the impact of climate
change on hydrology.
Appendix 1. Support vector regression

The basic concept of SV regression is discussed in the
present section first with a linear model and then it is
extended to a nonlinear model using Kernels. Given a
training data fðx1; y1Þ; . . . ; ðxl; ylÞ;X 2 Rn; Y 2 Rg, the SV
regression equation can be given by [37]

f ðxÞ ¼ hw; xi þ b; w 2 X ; b 2 R ð20Þ

where, hÆ, Æi denoted the dot product in X. The objective of
SVM regression is to find the function f(x) with minimum
value of loss function and at the same time is as flat as pos-
sible [38]. Flatness mathematically denotes the smaller va-
lue of w and one way to ensure this is to minimize the
norm, i.e. kwk2 = hw, wi. Thus the model can be expressed
as the following convex optimization problem.
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Minimize
1

2
kwk2 þ C

Xl

i

n�i þ
Xl

i¼1

ni

 !
ð21Þ

subject to yi � hw; xi � b 6 eþ ni ð22Þ
hw; xi þ b� yi 6 eþ n�i ð23Þ
ni; n

�
i P 0 ð24Þ

where C is a pre-specified value which determines the trade-
off between the flatness of f(x) and the amount up to which
deviations larger than e is tolerated (ni and n�i ), which cor-
respond to e-insensitive loss function as presented in Eq.
(6). The optimization model presented in Eqs. (21)–(24)
can be solved using Lagrange multipliers. A dual set of
variables are introduced to construct the Lagrange func-
tion, which is given below:

L ¼ 1

2
kwk2 þ C

Xl

i¼1

n�i þ
Xl

i¼1

ni

 !
�
Xl

i¼1

ðgini þ g�i n
�
i Þ

�
Xl

i¼1

aiðeþ ni � yi þ hw; xi þ bÞ

�
Xl

i¼1

a�i ðeþ n�i þ yi � hw; xi � bÞ ð25Þ

where L is the Lagrangian and gi; g
�
i ; ai; a�i are Lagrangian

multipliers satisfying the positivity constraints.

gi; g
�
i ; ai; a

�
i P 0 ð26Þ

From the saddle point condition, the partial derivatives of
L with respect to the primal variables ðw; b; ni; n

�
i Þ have to

vanish for optimality:

oL
ob
¼
Xl

i¼1

ða�i � aiÞ ¼ 0 ð27Þ

oL
ow
¼ w�

Xl

i¼1

ðai � a�i Þxi ¼ 0 ð28Þ

oL

onð�Þi

¼ C � að�Þi � gð�Þi ¼ 0 ð29Þ

where nð�Þi ; að�Þi ; gð�Þi refer to ni and n�i ; ai and a�i ; gi and g�i
respectively.

Substituting Eqs. (27)–(29) in Eq. (25) the following
dual optimization problem is formulated.

Maximize � 1

2

Xl

i;j¼1

ðai � a�i Þðaj � a�j Þhxi; xji � e
Xl

i¼1

ðai þ a�i Þ

þ
Xl

i¼1

yiðai � a�i Þ ð30Þ

subject to
Xl

i¼1

ðai � a�i Þ ¼ 0 ð31Þ

ai; a
�
i 2 ½0;C�: ð32Þ

Eq. (28) can be re-written as

w ¼
Xl

i¼1

ðai � a�i Þxi ð33Þ
and, thus from Eq. (20):

f ðxÞ ¼
Xl

i¼1

ðai � a�i Þhxi; xi þ b ð34Þ

This is called the Support Vector Expansion for linear
model which is used in SV regression. b can be computed
by using Karush Kuhn Tucker (KKT) condition [38].

For most of the hydrologic analysis linear regression is
not appropriate and thus a nonlinear mapping using kernel
K is used to map the data into a higher dimensional feature
space, where, with the kernel, linear analysis is performed.
Using the kernel, the regression equation (Eq. (34)) can be
modified to (Eq. (5))
Appendix 2. Kernel functions

Kernel functions are used in SVM for nonlinear map-
ping of the original data or input into a high dimensional
feature space. Kernel function used in a SVM should fol-
low Mercer’s theorem, according to which it can be written
that:Z

X�X
Kðx; x0Þf ðxÞf ðx0Þdxdx0 P 0 8f 2 L2ðX Þ ð35Þ

Some of the valid kernel functions satisfying the above
mentioned condition are given below.

A. Linear kernel: The linear kernels are the simplest ker-
nels used in SVM for linear regression. They can be given
by
Homogeneous kernel:

Kðx; x0Þ ¼ hx; x0i ð36Þ
Non-homogeneous kernel:

Kðx; x0Þ ¼ ðhx; x0i þ 1Þ ð37Þ
The performance of SVM with linear kernel function,
being similar to that of linear regression, is not capable
of modeling complicated and nonlinear relationship be-
tween climatological variables and streamflow and there-
fore such kernels are not used in the present study.

B. Gaussian Radial Basis Function: Radial Basis Func-
tions (RBFs) have received significant attention, most com-
monly with Gaussian form,

Kðx; x0Þ ¼ exp �kx� x0k2

2r2

 !
ð38Þ

where r is the width of Gaussian RBF kernel, giving an
idea about the smoothness of the derived function. A large
kernel width acts as a low-pass filter in frequency domain,
attenuating higher order frequencies and thus resulting in a
smooth function. Alternatively, RBF kernel with small ker-
nel width retains most of the higher order frequencies lead-
ing to an approximation of a complex function by learning
machine [38].

C. Laplacian or Exponential Radial Basis Function:
Laplacian or Exponential RBF of the form,
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Kðx; x0Þ ¼ exp �kx� x0k
2r2

� �
ð39Þ

produces a piecewise linear solution which can be attractive
when discontinuities are acceptable.

D. Heavy tailed or Sublinear Radial Basis Function:
Heavy tailed RBFs or Sublinear RBFs are introduced by
Chapelle et al. [10] which sometimes outperform traditional
Gaussian or RBFs [10]. They can be given by:

Kðx; x0Þ ¼ exp �kx� x0k0:5

2r2

 !
ð40Þ

It is worth mentioning that a generalized RBF can be given
by

Kðx; x0Þ ¼ exp �kx
a � x0akb

2r2

 !
ð41Þ

and it will satisfy Mercer’s condition if and only if
0 6 b 6 2. The choice of a has no impact on Mercer’s
condition.
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