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Abstract—A method for the numerical analysis of elastic plates with two opposite simply supported ends is
presented. A variety of boundary conditions including the mixed and the nonhomogeneous types can be prescribed
along either of the remaining two opposite edges. Numerical results are presented for the three examples. Based on
the comparisons made with the results available elsewhere, it is concluded that the present method is efficient,

economical, reliable and very accurate.

INTRODUCTION

The present paper is concerned with the numerical
analysis of rectangular plates with different boundary
conditions. A less known formulation which is originally
due to Goldberg et al.{1] is used in the present study.
The system of equations are then numerically integrated
by using a so-called “segmentation method” which is
comprehensively documented in a recent publication[2).
This method is found to be efficient, reliable, accurate
and computationally economical for a certain class of
plate problems. The plate is assumed to be simply sup-
ported along two opposite edges. Different boundary
conditions are then prescribed along the other two
opposite edges.

PROBLEM FORMULATION

The present study is based on the thin plate theory[3]
due to Kirchhoff with the following assumptions:

(1) Material is homogeneous, isotropic and linear
elastic.

(2) Deflections are small compared to the thickness of
the plate.

(3) Normals to the reference surface before defor-
mation remain straight and normal to the deformed
reference surface and their length remain unchanged
(Y =Yy =€ =0).

(4) Transverse normal stress components acting on
planes parallel to the reference surface is neglected
compared to other stress components (o, = 0).

The well-known governing equations of such a theory
which defines a boundary value problem are summarised
in Appendix A. Numerical integration of such a boundary
value problem by the segmentation method[2] which is
originally due to Goldberg et al.(1] involves first al-
gebraic manijpulation of the basic equations so as to
obtain a set of first order differential equations—called
the “intrinsic equations” involving only some particular
dependent variables—called the “intrinsic variables”, the
number of which equals the order of the partial differen-
tial equation system of such a theory (fourth order in
the present case). Then out of the two independent
coordinates which describe the problem, one is chosen to
be the preferred one. In the present analysis, x-coor-
dinate is selected as the preferred one. Intrinsic equa-
tions are then derived consisting of a system of first
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order partial differential equations each of which con-
tains necessarily the first derivative with respect of x of
one of the so-called intrinsic dependent variables which
appear naturally in the boundary conditions on the edge
x =a constant. In the present analysis, Y defining the
vector of intrinsic variables, consist of the dependent
variables w, 8,, V, and M,. After the required manipula-
tions, the system of equations are obtained in the fol-
lowing form:

%=—0‘ (1a)
= y_yw oM. (1b)
%=D(1””2)%:—va;;v{’—(pz*w;wh) (1c)
) ‘jy";+ V. 1d)

The other dependent variables are expressed as func-
tions of intrinsic variables by simple algebraic relations,
called “the auxiliary relations™ in the following form:

2
M, = - D(1- ) ‘;7% WM, (22)
a6,
My =D(1-v) 5= (2b)
1 020 M,
Q=D(1-v) e o (20)
Pw M,
Qy——D(l—V)'Eg'+ 3y (2d)
Pw M,
Vy=—D(l—v)2a—y;+(2—V) 3y (2¢)

The generalised displacement conponents and the cor-
responding stress resultants which form the vector Y of
the intrinsic variables are functions of x and y, and for a
plate with two opposite edges, y =0 and y = b as simply
supported, these may be represented in the form of a
Fourier series which automatically satisfies both the
displacement and the force boundary conditions along
these edges, to any desired degree of accuracy as fol-
lows:

W, ¥) = 3 Wn(x) sin (2m - 1)1;1 (3a)
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0.(x,y) =S G (x) sin (2m — 1)’% (3b)
Vo5, )= 3 Vy(x) sin 2m — 1)1’bl (3c)
M%) =3 Mo (R)sin@m -1 (d)

Substitution of the expansions (3a-d) in the system of
differential equations (la-d) and analytic integration of
these equations with respect to the indpendent variable
(coordinate) y coupled with the use of the orthogonality
conditions of the basic beam functions used in the y-
direction in the aforesaid expansions reduces the set of
partial differential equations (1a-d) into the following set
of simultaneous first order ordinary differential equations
(say for the mth harmonic) involving only the four
intrinsic variables. It may be mentioned that it is not
necessary to express the external loads in the form of a
Fourier series in the y-direction unlike the analytical[3]
and the semi-analytical[4] methods. Further it is noted
that the series uncouple with respect to the harmonic m
leading to a term-by-term analysis which enables storage
of only the final discrete values of the intrinsic and the
auxiliary dependent variables corresponding to a parti-
cular harmonic analysis to be added to the values of the
subsequent harmonic anatyses.

dw,,t
—dT-=-0xm (4a)
[ YA 1
g == vm = 1P (F) Wi+ 35 M (4b)
dVim _ .2 (T 4 2
L p(1-em -1y (b) Wy + v(2m 1
7\? 4 .
x(;) Man = G =) P+ P +oh) (4c)
dem _ _ —_ 12 E 2
an _2p(1 - ni2m - 1) ( b) Bom + Ve (4d)
and the auxiliary relations (2a-¢) take the form:
M, = S {D(1-v*)(2m -1y (%)2 Won
+ oM, ] sin 2m—1) 7 (5a)

M., =3 Dil=v)@m=1) (%) fn c0s m =YL (5b)

0.= 3 [u-nam-1 (%)zo,,.
+ Vi ] sin @m-1) 7 (5¢)
Q=3 [D(l —v)2m -1y (%)zwm + M,,,.] Qm~-1)

x (F-)cos @m-152 (5d)

b
V=3 [Dt-vem-17(5) wa+ - M

X (2m —1) (%) cos 2m - 1) 22 (5e)

tFor the sake of brevity w,(x), M,,(x), etc. are hereafter
written simply as w,,, M, etc.

The equations (4a—d) are numerically integrated by the
segmentation method[2] for th mth harmonic at a time
and the discrete point values of all the dependent vari-
ables are obtained by summing the corresponding values
got for the given number of harmonics as given by the
relations (3a-d) and (Sa-¢).

NUMERICAL EXAMPLES

Numerical results are presented for a square plate of
side “a” and thickness “h”, simply supported along the
two opposite edges, y =0 and y = a4 with the boundary
conditions W,, = M,,, =0 and loaded with a uniformly
distributed load p,*. Discrete numerical values of the
dependent variables are presented in the non-dimensional

form as follows:
+ .4

w=a p,Ta (6a)
M, =gp. a® (6b)
M, =gp."a’ (6¢)
M, =3p.a (6d)
Q. =w."a (6e)
Q =vp.a (6f)
V.=6p."a (6g)
V,=p. a. (6h)

The same geometric and material properties, viz, alh =
50 and v=0.3 are used throughout. Five equal seg-
ments and five subdivisions within each segment for the
Runge-Kutta-Gill algorithms[5] have been found suit-
able for the half plate analysis in the x-direction taking
advantage of the symmetric conditions along the centre
line in all the examples considered in this section. On an
edge with outward unit normal vector 7 and unit tangent
vector f, the following nomenclature has been used for
the designation of the prescribed boundary conditons.

S for w=M,=0 (7a)
C for w=6,=0 (7b)
F for V,=M,=0. (Tc)

Results obtained in the present study are compared with
those available elsewhere [3]. Most of the discrete values
of the dependent variables are tabulated for the first 20
harmonics. Convergence is seen to be excellent. It is
observed that while the value of w converges at the
second or the third harmonic, the values of M,, M,, M,,,
Q. and V, take six to seven harmonics to converge.
Convergence of the values of Q, and V, is seen to be
slow.

Example 1. Plate with boundary conditions “S” along
all the four edges

The maximum values of w, M, M,, M,,, Q,, Q,, V.,
and V, are presented in Table 1 while the variation of M,
and M, along the centre line y/a =0.5 is tabulated in
Table 2. Variations of @, and V, along the centre line
yla =0.5 and that of M,,, Q, and V, along the supported
edge y/a = 0.0 are plotted in Figs. 1-3,

Example 2. Plate with boundary conditions “C” along
x=0,aand “S” along y=0, a
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Table 1. Maximum values of transverse deflection and stress resultants in a square plate simply supported on all edges
(w=M, =0along x=0, w=M, =0 along y =0, a) under U.D.L. based on Kirchhoff plate theory formulation of
segmentation method—a convergence study (v = 0.3, a/h = 50)

W (MX]mBX my)max mxy]mex (DX)maX [Oy]max (Vx}mﬂx (Vy)max

'GE%E— - szaz = B,Ipza2 = % pza2 =ypze =y, Pza =8pza ‘61pza

m Q B8 81 n/2 ' Y4 3 61
1 .00410 .04915 .05164 - .03012 .37145 .24366 .46612 ,32503
2 .00405 .04760 .04709 - .03179 .32648 .28785  .40541 ,37055
3 .00408 .04781 .04812 - .03215 .34266 .30404 .42728 .38677
4 .00406 .04780 .04774 - .03228 .33440 .31230 .41612 .39504
5 .00406 .04785 .04792 - .03234 .33939 .31730 .42287 .40004
6 .00406 .04783 .04782 - .03238 .33605 .32065 .41835 .40339
7 .00406 .04784 .04788 - .03240 .33844 .32304 .42159 ,40578
8 .00406 .04783 .04784 - .03241 .33664 .32484 .41916 .40758
8 .00406 .04784 .04787 - .03242 .33805 .32624 .42105 .40898

10 .00406 .04783 .04785 ~ .03243 .33692 .32737 .41854 ,41010

15 .00406 .04784 .047886 - .03244 .33765 .33073 .42052 ,41347

20 .00406 ,04784 .04786 - .03245 .33730 .33242 .42004 .41516

004062 .0479 .0479 .0325 .338 .338 .420 .420

aValues guoted in Ref. 3 based on Kirchhoff Plate Theory

Table 2. Bending moments in a square plate simply supported on all edges (w= M, =0 along x =0, a; w = M,=0
along y =0, ) under U.D.L. based on Kirchhoff plate theory formulation of segmentation method—a convergence
study (v = 0.3, a/h = 50)

Mx = BpzaZ. % = 0.5 My = B1pzaz, % = 0.5
m X=01 2s0.2 2-03 2.0 X.05 2.0 X202 2-0.3 2-0.4 X-q.5
a a a a a a8 a a8 a a
1 .02211  .03575  .04372  .04787  .04915 .01863  .03314  .04345  .D4960  .05164
2 .02063  .03403 04208 04630 .04760 .01633  .02958  .033926  .04513  .04709
3 .020899  .03438  .04240 .04661 .04791 .01703  .03052  .04027 .04615  .D4812
4 .02086 .03426  .04223  ,04650  .04780 .01673  .03015 .03989  .04578  .04774
5 ,02092 .03431  .04234 04655  .04785 .01689  .03033  .04007 .04595  .04792
B .02088  .03428  .04231  ,04652  .04783 .01680  .03023  .03997  .04586  .04782
7 .02090  .03430  .04233  ,04654  .04784 .01685  .0302%  .04003 .04592  .04788
8 .02089 .03429  .04232  .04653  .04783 .01682  .03025  .03399  .04588  .04764
9 .02090 .03430 .04233  ,04654  .04784 .01684  .03026  .04002  .04590  .04787
10 .02089  .03429  .04232  .04653  .04783 .01682  .03026  .04000 .04588  .04785
15 .02080 .03429  .04232  .04653  .04704 .01683  .03027  .04001  .04590  .04786
20 .02080 .03429 .04232 .04653  .04784 .01683  .03026  .04001 .04588  .04786
.0208°%  .0343  .0428  .04B6  .0479 .0168  .0303  .0400  .0459  .0478

aValues quoted in Ref. 3 based on Kirchhoff Plate Theory
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Fig. 1. Variation of Q, and V, along yla =0.5.
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Fig. 2. Variation of M,, along the supported edge (y/a = 0).

Discrete numerical values of all the dependent vari-
ables are tabulated in Tables 3 and 4, while the variations
of Q,, V., M,,, Q, and V, are plotted in Figs. 4-6. The
occurrence of a maxima of Q, at the corner of the plate
is unrealistic. But this is not due to the method used in
the present study. This is due to the inherent limitation
of the Kirchhoff plate theory itself. This point has been
clarified in a recent paper[6].

Example 3. Plate with boundary conditions “F” along
x=0,aand “S” alongy=0, a

Relevant discrete numerical values are presented in
Tables 5 and 6. Plots of Q, and V, along the centre line
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Fig. 3. Variation of Q, and V, along the supported edge (y/a =
0).
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Fig. 4. Variation Q, and V, along y/a =0.5.

yla =05, and M,,, Q, and V, along the supported edge
yla =0.0 are shown in Figs. 7-9. These plots are quite
revealing. It gives a feel for the variation of the quan-
tities. The value of Q, is seen to be inconsistent at the
free edge. This is due to the well-known problem of
satisfaction of the boundary conditions at a free edge in
a Kirchhoff plate, wherein a new quantity V, is intro-
duced in the theory. In a recent publication{6] it is
shown that barring its value at the free edge the variation
of @, is realistic in a physical situation. Thus it is
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Table 3. Maximum values of transverse deflection and stress resultants in a square plate with two opposite edges
simply supported and the other two edges clamped (w = §, = Oalongx =0,4; w = M, =0along y =0, a) under U.D.L.
based on Kirchhoff plate theory formulation of segmentation method—a convergence study (v =0.3, alh = 50)
T T o
= - 2 i
Yax [MX)max Bpz-a [My)max quz a (Mxy) max (Qx]max (Qy) max (Vx)max (Vy) max
M
m o= a%—"'— POS NEG POS NEG - g pza® =Ypza =vpza =&pza = &pz'e
o B 8 81 B,I n/2 Y Y, 8 51
1 .00196 .03458 - .07378 .02800 - .02213 - .01332 .58413 - .23187 58413 - .39418
2 .00191 03298 - .06902 .02362 - .02071 - .D1426 .49429 - .27673 .43429 - .47044
3 .00192 .03330 - .07005 .02464 - .02102 - .0143B 52669 - .29293 . 526689 - .49798
4 ,00192 .03318 - .06987 ,02427 - .02090 - .01437 .51016 - .30119 .51016 - .51203
5 ,00182 .03324 - ,06985 .02444 - ,02096 - .071438 .52016 - .30618 .52016 - .52053
& .00192 .03321 - .06975 .02435 - ,02093 - .01438 .51347 - .30954 51347 - .52622
7 .00192 .03323 - .06881 ,02441 - ,02094 - .01438 .51826 - .31194 .51826 - .53029
8 .00192 .03322 - .08978 .02437 - .02093 - .01438 51466 - .31374 .51466 - .53335
9 .00182 .03322 - ,06980 .02433 - .02094 - .01438 .51748 - 31514 51746 - .53573
10 .00192 .03322 - .06978 .02438 - ,02093 - ,01438 .51522 - 31626 .51522 - .53764
15 .00192 .03322 - ,08979 .02433 - ,02094 - ,01438 51667 - .31963 51667 - .54337
20 .00182 .03322 - .06979 .02438 - ,02094 - ,01438 .51597 - .32131 .51597 - .54523
- .00192° - 0697  .0244
aValues quoted in Ref. 3 based on Kirchhoff Plate Theory
"
Occurs aleng the supported edge at —:— = 0.2 and % = 0; '*Occurs at corners of the supported edges.
Table 4. Bending moments in a square plate with two opposite edges simply supported and the other two edges
clamped (w =0, =0 along x=0, a; w=M, =0 along y =0, a) under U.D.L. based on Kirchhoff plate theory
formulation of segmentation method—a convergence study (v = 0.3, a/h = 50)
Mx = Bpza?, y/a = 0.5 My = B,!pzaz. y/a = 0.5
m Z=00 2201 2-0.2 2203 2-0.4 X:-0.5 X-0.0 2-01 2-0.2 2-0.3 2:0.4 220,85
a a a a a a a a a a Q
1 - .07378 - .02644 .00364 .02185 .03155  .034589 - .02213 - .00540 .00875 ,01932 .02581 .02800
2 - .06802 - .02669 .00219 .02020 .02993  ,03299 - .02071 - .00652 .00588  .0D1551  .02156 02362
3 - .07005 - .02642 .00253 .02053 .03024  .03330 - .02102 - .00601 .00676 .01650 .02258  .02464
4 - .06967 - .02654 .00241 .02042 ,03013  .03318 - .02090 - .00625 .00641 .01612  .02220 .02427
S - .06985 - .D2648 .00247 .02047 .03018  .03324 - .02096 - .00612 .00658 .D1630 .02238  ,02444
& - .06875 - ,02652 .00244  ,02044  ,03015  .03321 - .02083 - .00621 .00648 .01620 ,02228  ,02435
7 - .06981 - .02650 .00246 .02046 .03017  .03323 - .02094 - .00615 .00B54  .01626  .02234  ,02444
8 - .06978 - .02651 .00245 .02045 .03016  .03322 - .02083 - .00619 .00650 .01622 .02230  .02437
9 - .06980 - .02650 .00245 .02046 .03017  .03322 - .02084 - ,00616 .00653 .01625 .02233  .02439
10 - .06878 - .02651 .00245 .02045 .03016  .03322 - .02083 - .00618 .00654 .01623 .02231  .02438
15 - .06879 - ,02650 .00245 .02045 .03017  .03322 - .02084 - .00617 .00852 .01624 .02232 .02439
20 - .06979 - .02650 .00245 .02045 .03016  .03322 - .02084 - .00818 .00652 .01624 .02232 .02438
- .0897° - - - - .0332 - - - - - .0244
aValues guoted in Ref. 3 based on Kirchhoff Plate Theory
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Table 5. Maximum values of transverse deflection and stress resultants ina square plate with two opposite edges simply
supported and the other two edges free (M, =V, =0along x=0, a; w= M, =0 along y =0, a) under (»=0.3,

alh = 50)
W"’max mxlmax [My]+max (MXy]max (OX)max my]max [VX)VH'max [Vy)max
= ‘%a_"_ = Bpza® = B,]pza2 = % pza? = Ypza = Y‘,lpza = 8pza = équa
m
a 8 B 2 v Y 8 s
1 2 1 1
1 .01504 .02825 . 13519 .02280 .07187 ,37384 .00514 .35048
2 .01498 .02682 13011 .02367 .06349 .41869 .00433 .38538
3 .01498 .02713 13121 .02386 .06643 .43488 .00447 .41158
4 01498 .02702 .13081 .02393 .06493 .44315 .00444 .41984
5 .01488 .02707 .13100 .02396 ,06584 .44815 .00445 .42484
6 .01488 .02704 .13089 .02398 .06523 .45149 .00444 .42819
7 .01498 .02706 .13086 .02399 .06566 .45389 .00444 .43058
8 .01498 .02705 . 13081 .02399 .06534 .45589 .00444 .43238
g .01488 .02706 . 13094 .02400 . 06559 .45708 .00444 .43378
10 .01438 .02705 .13092 .02400 .06539 .45821 .00444 .43491
15 .01498 .02705 .13083 .02401 .08552 .45158 .00444 .43828
20 .01498 .02705 .13093 .02401 .06546 .46327 .00445 .43996
* Occurs at % = 0 and % = 0.5
Hoccurs at % = 0.2 and % = 0.5
Table 6. Bending moments in a square plate with two opposite edges simply supported and the other two edges free
V, =M, =0along x =0, a; w= M, = 0along y =0, a) under U.D.L. based on Kirchhoff plate theory formulation of
segmentation method—a convergence study (v = 0.3, a/h = 50)
Mx = Bpzal, y/a = 0.5 My = B,Ipzaz. y/a = 0.5
m
l;—=01§=0.2 §=0.3 §=04 §=05 -;5=0 §=0.1 Z=0.2 §=0.3 §=o.4 -:—=0.s
1 .01186  .01972 .02467 .02733 .02825 .13519 13119 .12875 12734 .12660 .12638
2 .01087 .01842 .02327 .02596 ,02682 . 13011 . 12641 12402 12260 .12186 .12163
3 .011%4  ,01872 .02358 .02627 .02713 .13121 12744 .12505 12363 .12289 .12266
4 .01103 .01861 .02347 02616 .02702 .13081 .12706 .12467 .12325 .12251 .12228
5 .01108  .01866 .02352 02621 .02707 .13100 12724 .12485 .12343 . 12269 .12246
6 .01105 .01863 .02349 02618 .02704 .13089 12714 12475 .12333 .12258 12236
7 .01107  .D1885 .02351 02620 .027086 .13096 12720 .12481 .12339 . 12265 12242
8 .01106 .018B4 .02350 02619 .02705 . 13081 12716 12477 12335 12261 .12238
s .01107  .01885 ,02351 02620 .02706 .13094 .12719 .12480 12338 .12264 12241
10 .0106  .01864 .02350 02649 .02705 .13092 12717 .12478 12336 .12262 12239
15 .01106  .01865 ,02350 02618 .02705 .13093 12718 12479 .12337 12263 12240
20 .01106  .01864 .02350 02618 .02705 .13093 .12718 .12479 .12337 .12263 .12240
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concluded that it is Q, and not V., which should be used
in designs in such situations.

CONCLUSIONS

A less known formulation for economical numerical
analysis of elastic plates is presented. The method is
found to be very efficient and accurate. The numerical
results obtained show excellent comparison with those of
Timoshenko[3] which are presumably based on analy-
tical solution. The main use of the method seems to lie in
its adoption in design offices for preparation of reliable
design charts at reasonable costs. Although the method
has limitations in its applications to general problems
when compared with the versatile finite element
method[7], it appears to be superior to the finite strip
method [4] because of its relatively accurate mathematical
model.
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APPENDIX A

Basic equations of Kirchhoff plate theory
Displacement model (Ref. Fig. Al)

Ulx, y, 2) = 28, (x, y) (Ala)
Vix, y,2) = 28,(x, y) (Alb)
Wix, u,2)= wix, y) (Alc)
Strain-displacement relations
Pw
€ Ly (A2a)
Fw
€=~z e (A2b)
3w
Yy 4 :?X_ﬂy (A2c)
aw
6. =- o (A2d)
w
6,=- W (A2e)
Equilibrium equations (Ref. Fig. A2-4)
B 50 st ph =0 (A39)

ax  dy

IF

Ox

X
Fig. Al. Positive set of displacement components.
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Force-displacement relations
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Fig. A3. Positive set of stress resultants—forces.
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