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Abstract—Design of a simple C°continuous beam/plate flexure element based on a shear-deformable
theory is attempted. Empbhasis is placed on development of a low order linear/bilinear element. How-
ever, past experience shows that such elements become very *‘stiff”" especially when thickness is
reduced (conforming to Kirchhoff mode). This phenomenon is called ‘‘locking.”” Attempts have been
made in the last several years by a few investigators to overcome this problem.

The locking problem is resolved here through a new approach. The total strain energy is split into
bending and shear energies and an antiparameter in the shear energy term is introduced to avoid
locking. By numerical experimentation on beam and plate problems it is shown that the present ap-
proach gives good results in the thin limit. It is also shown that the additional/spurious zero energy
modes do not arise here because reduced/selective integration is avoided.

NOTATION

A, Area in shear for a section = bt
Plate dimensions
B Matrix relating strains and nodal displace-
ments of element
B, Matrix relating bending strains and nodal
displacements
B, Matrix relating shear strains and nodal
displacements
D, Elasticity matrix relating moments and
bending strains
D, Elasticity matrix relating shear forces and
shear strains
D Plate constant = Ef*/12 (1 — 4%)
E Young's modulus
G Shear rigidity
h Element length
K Stiffness matrix
K¢ Element stiffness matrix
K, Bending stiffness matrix
X» X<+ Xv+ Xxv Curvatures, bending strains
s Shear stiffness matrix
k Shear correction factor
L Length of the beam
M., M,, M,, Moments
N\. N: Shape functions
N Matrix of shape functions
p A free parameter used in the formulation
@ Concentrated load
Q.. Q. Shear forces
q Uniformly distributed load, UDL
¢t thickness
u Displacement along X axis
U Strain energy
U, Bending strain energy
U, Shear strain energy
v Displacement along Y axis
w Displacement along Z axis
€ Strain vector
€, Bending strain vector
€, Shear strain vector
o Stress vector
5. Nodal displacement vector for element

t With whom correspondence should be addressed.
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d Displacement vector at any point in the
element
6., 8, Rotations about Y and X axes
d)v ¢.r:- ¢y: Shear strains
y Poisson’s ratio
o Antiparameter
formulation

used in the present

INTRODUCTION

The early displacement based finite element for-
mulations for flexure problems relying on the
**Kirchhoff hypothesis’ (for beams, plates, etc.)
were plagued with difficulties because of the re-
quirement of slope continuity between adjacent ele-
ment, i.e. C' continuity in shape functions. The
main assumption in Kirchhoff’s hypothesis is that
the transverse normals to the reference middle
plane remain so during bending, implying trans-
verse shear strain becomes zero. Thus bending ro-
tation becomes a first. derivative of the transverse
displacement w and hence requires the transverse
displacement field C! continuous. Both compatible
and incompatible and complicated higher order C'
continuous elements have been derived in the
past[1-6).

In recent years C° continuous elements based on
shear deformable theories which use independent
interpolation of slopes and displacements have
been developed. This is mainly due to the ease in
the development and the formulation of computer
programmes. In the last 10 years or so a number of
elements have been developed using a shear de-
formable theory such as that of Mindlin[7-11].

The recent trend has been towards using linear/
bilinear elements, i.e. 2-noded beam/4-noded plate
elements. However, such shear flexible elements
using low order (linear/bilinear) interpolation for all
components of nodal displacement vector become
very stiff especially when the thickness is reduced;
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i.e. when the sysfem conforms to the Kirchhoff
mode. This phenomenon, called ‘‘locking,’” arises
from linear/bilinear element discretization. The
trouble occurs due to the existence of spurious
shear energy which turns out to be of the order (4/
1)* of flexural energy, h and ¢ being effective ele-
ment size and thickness, respectively, and as ¢t —
0, A/t — =, This situation poses an enormous prob-
lem in numerical analysis. Thus, the spurious shear
energy in the discrete model causes the ‘‘shear-
locking’ phenomenon, which is a numerical prob-
lem. Attempts have been made in the last several
years by a few investigators to overcome this prob-
lem. Remedial measures suggested to date to re-
move such difficulties are:

1. Use of the discrete Kirchhoff procedure, in
which the element matrix equation is stabilized
by tying together the two independent degrees
of freedom w, 6 at discrete points such that
8., = dw/dx,. Since this method is complicated
to implement, it is not widely used.

2. Use of selective/reduced integration proce-
dure, in which the shear energy term is under-
integrated{7, 8, 12-14]. This technique is
viewed by many analysts as mere tricks rather
than methods. ‘‘Heuristic’’ justification of
these procedures has recently been pro-
vided([15]. Although this technique is effective,
it creates unwanted spurious zero energy
modes other than the rigid body modes. This
poses many problems, e.g. use of these ele-
ments gives oscillatory results in the case of
corner supported plates.

Recently a stabilization matrix with a free pa-
rameter has been developed by Belytschko et
al.[16, 17} for the Hughes et al.[7] element and also
for the Mukhopadhyay and Dinker element(8]. This
‘‘stabilization”” matrix is developed by combining
reduced and fully integrated stiffness matrices. Al-
though this method is effective, the efficiency of
the original element is lost and the choice of free
parameter requires ones judgement.

Thus a simple, effective and efficient element is
yet to be developed which could be free from lock-
ing and spurious zero energy modes so that the ele-
ment could be safely used for wide (L/r) ranges and
various boundary conditions.

In this paper a C° continuous linear beam/bioli-
near plate bending element is developed based on
a shear deformable theory. Emphasis is given on
resolving the locking problem by trying out a new
approach. In this formulation total strain energy is
split into bending and shear energies and an anti-
parameter in the shear energy terms is introduced
to avoid locking. By numerical experimentations on
beam and plate problems it is shown that the pres-
ent approach gives good results in the thin limit.
Since reduced/selective integration is avoided, spu-
rious zero energy modes do not arise. The patho-
logical problem of the corner suppported plate is
solved safely.
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THEORETICAL FORMULATION

The following presents a brief account of the 2-
noded beam element and the 4-noded plate element:
(see Fig. 1):
nodal displacement vector,

8. = (wi. 8y, w2, 02)7, (1)
shape functions,
Ny = (1 = x/lh); Ny = xlh, (2)
displacement vector, d = N§,, (3)
strain vector,

€ = (x, $)7 = (do/dv, dn/dx + 8)7. (4)
Here, we introduce an antiparameter a such that
d = a (dw/dx + 9). (3

The strain energy expression U is written as
follows:

U= Ubending + Ushear
1 de\’
3 J; EI (a—;) dx

1 2 2
+3 fh kGA, o (dwidx + 8)? dx. 6)

For a rectangular beam cross section,

k = 5/6; A; = bt G=ER21+47vy), (T)
and we set o = p (/L) intuitively, where p is a free
parameter, ¢ is thickness and L is the total beam

length. Finally, we get stiffness matrices

0 0 0 0
Kbending = EI g l(/)h g —é/h (8)
0 -1h 0 1/h
and
= SEI 2 2
shear = (1 T 'Y) o (h/!)
VR —1R2K -UR -1k
% |~ 12h3 1/3h 12h* 1/6h 9)
- 1/h 1203 1R 1/2k*
— 17247 1/6h 120 1/3h

If @ = p(¢/L)is substituted in, say (9), the muitiplier
to the matrix becomes

SEI] + y)-(h/L)*p*.

By adding the above two matrices, we get, in the
usual manner,

Kelemem = Kb + Ks- (10)
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Fig. 1. 2-Noded linear element.
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Using this Keemen. One and two element analyses
were carried out for a cantilever beam of rectan-
gular cross section for a tip load Q for which the
results are

alip =

oL’ 12(1+v).5p’+3(1+7)] an
3EI 5p° SpP4+12(1 + )

and

5 =20 16(I+y).15p2+9(1+y)] (12)
T 3EI|  Spr SpP+48(l+vy) ]

respectively.

The idea behind the above analyses was to as-
sess a theoretical bound for the parameter ‘‘p"’ in
the limit when the number of elements are increased
to infinity. However, at the present moment such
an analytical estimate appears infeasible. But the
nature of the multipliers appearing in eqns (11) and
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Fig. 2. 4-Noded quadrilateral element.
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(12) suggests that a numerical estimate can be ob-
tained. In this paper, an estimate for the parameter
p is obtained to ensure lower-bound monotonic
convergence to true solution by subjecting this for-
mulation to numerical experimentation.

A similar formulation is done for a bilinear plate
element. For the sake of brevity the details are pre-
sented in the Appendix 1.

NUMERICAL EXPERIMENTS

The new formulation was tested with a few beam
flexure problems with various load/boundary con-
ditions such as (1) cantilever beam under tip load,
(2) cantilever beam under UDL, (3) simply sup-
ported beam under concentrated load at the centre,
(4) simply supported beam under UDL, (5) clamped
beam under concentrated load at the centre and (6)
clamped beam under UDL. All these problems
were solved for the tip displacement (cantilever
problems) or the centre displacements (simply sup-
ported and clamped beams) for different values of
the parameter p. The results are presented in Tables
1-6 and Figs. 1-6.

Similar experiments were also performed for
plate flexure problems such as (1) simply supported
square plate under concentrated load at the centre,
(2) simply supported square plate under UDL, (3)
clamped square plate under concentrated load at
the centre, (4) clamped square plate under UDL and
(5) corner just supported plate under UDL.

The results are presented in Tables 1-11 and
Figs. 3-13.

Finally the element was checked for spurious
zero energy modes by finding out the eigenvalues
of the element stiffness matrix (Table 12). It is seen
that no extra spurious zero energy modes exist for
the present element.

CONCLUSIONS

For each beam/plate problem we can see that
(Tables 1-11, Figs. 3-13) the finite element dis-
placement solution converges monotonically to the
correct value for a particular value of parameter p.
It is thus proposed that p lies in a certain range,
that is, 6-12 for beams and 9-15 for plates, for
which the FEM solution gives reasonable answers
and thus avoids locking. We are also reasonably
correct in proposing that the choice of p is inde-
pendent of the (L/¢t) ratio as well as the nature of
the boundary conditions and loading conditions. Fi-
nally it is also confirmed that the present formu-
lation is free from spurious zero energy modes since
reduced/selective integration is avoided. This as-
sertion is proved by our getting an extremely good
solution for the corner supported plate, which is
otherwise not possible with a reduced/selective in-
tegrated element[7, 16].
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Fig. 3. Cantilever under tip load (see Table 1).

Table 1 (see Fig. 3). Tip displacement for a cantilever beam under tip load (L = 10.0. ¢
=0.01,E =40 x 10 vy =0.3)

p

Elements 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

2 0.460 0.343 0263 0.206 0.165 0.135 0.112 0.094 0.080
4 0.794 0.687 0.594 0.513 0.444 0.385 0.336 0.294  0.259
8 0971 0917 0866 0.816 0.766 0.718 0.672 0.627  0.584
16 1.030  1.000 0.977 0958 0.938 0917 0901 0.878 0.853
32 1.040 1.020 1.010 1.000 1.010 0.995 0991 0964 0.959
Exact: 1.0.

Table 2 (see Fig. 4). Tip displacement for a cantilever beam under UDL (L = 10.0. ¢ =
001, E = 1.5 x 10°. vy = 0.3)

p
Elements 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0
2 0.503 0.375 0.286 0.224 0.179 0.146 0.121 0.102  0.087
4 0.822 0.708 0.610 0.526 0.454 0.394 0.343 0.301 0.265
8 0.991 0930 0.876 0.825 0.774 0.724 0.677 0.631 0.589
16 1.046 1013 0985 0.963 0942 0924 0898 0878 0.856
32 1.063 1.032 1.017 1.005 0995 0.988 0.978 0.972  0.967

Exact: 1.0.
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Table 3 (see Fig. 5). Centre displacement for a simply supported beam under
concentrated load at centre (L = 10.0.¢ = 0.01, E = 2.5 x 10%. v = 0.3)

CENTRE DISPLACEMENT/(5PL3/384 El )

14
Elements 4.0 5.0 6.0 7.0 8.0 9.0 10.0 1.0 12.0
2 0.524 0.375 0.280 0.216 0.171 0,139 0.114 0.0959 0.0815
4 0.905 0.749 0.631 0.537 0.460 0.396 0.343 0.300 0.263
8 L1100 1.000 0921 0854 0794 0.739 0.687 0.639 0.594
16 1170 1.090  1.040 1000 0971 0.943 0917 0.851 0.866
2 1190 1.120 1070 1050 1.030 1.010 1.000 0.988 0.977
Exact: 1.0.

Table 4 (see Fig. 6). Centre displacement for a simply supported beam under UDL (L =
10.0,1 = 0.01, E = 1.5625 x 10%, v = 0.3)

P
Elements 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0
2 0.419 0300 0.224 0.173  0.137  0.111 0.092 0.077 0.065
4 0.838 0.700 0.592 0.505 0.433 0.374 0.3258 0.283 0.249
8 1.059 0966 0895 0834 0777 0724 0675 0.628 0.584 .
16 1.130 1.063 1,020 0.987 0.969 0933 0.908 0.884 0.859
32 1.149 1.091 1.056 1.034 1.018 1.007  0.997 0.987 0.976
Exact: 1.0.
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Fig. 6. Simply supported beam under UDL (see Table 4).
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Fig. 7. Clamped beam under concentrated load at centre (see Table 5).

Table S (see Fig. 7). Centre displacement for a clamped beam under concentrated load at

centre (L = 10.0, ¢t = 0.01, E = 6.25 x 107, y = 0.3)
p
Elements 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0
2 0.780 0.499 0.347 0.255 0.195 0.154 0.125 0.103 0.0867
4 1.350 0.999 0.782 0.633 0.524 0.440 0.375 0.322 0.280
8 1.650 1.330  1.140 1.010 0.905 0.821 0.750 0.687 0.631
16 1,750 1450 1.290 1.180 1.110 1.050 1.000 0.958 0.92i
32 1.770 1.490 1.330 1.240 1.170 1.130 1.090 1.060 1.040
Exact: 1.0.
Table 6 (see Fig. 8). Centre displacement for a clamped beam under UDL (L = 10.0.¢ =
0.01. E = 3.125 x 10°. y = 0.3)
p
Elements 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0
2 0.520 0.333 0.231 0.170 0.130 0.103 0.083 0.069 0.058
4 1.080 0.799 0.626 0.507 0.419 0.352 0.300 0.258 0.224
8 1.461 1.180 1.011 0.896 0.804 0.731 0.666 0.611 0.561
16 1.643 1.370 1.206 1.112 1.040 0.986 0.941 0.902 0.867
32 1.720  1.444 1.291 1.203 1.140  1.091 1.062 1.032 1.010

Exact: 1.0.
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Fig. 9. Simply supported plate under concentrated load at centre (see Table 7).
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Table 7 (see Fig. 9). Centre displacement for a simply
supported square plate under concentrated load at
centre (@ = 1.0, ¢ = 0.0001, £ = 10.92 x 10", vy =

0.3)
p
Mesh 9.5 10.0 13.0
I x1 0.00397 0.0036 0.0018
2x2 0.0077¢ 0.0073 0.0052
4 x4 0.0113 0.0109 0.008%
6 x6 0.0126 0.0123 0.0108
8 x8 0.0132 0.0128 0.0113

Exact: 0.0116.

Table 8 (see Fig. 10). Centre displacement for a simply
supported square plate under UDL {a = 1.0, ¢ =

0.0001, £ = 10.92 x 10", y = 0.3)

P
Mesh 9.0 9.5
I xt 0.00108 0.00099
2x2 0.00254 0.0024
3x3 0.00329 0.00318
4 x4 0.00367 0.00359
6 X6 0.00401 0.00392
8 x 8 0.00414 0.00409
9x9 0.00417 0.00413

Exact: 0.00406.
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Fig. 10. Simply supported plate under UDL, (see Table 8),
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Table 9 (see Fig. 11). Centre displacement for clamped
square plate under concentrated load at centre (a = 1.0,
= 0.0001, E = 1092 x 102, y = 0.3)

Table 11 (see Fig. 13). Centre displacement for a corner
just supported square plate under UDL (@ = 1.0, ¢ =
0.0001, E = 1092 x 10*.y = 0.3)

P p
Mesh 10.0 15.0 Mesh 9.0 9.5 10.0
1 x 1 0.00107 000039 1 x1 0.00305 0.00277 0.00253
2x2 0.00329 0.0024 2x2 0.0117 0.0110 0.0104
3Ix3 0.00478 0.00396 3 x3 0.0176 0.0167 0.0161
4 x4 0.00571 0.00415 4 x 4 0.0212 0.0205 0.0198
6 x6 0.0067 0.00495 6 x 6 0.0248 0.0242 0.0237
8 x 8 0.00714 0.00556 8 x 8 0.0264 0.0259 0.0256
Exact: 0.0056. Exact: 0.026.

Table 10 (see Fig. 12). Centre displacement for
clamped square plate under UDL (a = 1.0, ¢t = 0.0001.
E = 1092 x 10", vy = 0.3)

o

Mesh 10.0 13.0 15.0

I x1 0.000267 0.000171 0.000119
2x2 0.000698 0.000498 0.000371
3x3 0.000981 0.000775 0.000608
4 x4 0.00115 0.000963 0.000797
6x6 0.00133 0.00114 0.00106
g§x8 0.00139 0.00123 0.00116

Exact: 0.00127.

Table 12. Eigenvalues of a plate element using present
formulation (element length = 0.0625, 1 = 0.0001, £ =
10.92 x 10'%, v = 0.3)

p 9.5 10.0 15.0
Rigid body
modes 3 zero 3 zero 3 zero
Elastic modes 0.100 0.110 0.530
0.490 0.480 0.530
0.490 0.480 0.700
0.680 0.690 0.960
0.820 0.830 0.150 Et
0.140 E! 0.140 El 0.100 E2
0.210 E3 0.230 E3 0.530 E3
0.320 E3 0.350 E3 0.790 E3
0.320 E3 0.350 E3 0.790 E3
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APPENDIX 1

4 Noded Mindlin plate element formulation

Displacement field

u = 284, v =20, W o= w. §))]

Nodal displacement vector

se = (“"lv e.\'lv e_vlq - ey Wy ex‘h e_\'-l)T- (2)

Shape functions
Niy=14( -e(l —nk Ny = 14 + el -y
Na= 1401 + )1 — No= 14—l =1
3
Displacement components
4
w o= 2 V,ouy
1
3
8 = > N, 04 4
1
4
e)‘ = 2 1V,- 9\:
1
If we define
8 = (w. 0y, 8,)7 (5)
then
3 =N3&. (6)
in which,
Ni 0 0 1t Ny O O
N=|0 N 0 /10 A0 (7
0 0 N0 0 N
Strain vector
€ = (€. €))7, (8)
in which the bending strain.
Xx 09,/9x
€ = {Xy { = 36,/dy 9
Xexv 90,./dy + 86./9,

and the shear strain,

-1t}
! ¢’,\~:

_ awfax + 6
=a awley + 8, |

(10)

in which « is an antiparameter we have introduced in the
present formulation to avoid shear locking. We now write

€ = B3,
in which
B = [B,. B:, B;, B4]
and

0 aNifox 0
0 0 61\';/6)‘
[Bbi] 0 aNddy oNdax
B,' = "B"' ____________

adV, ,‘/ ax a IV,' 0
adN;/dy 0

Elasticity relations
We define stress vector

o= (M- Q)T = (‘Wn M,vv Mx_v- Qx- Qy)T

(mn

(12)

(13)



such that

in which

where

and

Db=

C* continuous beam/plate flexure element 425

0
D.|°

I ¥ 0
y 1 0

1 -
00 5

(14)

(15)

(16)

(D

Strain energy
The total strain energy expression is written as

U=Ub+Us

|
ffe,fo,,e,,drdy +%jje!0,esdrdy (18)

(87 Kg 8. + 87 K 8.1,

]
1
T2

in which

K = J’ B] D, B, dr dy

and

K¢ oﬁf BI D, B, dr dv.

We set a = p (t/a), in which p is a free parameter whose
estimate is provided based on numerical experimentation,
t is the plate thickness and a is the plate dimension.



