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Abstract—A finite element formulation for flexure of a generally orthotropic plate based on a higher-order
displacement model and a three-dimensional state of stress and strain is presented here. This higher-order
theory incorporates linear variation of transverse normal strain/stress and parabolic variation of
transverse shear strains through the thickness of the plate. The nine-noded quadrilateral from the family
of two-dimensional C°® continuous isoparametric Lagrangian elements is then developed as a generally
orthotropic higher-order element. The performance of this element is evaluated on square plates with
different support conditions and under uniformly distributed and central point loads. The numerical
results of the present formulation are compared with thin plate, elasticity and Mindlin/Reissner solutions.
The effect of degree of orthotropy on the maximum bending moment location is examined for different
loading and boundary conditions. The effect of directional orthotropy on the location of the maximum
values for the various stress-resultants is also studied.

INTRODUCTION

It is an established fact that the classical thin plate
theory [1, 2] based on the so-called Kirchhoff hypoth-
esis is computationally inefficient from the point of
view of simple finite element formulations [3, 4]. Be-
sides, it is based on simplifying assumptions, the most
important of which are the neglect of the transverse
shear deformations and the transverse normal stress.
The errors in such a theory naturally increase as the
plate thickness increases. In addition, due to neglect
of transverse shear deformations and transverse nor-
mal stress, one cannot take into account all of the
nine stiffness coefficients in the constitutive relation
of a general orthotropic material. Consequently, the
errors increase as the magnitude of inplane stiffness
increases relative to the transverse stiffness of the
material in general. For instance, in plates with a a/h
ratio less than 10 and a high degree of orthotropy
involving a large ratio of E,/E,, Ashton and
Whitney [5] have reported enormous discrepancy in
the results of the classical thin plate theory.

Reissner [6] and Mindlin [7] were the first to pro-
vide first-order shear deformable theories based on
the thin plate assumptions for variation of stresses
and displacements through the thickness of the plate,
respectively. Both these theories give rise to a sixth-
order partial differential system of equilibrium equa-
tions and permit satisfaction of three boundary con-
ditions on each edge. Medwadowski[8] extended
Reissner’s theory (based on assumed stress fields) to
orthotropic plates. Yang et al. [9], on the other hand,
extended Mindlin’s theory (based on assumed dis-
placement fields) to heterogeneous plates.

The foregoing theories provide a first-order basis
for the consideration of the effects of the transverse
shear deformations on the behaviour of isotropic,
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orthotropic and heterogeneous plates and these also
yield a C° continuous finite element formulation for
the numerical analysis but have certain limitations:
the transverse shearing strains (and thereby stresses)
are assumed constant through the plate thickness and
a fictitious shear correction coefficient is introduced;
the classical contradiction whereby both the trans-
verse normal stress (6,) and the transverse normal
strain (¢,) are neglected, remains unresolved. Lo et
al.[10, 11] and Reissner [12] presented a theory for
plates based on an assumed higher-order displace-
ment field. Kant [13] derived an isotropic version of
the complete governing equations of such a theory in
a systematic manner based on the minimuin potential
energy principle and has also compared it with
Mindlin theory through extensive numerical studies.
Kant ez al. [14] also presented, for the first time, a C°
finite element formulation of this higher-order
theory. Specifically, the in-plane and the transverse
displacements are expanded in the powers of the
thickness coordinate (z) by Taylor series and the
truncations are effected at the third and the second
degrees respectively. The theory thus incorporates: (i)
quadratic variation of the transverse shearing strains
(.. and 7,.) through the plate thickness, making the
introduction of a shear correction coefficient redun-
dant; (ii) linear variation of the transverse normal
strain (¢,) through the plate thickness; and (iii) con-
sideration of the three-dimensional Hooke’s law.
Motivation for the present study comes from these
works in the form of an extension for generally
orthotropic plates.

Recently Phan and Reddy[15] presented a finite
element formulation of a plate theory based on an
assumed displacement field of Levinson[16] and
Murthy [17] in which in-plane displacements are ex-
panded as cubic functions of the thickness co-
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ordinate while the transverse deflection is kept only
a function of x and y (independent of thickness
coordinate) as assumed in the case of classical and
Mindlin/Reissner plate theory. The additional four
higher-order functions used in the definition of the
in-plane displacements are eliminated and expressed
in terms of the usual physical lower-order displace-
ment functions of the classical/Reissner/Mindlin
theory by conditioning that the transverse shear
stresses are zero on the bounding planes of the plate.
Implicit in this development is the use of only a
partial constitutive relation which ignores the con-
tributions and effects of transverse normal stress
(0,)/strain (¢,). The resulting formulation is also seen
to contain second-order derivatives, as in the classical
plate theory, of the transverse deflection (w) in the
energy expression and consequently the displacement
based finite element formulation requires the use of
computationally inefficient C' continuous shape
functions.

Further, with present increasing interest in the use
of composite materials in high technology areas, it
is important that we predict reliably their failure/
fracture mode. Failure phenomenon in composite
materials is extremely complex. Nevertheless, delami-
nation mode of the failure is now recognised as the

(k. ) [ 0 djox o0
K, 0 0 dfoy
Ky 0 &/dy djox
K¥ 0 0 0
K¥ 0 0 0

=< K2 r= 0 0 0
K, 0 0 0

o, d/ox 1 0

o, do/dy 0 1

o¥ 0 0 0
Ler) Lo 0o o

most critical one [18]. Initiation and/or growth of this
failure mode is due to inter-laminar stresses 7., 1,.,
and also o,, which is not considered by Phan and
Reddy [15], Levinson [16] and Murthy [17}.

We believe that the present formulation, though
cumbersome [17], has the potential to predict all six
components of the stress tensor accurately and is thus
worth pursuing.

HIGHER-ORDER ELEMENT FORMULATION
The theory is based on the displacement model,
Ulx, y, 2) =20,(x.y) + 2°0¥(x, »)
Vix,y,z)=20,(x,p)+2%0*x, y)
4y

Wi(x,y.z)=w(x, y)+ z2w*(x, y),

in which the various terms have the usual meaning
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except the terms 8%, 6* and w*, which are the
corresponding higher-order terms in the Taylor’s
series expansion, used in the present theory and are
defined at the reference plane. Thus the generalized
displacement vector § of the reference plane is defined
as

5={w. 0.0, w* 0% 0%} )

The strains, in terms of displacement vector & are
expressed as

€, =ZK
K. + "BK*
ytv “Mxy “ xy
— + ~2¢*
V=@, T 279,

3

The generalized strain components vector € is related
to the generalized displacement components § by the
following matrix relation:

0o o0 o0

0 0 0

0 0 0

0 3/ox 0 (;”
0 0 J/oy 0‘
0 8/dy d/ox > =L (4
2 0 0 ‘g*
0 0 0 o
0 0 0 v
dlex 30

dlox 0 3]

The total potential energy = for the present
theory [14] is given by

h2
7r=1 éadA - | (pr+pIHw+—w*]d4, (5)
2, P 4

where p} and p; are the transverse distributed loads
on the positive and negative extreme z planes re-
spectively and 4 is the total thickness of the plate. The
generalized stress component vector 4, which is the
integral of the physical stress components through
the thickness of the plate, is given by

s={M M M M} MM},

M. 0..0,,05 Q7. (6)

The generalized stress vector ¢ and the generalized
strain vector € are partitioned as follows:
@)

¢ =1{6,,6,}' and € ={§, ¢},
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Fig. 1. Positive system of coordinates.

where
6,={M, M M MM} M M}
6.={0,,0,,01, 27} ®
G={K, K, Kep, KE, K3, K2, %, }
&=1{¢..0,, 0% ¢} )

For a linear elastic material the constitutive relation
can be written as

a-b = Dbfb and 6, = Dséj, (10)
where the elasticity matrices D, and D, for a general
orthotropic plate of thickness 4 are expressed in the
following manner:

€ 1/E,  —v,/E
€ —-v/E, 1/E,
€= € - —vy/E; —vy,/E,
147] 0 0
V23 0 0
Y13 0 0
D, =
QIIHI QIZHI QI‘HI QIIHZ QIZHZ QI4H2 QIJHI
QZZHI Q24Hl Q12H2 QZZHZ QMHZ Q23Hl
Q«H 1 Q I4H 2 QuH 2 Q“H 2 QJ‘H 1
QIIHJ Q12H3 QI4H3 QI3H2
Q22H3 Q?AHJ QZSHZ
Symm. QuH, Q,H,
Q!!Hl
(11)

Q66h Q56h Q66H1 Q56H1
QSSh Q56H1 QSSHI

D= Oubly Quty |* P
Symm. QssH,
in which
H, =h12
H,=h%/80
Hy= h'/448.

The coefficients Q, (i, j = 1-6) in terms of nine
independent elastic constants are derived as follows.

The three-dimensional strains ¢ are related to
stresses ¢ by a compliance matrix S with respect to
the 1-2-3 set of co-ordinate axes (see Fig. 1):

—vi/E, 0 0 0 0,

—'sz/Ez 0 0 0 0,

VE, 0 0 0 o | _

0 1G, 0 0 o (5 03
0 0 1/Gy 0 tn

0 0 0 G, T

By inverting the compliance matrix, the stiffness
matrix C, relating stresses and strains, is obtained as

¢ =S""e=Ce (14)
The coefficients of C matrix are given in Appendix 1.
Next, the stress vector, strain vector and stiffness
matrix are transformed from the 1-2-3 set of axes to
the x-y-z set of axes using the relation:

d =T 'C[T ' = Q¢, (15)



where
(02 20 =25¢ 0 0]
s ¢ 0 2s¢c 0 O
0 1 0 0 0
T= N 16
s¢ ~s¢c 0 ¢°—s- 0 O (16)
0 0 0 0 ¢ -
L0 0 0 0 s |

(in which ¢ =cosf and s =sinf) is the trans-
formation matrix, & and € are the stresses and strain
vectors respectively, with respect to the x-y-z axes.
The coefficients of Q matrix are given in Appendix 2.

The generalized displacement vector & and nodal
displacement vector 9§, are related with the aid of
shape function N, as follows:

a7

where n = total number of nodes/element. With the
generalized displacement vector, 8, known at ali
points within the element, the generalized strain
vector € at any point is derived with the help of
eqns (4) and (17) as follows:

é=L6=LY N6=1Y B3, (18)
=1 =1
where
B, =LN.. (19)
The elasticity matrix D is expressed as
D,'" 0
D=|--+--1]. (20)
0, D,

where D, and D, matrices are already expressed in
eqns (11) and (12) respectively. Having obtained the
D and B matrices as given by eqns (19) and (20),
respectively, the element stiffness matrix K¢ can be
readily computed by using the standard relation

i

+1 L1
K;=J BfDBJdA=J‘ J B'DB,|J|d¢ dn. (21)
Ae 1

The computation of the element stiffness matrix is
economised by explicit multiplication of the B,, D
and B, matrices instead of carrying out the full matrix
multiplication of the triple product, and due to sym-
metry of the stiffness matrix only the blocks K, lying
on one side of the main diagonal are formed [14, 19].

The formulation for consistent load vector P
remains the same as given in [14].

NUMERICAL EXAMPLES

For numerical computations of various types of
examples, a computer program has been developed
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which incorporates present higher-order theory.
Simultaneously, a computer program based on
Mindlin’s theory[20] has been executed to support
the numerical evaluations of the present theory.

For all the numerical examples, a quarter plate is
discretized with four of the nine-noded Lagrangian
quadrilateral elements. The selective integration
scheme based on Gauss-Legendre product rules. viz.
3 x 3 and 2 x 2, has been employed for flexural and
shear contributions respectively to compute the
element stiffness matrix. The numerical study consists
of the following examples.

Example 1

In this example, a square orthotropic plate (6 = 0)
of side a =1 and subjected to a transverse uni-
form load p =1 1s analysed with simply sup-
ported (w =6, =w* =¥ =0) boundary conditions.
Srinivas and Rao[21] have solved this problem
assuming the following elastic rigidities:

[
2= 0.

0. 543103

Q33

=3 - 0.530172

Qll

Qi _ 0.233190
1

i _ 0.010776
11

O _ 0.098276
11

Gll

= 0.262931

1

Gy

-8 = 0.159914
It

G23

—2 = 0.266810

11

and the same are used here; they have also presented
solutions by Reissner’s and thin plate theories.
Tables 1-3 compare the deflections, bending mo-
ments and transverse shear respectively, at the critical
locations given by Srinivas and Rao with those
obtained using present higher-order and Mindlin
finite element formulations. The agreement for
deflections and moments between the elasticity solu-
tion given by Srinivas and Rao and the present
higher-order plate solution is much better compared
to the Mindlin solution. For the above comparative
study, the stress values given by Srinivas and Rao
have been integrated through the thickness of the
plate to calculate moment and shear stress resultants,
assuming linear variation of direct stresses and para-
bolic variation for shear stress through the thickness
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of the plate. The agreement for transverse shear
between two finite element solutions is better as
compared with approximate calculations from shear
stresses presented by Srinivas and Rao. In Tables
1-3, some additional results with a/h = 5, 50 and 100
are also presented.

Example 2

A square orthotropic plate (§ =0) of side a =1 is
analysed for two different loading conditions, viz.: (i)
transverse uniform pressure p = 1; and (ii) central
point load P =1 with three different boundary con-
ditions, namely, (a) simply supported (S), i.e.
w=8=w*=0%=0, (b) just supported (S¥),
ie. w=w*=0, and (c) clamped (C), ie. w =6, =
0,=w*=0*=0=0 for various degrees of
orthotropy (E./E,). The material properties consid-
ered for this example are listed in Figs 2-7.

Iyengar and Pandya [22] have presented an elas-
ticity solution for simply supported plate under uni-
form pressure with different degree of orthotropy
and a/h ratios. They have also presented results of
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Ambartsumyan’s and Reissner’s theory. Table 4
compares the deflections at the center of the plate
obtained by Iyengar and Pandya with those obtained
using higher-order and Mindlin finite element formu-
lations. It can be seen that for E,/E, =3 and
a/h =10, agreement between present higher-order
element and elasticity solutions is better as compared
with Mindlin finite element formulation. For
E/E,=3 with afh =10, 5 2.5, both the finite
element solutions agree with the elasticity solution.
But, for E,/E, =40 with a/h = 10, 5, 2.5, agreement
between Mindlin element and elasticity solution is
better compared to higher order elements. Tables 5
and 6 compare moments and transverse shear re-
spectively at the critical locations. Tables 7 and 8
present two finite element results for deflections and
moments respectively, for a plate under uniform
pressure with a/h = 100, E,/E, = I (isotropic), 4, 5, 6,
10, 20, 40 and the three different boundary conditions
stated above. Similar results for deflections and mo-
ments are presented in Tables 9 and 10 respectively,
for a plate with central point load. From Table 8. it

50~
Loading Umio;r:‘pr:os:ure Isotroprc
a -
Higher order theory
------ Mindlin {heory
Isotropic properties.:
4oL E=01092 x 108, V= 0-30 y
Orthotropic properties . 1
8
Ex-0~1.x10,Ey-Ez-0'1x\07 w )
Guy™ Gxz= 0 6x10° Gypm 05x10° ° ’ 1
Vny=Vyz Vxz=0- 4 v
~ Xy Oyz \)xz 0-2% / 'L .
- / o & - .
x o
NA 30l z Fiber -
=] ~ Direction
a n
=S
=
20r
10
E
L L L 1 .
%3 01 02 03 04 05

— yla{x/am=0 4718)

Fig. 2 Moment (M,) variation in a simply supported plate under a uniformly distributed load.
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Isotropic
Loading : Centrai Point Load
a/h =100
~—— Higher Order Theory
~ <= Mindlin. Theory
wr Isotropic Properties
E=01092x108, 9030
Orthotropic Properties :
Ex=0-4x108 Ey = E5201x107
Gxy =G y2 =0‘61106, Gyz=0'5l106
V.5 Vyg = Yy 3025 Ex .
10+ xy ¥z x2 Ey 4
Y
¢
2 ¢
8 O .
il
=
@ Fiber .
» Direction
S ) — .
"R —
2o ' Ex .40
) Ey
.
.
P 0% /0%
Clwz0x :OY:O)
o—*= 5
-S5r
10+ —=yla(*/a =0-4718)

Fig. 7. Moment (M,) variation in a clamped plate under a central point load.

Table 4. Deflections in simply supported orthotropic (6 = 0°) plate under uniform loading

[Ey . w,m]
at center
ph
E, @ Present higher-order ~ Mindlin ~ Method of initial ~Ambartsumyan’s  Reissner’s
E, h element element functions [22) theory [22] theory [22]
10.0 294.12 293.27 293.78 294.81 293.31
3 5.0 21.27 21.20 21.36 21.56 21.18
2.5 2.02 2.02 2.12 2.12 2.03
10.0 158.14 158.19 158.22 158.52 157.82
10 5.0 13.59 13.68 13.85 13.77 13.58
25 1.65 1.69 1.86 1.75 1.69
10.0 67.34 67.70 67.82 67.69 67.49
40 50 8.68 8.90 9.20 8.90 8.81
2.5 1.41 1.52 1.81 1.55 1.51
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Table 5. Moments in simply supported orthotropic plate (8 = 0°) under uniform loading
Max(M,, M, or M )/pa’

Present higher-order element Mindlin element
Er/Ey a/h Mx M} —ny M\' M) _Mx)
10.0 0.07192 0.02647 0.03135 0.07157 0.02645 0.03137
3 5.0 0.07063 0.02785 0.03076 0.06950 0.02778 0.03195
2.5 0.06725 0.03233 0.02807 0.06280 0.03193 0.03345
10.0 0.1114 0.01470* 0.0170S 01114 0.01465* 0.01707
10 5.0 0.1054 0.01704* 0.01819 0.1051 0.01705* 0.01912
2.5 0.09016 002589 0.01957 0.08698 0.02523 0.02435
10.0 0.1341 0.008442* 0.007388 0.1344 0.008347* 0.00739
40 5.0 0.1261 0.01232* 0.01013 0.1266 0.01222* 0.01095
2.5 0.1036 0.02182 0.01455 0.1001 0.02164 0.01937
Max. BM values without * occur at center of the plate (nearest G.P) and those with * occur at (0.4718a,

0.2218a).
Max. TM occurs at corner of the plate (nearest G.P).

Table 6. Transverse shear in simply supported orthotropic plate (9 = 0°) under uniform

loading
Max(Q, or Q,) at mid-edge/pa
Present higher-order element Mindlin element
E,JE, alh Q. g 0. g
10.0 0.3524 0.2189 0.3522 0.2196
3 5.0 0.3489 0.2221 0.3481 0.2238
25 0.3376 0.2331 0.3329 0.2387
10.0 0.4317 0.1377 0.4321 0.1380
10 5.0 0.4188 0.1518 0.4200 0.1523
2.5 0.3824 0.1890 0.3802 0.1925
10.0 0.4748 0.07993 0.4759 0.07964
40 5.0 0.4594 0.1064 0.4622 0.1058
25 0.4085 0.1620 0.4052 0.1673

Table 7. Deflections in orthotropic plate (§ = 0°) under uniform loading (a/h = 100)

Woa D

T x 102
a
% P (Wmax E, 1 [pat) x 10°
Theory BC ' 1 (Isotropic) 4 5 6 10 20 40
s 0.407 2436 2.162 1942 1375 0.785 0414
Higher-order s* 0.418 2492 2205 1977 1391 0.790 0414
c 0.123 0.654 0558 0485 0316 0.165 0.082
s 0.404 2422 2151 1933 1372 0.787 0418
Mindlin S* 0.418 2494 2207 1979 1394 0.794 0.418

C 0.124 0.640 0.546 0475 0310 0.163 0.082
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Table 8. Moments in orthotropic plate (6 = 0°) under uniform loading (a/h = 100)

E,
E’ (Max M, or M /pa®) x 10
Theory BC ’ 1 (Isotropic) 4 5 6 10 20 40

0.482 0.829 0910 0.975 1.134 1.283 1.344

s M @9 49 49) 4.9 4.9 @9 @9
(w=206=0) M 0.482 0.222 0.193 0.177 0.138 0.096 0.066
v @49 4.9 “.9 29 29 @29 2.9
M 0.511 0.877 0.960 1.026 1.188 1.337 1.399
S* * 49 4.9) 49 4.9) 4.9) 49 4.9)
(w=0) M 0.511 0.233 0.202 0.185 0.143 0.098 0.067
. N C ) 4.9 4.9 2,9 2.9 29 2.9
Higher-order
M 0.227 0.368 0.391 0.407 0.440 0.456 0.455
@49 49 49 4.9 4.9 4.9) 4.8
M 0.227 0.085 0.073 0.069 0.061 0.050 0.039
C Y 49) 4.9) 29 2.9 2.9) 2.9 2.9)
w=0,=0,=0) -M 0.399 0.598 0.627 0.648 0.689 0.708 0.701
* (33 (33) (33) (3.3) (3.3) (33 3.2)
M 0.399 0.194 0.170 0.153 0.111 0.071 0.045

v en @n en  @en  @en  @n @D

0473 0818 0.901 0.966 1.131 1.290 1.363

¥ @49) 4.9) 49 4.9) 4.9) 4.9) “9)
0.221 0.195 0.175 0.134 0.090 0.059

0473 (48 4.8) (2,6 2,6) (2,6 (2,6)

(w=6,=0) M, @49 0219  0.I91  0.161 0125 0085  0.058
4.9 4.9) 2,9 2,9 2,9) 2,9
y. 0506 0874 0958 1026  LI% 1354 1428
S* 49 4.9 4.9) 49) 4.9) 4.9) 4.9)
w=0) y 0506 0232 0201 081  0.38 0092 0061
Mindii 749 4.9 4.9 2.9 2,9 2,9) 2,9)
fndiin M. 0219 034 0366 0382 0418 0443 0452
* @9 4.9) 4,9) 4.9 4,9) 4,8) 4,8)
0081  0.082
w0219 @49 9 0079 0069 0055  0.041
c y@9) 0089 0084 (29 (29 (9 (29

(w=6,=6,=0) 26 (29
_p 0366 0575 0603 0624 0666 0690 0700
* 33 63 63 33 Gy 33 32
_p 0366 0189 0166 0150 0110 0070 0044
Y @n  en en _en en @n @&n

Note: Positions are specified by element No. and G.P. No. respectively within the bracket.

Table 9. Deflections in orthotropic plate (6§ =0°) with a central point load (a/h = 100)

Weax D
E 1":;2 x 10?
E" (Woae E, B3pa?) x 107
Theory BC i’ 1 (Isotropic) 4 5 6 10 20 40
S 1.160 7.087 6.351 5.765 4.260 2.683 1.650
Higher-order S* 1.187 7.228 6.465 5.859 4312 2.707 1.664
C 0.550 3.093 2.706 2414 1.724 1.071 0.663
S 1.143 6.981 6.257 5.677 4.190 2.631 1.612
Mindlin S* 1.173 7.131 6.372 5.770 4.235 2.645 1.618

C 0.541 2,993 2.620 2.339 1.677 1.050 0.654
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Table 10. Moments in orthotropic plate (6§ = 0°) with a central point load (a/h = 100)

E‘ (Max M, or Max M,/p) x 10
Theory BC ‘ 1 (Isotropic) 4 5 6 10 20 40
s M, 2441 3694 4009 4269 4998 5975 6.977
M, 2441 1404 1301 1219 1009 0.778 0.602
s M, 2483 3739 4048 4302 5004 5926 6.856
M, 2483 1427 1320 1.237 1.002 0.789 0.612
Higher-order M, 1.886 2272 2901 3.049 3464 4.037 4.634
c M, 1.886  1.036 0948 0882 0.717 0539 0.399
—M, 1106 1982 2140 2.268 2623 3.129 3.709 (4,7)
—M, 1106 0376 0378 038 0404 0.39] 0.351
@n @D @ @&n
s M, 2384 3582 3890 4.145 4866 5829 6.811
M, 2384 1370 1270 1191 0986 0.761 0.592
P M, 2467 3.692 3999 4252 4956 5875 6.797
M, 2467 1411 1305 1222 1010 0.778 0.605
Mindlin M, 1.831 2575 2749 2894 3313 3922 4.569
c M, 1.831 1012 0932 0870 0.716 0.546 0.406
—M, 099 1852 2000 2.121 2464 2983 3.608
—M, 0996 0370 038 0397 0421 0.408 0.359
@7 @& @4n @n 4.7)

Note: Unless otherwise specified by Ele. No. and G.P. No. respectively within the bracket, all max. positive BMs occur
at centre of plate (nearest G.P.) and max. negative BMs occur at mid-edge (nearest G P.).

can be seen that for a plate under uniform pressure
positive moment in the fibre direction (M,) is maxi-
mum at the center of the plate for all three boundary
conditions considered except for clamped plate with
E./E, = 40. But, positive maximum moment in cross-
fibre direction (M,) shifts its location beyond a
certain degree of orthotropy for different boundary
conditions. From Table 10, it can be seen that this
kind of differential trend is absent for a plate carrying
central point load. For this loading case, locations for
positive maximum moments in both the directions
and for all the three boundary conditions remain at
the center of the plate. The peculiar nature of the
cross-fibre direction moment curves along the plate
centre line (nearest Gauss point) in the same direction
with different degree of orthotropy have been
presented graphically in Figs 2-7.

Example 3

A square orthotropic plate (§ # 0) of side a =1
with a/h = 10 is analysed for uniform pressure load
p=1 and simply supported boundary conditions
(w=0,=w*=0*=0) for various values of fibre
orientation (f). Hussainy and Srinivas[23] have
solved this problem assuming the following elastic
rigidities:

Orientation
Property 30° 45° 60°
O 24870370.0 12389410.0  4832576.0
0xn 4832576.0 12389410.0 24870362.0
On 7910705.0  10372566.0  7910701.7
G, 8394336.0 10856304.0 8394334.3
Gy 696246.0 800305.0 904365.3
G, 904363.0 800305.0 696246.1

The elastic rigidities considered in this example are
the same as above and the additional properties
required in the present theory due to consideration of
o, are calculated by assuming E,=F; and v, =
v,3 =V)3. They have also presented thin plate results.

Table 11 compares the deflections and critical
moments obtained by Hussainy and Srinivas with
those obtained using higher-order and Mindlin ele-
ments. The agreement for both deflections as well as
moments between the elasticity solution and the
present higher-order element is better compared to
Mindlin elements.

This example also includes a study of shifts for
maximum stress resultant locations with the vari-
ations in fibre orientation. This is presented sche-
matically in Figs 8-10 for (v, Q,, 0,, M,,), M, and
M, respectively. The material properties considered
here are:

E, =0.4215 x 10%,
E,=E;=0.2169 x 107,
G, = G,;=0.1001 x 107,

Gy = 0.6 x 10°,

Vi = vy = v = 0.2413.

CONCLUSIONS

A refined higher-order theory has been applied to
the problem of flexure of generally orthotropic plates.
The performance of the nine-noded Lagrangian iso-
parametric element has been studied in conjunction
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with the present theory. Examples have been
presented giving comparisons with thin plate, elas-
ticity and Mindlin/Reissner solutions. For the exam-
ples considered, thin plate theory which neglects
transverse shear terms appears to be inadequate. In
general, the agreement between results of the elas-
ticity solution and the present higher-order theory
was better as compared to Mindlin theory. Qual-
itatively, this could be due to the better represent-
ation of the cross-sectional deformation and the
stress—strain law. Errors in the present results can still
be reduced by mesh refinement. The results presented
for the first time in the form of Figs 2-10 should be

of help to all research workers/practising engineers in
this field.
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APPENDIX 1: ELEMENTS OF C MATRIX
- E\(1 —v3yvy)

=2
E(vp+v
Cp= 2V ~ 13V3) -y
E(vy+v
C= (V13 12¥23) -G,
A
E,(1 —vyv5)
Cp= 2 — FIE!
E +
Cp= 3(vy y VizVa) =Gy
Cp= Ey(1 —A"lz"zl)
Cu=Gy,
Css =Gy
C66= G,

where
A = (1~ vyvy —vipvy — viavy

= ViaVy3V3 — VisVaVy)

E,
Va=4 V2

E,

E,
Vip=—""Vn

£,

E,
Vii =1V

E,

APPENDIX 2: ELEMENTS OF 0 MATRIX
= Clet+ 2(Cy + 2C,)c*s? + Cyys?

Qi = (Cy + Cyy — 4C,)c%s?
+ Cpls* + e =0y

Q1 =Ci3ct+ Cpys?= 0y

Q1 =(C, — C, —2C)c%s

+ (Cy ~ Cpp + 2Cy)s%c = Oy
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Qis=01=0=05 =04 Q1 =0x=0=04,=0s
0y = Cyi5* + 2(Ciy + 2C4)s%¢? + Cyc? Qu=(C\ + Cy—2C),— 2C,)s%?
Oy = Ci3s?+ Cyct =0y + Culc* + 5
Q5= (Cy, — C;; — 2Cu)s’c Qus=Qu=0=0s=0u

+ (Cia— Cp +2C )5’ = Qg Qs = Css¢? + Coes?
0i=0x=0=00=00 Qss=(Css — Ces)es = Qss
0,:=Cy Q= Css82 + Cesc?.

Qa0 = (Cyy — Cyy)sc = Qg

CAS. 282—B



