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A B S T R A C T  

A higher-order shear deformable C ° continuous finite element is developed 
atzd employed to investigate the transient response of  isotropic, orthotropic 
and layered anisotropic composite plates. The governing ordinary linear 
differential equations are integrated using tile central difference explicit time 
integration scheme. A special mass matrix diagonalization scheme is 
adopted which conserves tire total mass of  the element and includes the 
effects due to rotary inertia terms. Numerical results for deflections and 
stresses are presented ]'or rectangular plates under various boundary 
conditions and Ioadings. The parametric effects o f  the time step, finite 
element mesh, lamination scheme and orthotropy on the transient response 
are investigated. The numerical results are compared with those available in 
tire literature, and with the results obtained by soh'ing the same problems 
using tire Mindlin plate element. 

1 INTRODUCTION 

The classical laminate theory based on Kirchhoff's hypothesis 1"2 was the 
starting point  in the analysis of laminated plates. This theory ignores the 
effects of transverse shear strains and the normal strain in the thickness 
direction. These effects are pronounced in laminated composite plates 
owing to a very high ratio of inplane elastic modulus to transverse shear 
modulus (of the order of 25-40). Further it was also noted that the classical 
plate theory is computationally inefficient from the point of view of simple 
finite element formulation? 
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Reissner 4 and Mindlin 5 are the first ones to provide first-order shear 
deformation theories. Both these theories yield a C ° continuous finite 
element formulation for the numerical analysis but have certain limitations: 
the transverse shear stress/strains are assumed constant through the plate 
thickness and a fictitious shear correction coefficient is introduced; the 
classical contradiction whereby both the transverse normal stress and the 
transverse normal strain are neglected remains unresolved. 

Theories based on realistic displacement models which give rise to 
nonlinear distribution of inplane normal strains and transverse shear strains 
have been developed by Murthy, 6 and Phan and Reddy. 7 Lo et  al. 8'9 and 
Kant 1° have, in addition, included the effects of transverse normal strain and 
stress in their theories. Kant et  al. 11 have presented a C ° finite element 
formulation of the higher-order theory. Pandya and Kant 12 have extended 
the above formulation for generally orthotropic plates. 

The linear elastic transient response of plates has been studied by 
Reismann 13 and Lee and Reismann 14 using three dimensional elasticity, 
classical and improved plate theories. Rock and Hinton,t5 Hintont6 and Pica 
and Hinton 17'~8 have investigated the transient response of isotropic plates 
based on Reissner-Mindlin thick plate theory. Forced motions and transient 
response of rectangular composite plates have been studied by Reddy.19'2~' 
Here the Newmark's direct-integration is employed to numerically integrate 
the governing differential equation. 

All the work so far reported on the transient response of plates is 
confined to either CPT or a first-order shear deformable theory. In the 
present work, a higher-order displacement field-based C ° finite element is 
used to study the transient response of isotropic and layered anisotropic 
plates for various loading and boundary conditions. The governing dynamic 
differential equations are integrated using the central difference explicit 
time integration scheme. The effects of coupling on the transient response 
are also investigated. 

2 THEORY AND FORMULATION 

The development of the present higher-order theory starts with the 
assumption of the displacement field in the following form: 

U(x ,  y ,  z, t) = u ( x , y ,  t) + zOx(x,y,  t) + z2u*(x ,y ,  t) + z30~ (x,y, t) 

V(x, y,  z, t) = v (x, y, t) + zOy (x, y, t) + z 2 v* (x, y, t) + z 30~ (x, y,  t) 

W ( x ,  y ,  z, t) = w(x ,  y,  t) + zOo(x, y,  t) + z 2 w* (x, y, t) ( i )  
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where:  t is the t ime; U, V, W are the displacements of a general point  in the 
x, y, z directions respectively; u, v, w are the associated midplane displace- 
ments ;  0~ and 0y are the slopes in the xz  and yz  directions due to bending only 
and u*, v*, w*, 0~*, 0~' and 0, are the corresponding higher-order terms in 
the Taylor  series expansion and are defined at the reference plane. The  
positive directions are shown in Fig. 1. 

By subst i tut ion of  these relations in the strain-displacement equations of 
the classical theory of elasticity, ~ the following relationships are obtained.  

E~ =E~+zK~ 2 , + Z Ex + Z 3 Kx* 
z 2 , 3 . Ey = Ey+ZKy+Z Ey + Z Ky 

~ = E~ + zK~ 
z - - 2 , 1 . _ 3  , Yxy = Exy + zKxy t z Exy Z Kxy 

]/yz + ZKyz + 2 . = Ey z Z Ey z 

Y~z = Exz + zKxz + 2 * z E~ (2a) 

in which 

{~x'~''E"~Y}~ = { ~u~v~x' ay,O,,~y+~OU ~V} ~ 

, , , ~ r  I Ou* av* au* av* ] r 
ex  ' e y  'ExY '  = [ ~X ' f~y ' -~y -Jr-'f~X I 

{ K~, Ky, K s, K~y } r = [ 00. ~Oy, 2w* ~90~ + 30y / r 
~x '  ~y ' -'~'y c-~-x / [ 

- - y  , - -xy  j : OX ' Oy Oy ~- ' OX 

Ow Ow } r 
I,~z,,~,~ ~ = %-y +o~,~-x+Ox 

{Ky~'K~z}r= {2v*+OOz'2u*+O0~}  r o y  Ox 

{~, . ,  ~r [ , OW* OW* I r 
~y~,~xx~ = 30y + - -  30*+ (2b) 

O y '  --d-J-'x t J 
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Fig. 1. Positive set of displacement components. 

The stress-strain relationship for the L th (layer) lamina of the composite 
laminate has the following form: 
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This may be written in a compact form as 

tr = Q~ (3b) 

where o" and E are the stress and strain vectors respectively with reference to 
the plate axes (x, y, z) (see Fig. 2). The stiffness matrix Q with reference to 
plate axes is obtained from the stiffness matrix C with reference to fibre axes 
(1-2-3) by using the coordinate transformation T from the relation 12 

Q = T-1C[T-I] + with O'1-2-3 = To'x-y-z (4) 

Integration of  eqns (3) through the plate thickness with strain terms given 
by eqns (2) gives the plate constitutive relations. The constitutive relations 
involving membrane forces are given by 

N = Dine,. + D~K (5a) 
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Fig. 2. Plate and fibre axes. 

in which 

I ~ ~,J* t~'* t~]* ?,t/ ~T N = i N x , N y , , , x y , , , x , , , y , , , x y , , , z t  

* ~ *  t *  ~ ~ T E m = IEx,Ey,Exy~l[x ~=y ,~=xy,~=zl 

K IK/,Ky, * * * Kzl r = Kxy, Kx, Ky, Kxy, 

Dm=  
L = I  

D0= 
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(5c) 
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The elements of the membrane force vector N are defined as follows: 

Nr, hL 
: L = 1 L + I  O'y [1,z2]dz 

~. N~y , N ~*r rxr 

Nz = tr z dz 
L = 1 L + I  

(5d) 

(5e) 

The constitutive relations involving bending moments are given by 

M = DeEm + DbK 

where 

M = { Mx, My, Mxy, M*, M; ,  M~* r, Mz } r 

-QllH3 Q~2H3 Q14H3 QllH~ 

Q22H3 Q24H3 Q12H5 

Q44H3 Q14H5 

I}b = ~ QllH7 
L = I  

Symmetric 

Q12H5 Q14H5 

Q22 H5 Qz4H5 

Q24 H5 Q~ H5 

QlzH7 Q14H7 

QzzH7 Qz4H7 

Q44H7 

(6a) 

Q 1 3 H 3  ~ L th layer 

| Q23 H3 

Q34H3 

Q13H5 

Q23H5 

Q34H5 

Q 3 3 H 3  

(6b) 

The components  of bending moment  vector M are defined as follows: 

Mz = o'z z dz (6d) 
l = 1 L + I  
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The constitutive relations involving shear forces are given by 

Q = D ~  

where 

Q = {Sx, Sy, Qx, Qy,Q*,Q~} r 

~ = {Kxz, K . . ,:, ~, ~T yZ~ ~xz~ ~yz~ ~xz~ V:yz I 

-Q66H3 Q56H3 Q66H2 

Q55H3 Q56H2 

Q66H1 
L = I  

Symmetric 

Q56 H2 

QssH2 

Q56Hl 

Q55H1 

Q66H4 Qs6H4 

Q56 H4 Q55 H4 

Q66H3 Q56/-/3 

Q56 H3 Q55 H3 

Q66/-/5 Q56H5 

Qs5 H5 

The components of the shear force vector are given by 

s: {-z/ = [1,z, z2]dz 
[ Qy, Sy, Q~ 1 L = 1 L + 1 Ty  z 

In all the above relations, n is the number of layers and 

L th layer 

H~ = ~(h~-h~+~) ; i  = 1,2 . . . . .  7 
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(7a) 

(7b) 

(7c) 

3 FINITE ELEMENT DISCRETIZATION 

Finite element spatial discretization schemes, when applied to dynamic 
transient structural analysis problems, result in a set of ordinary differential 
equations. In the absence of damping these equations take the form 

Mii + Ka = P(t) (8) 

in which the dots define differentiation with time t, a is the nodal 
displacement vector, M is the mass matrix and P is the vector of forces which 
varies with time, t. 
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The generalized displacement of  the reference plane is expressed in 
terms of  eleven independent variables as: 

* * * l  T a = {u ,v ,w ,  Ox, Oy, Oz, u* ,v* ,w ,0~ ,Oy j (9) 

In C ° finite element theory, the continuum displacement vector within the 
element  is discretized such that 

NE 
a = ~_. N~(x,y)ai (lO) 

i = 1  

in which the term Ni(x ,  y )  is the interpolating or shape function associated 
with node i, ai is the value of  a corresponding to node i and N E  is the number 
of  nodes in the elements. Equation (10) ensures that the approximate a is 
not only continuous within the element but over the entire domain since the 
same value of  a is used for all the elements at the common nodes. 

With the generalized displacement vector a known at all points within the 
e lement  as per eqn (9), the generalized strain vector ,~ at any point is 
expressed as follows: 
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E = 

o r  

! 
NE [ 

i = 1  

c~Ni aNi 
0 0 0 0 0 0 0 0 0 

ay ax 

0 0 0 0 0 0 0 0 0 --ONi 0 
ax 

ONi 
0 0 0 0 0 0 0 0 0 0 

ay 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

aNi 
0 0 Ni 0 

aX 

0 0 0 
ONi aNi 

0 
ay Ox 

0 0 0 2Ni 0 0 

ONi 2Ni 0 0 0 0 
ax 

r')Ni 0 2Ni 0 0 0 
ay 

0 0 0 0 0 0 

aNi 
0 0 0 N i 0 0 0 0 0 0 

ay 

c) N i 
0 0 0 0 0 0 0 0 3Ni 0 

aNi 
0 0 0 0 0 0 0 0 0 3N i 

--  ay - 

u~ 

v? 

w~ 

ox*,. 

Oy* 

( l l a )  

N E  

= ~ n,a, ( l ib )  
i = l  

w h e r e  

E = -  { Ex, cy, ¢xy, e~, %,  ¢,y, e~, Kx, Ky, Kxy, 

K* K~,Kx*y,K~,Kxz, K - - ,:* ~* ~r ( l l c )  ' y z  • ~ x z  ~ ~ y z  • ~ x z  • ~=yZ l 

T h e  elasticity matrix D is obta ined by combining  eqns  (5 ) - (7 )  as follows: 

Dm Dc 0 

D = Dc Db 0 (12) 

0 0 Ds 
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It can be observed that for symmetric laminate the submatrix Dc vanishes 
indicating that there will not be any coupling between membrane and 
bending stress resultants. The elements of the stiffness matrix can readily be 
computed using the standard relation 

K~ = B~DBj IJtdEd~7 
1 I 

(13) 

The computation of element stiffness matrix is economized by explicit 
multiplication of the Bi, D and Bj matrices instead of carrying out the full 
matrix multiplication of the triple product. Due to symmetry of the stiffness 
matrix, only blocks lying on one side of the main diagonal are formed. 23 

The consistent load vector P due to distributed load p(t)  is given by 

 lfl 
P(t) = Nrp(t) IJld~ d~ (14) 

1 1 

In the present theory the loads may or may not act on the reference plane. 
The loads p~ (t) and p~ (t) are assumed to act on the positive and negative 
extreme z planes respectively. When transformed in the context of the 
present theory, the consistent load vector P(t) given by eqn (14) becomes, 

P(t) = ~ ~ WpWqlJ[N i 
p = l  q = l  

0 

0 

hi2 

0 

0 

h2/4 

0 

0 

Lo + (t) + Pz (t)] (15) 

where h is the total thickness of the plate, Wp and Wq are the weighting 
coefficients, m is the numerical quadrature points in each direction and J is 
the standard Jacobian matrix. 
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4 D Y N A M I C  ANALYSIS  

T he  mass matrix, M in eqn (8) is given by 

M = f Nrt~Nd(Area) 
JA c e a  

-11 0 

ll 

Ii 

where  n~ = 

[2 

fi 

/2 

/3 

1'3 

13 
/, 

/4 
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(16) 

M~ = f a  NrtnN is computed 

in which,  1,, 12 and (13,/4) are normal inertia, rotary inertia and higher-order 
inertias, respectively. 

They  are given by 

(/1,12, 13, 14) = (1. Z 2, Z 4, Z 6) pL dz (17) 
L = I  L+I 

where  pL is the material density of the L 'h layer. 
The  ordinary differential equation in eqn (8) is solved using an explicit 

central  differential scheme. This scheme can be written as, 

an+l = M-t(.XT)2(_Kan +pn)  _ a . - i  + 2 a  n (18) 

where  superscripts n - 1, n, n + 1 stand for three successive time stages and 
A T is the t ime step length. The  main advantage of this approach is, if M is 
diagonal,  the computa t ion  at each time step is trivial. For parabolic 
isoparametric  elements,  the mass matrix will not be diagonal. A special mass 
diagonalization me thod  is used here and is described for clarity, 3 

1. The  diagonal coefficients of the consistent mass matrix 
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2. The  total mass of  the element,  

Me= ~v PdV = f A PtdA is also computed.  

3. A number  S, by adding the diagonal coefficients Mi~ associated with 
translation (but not rotation) is formed. 

4. The  diagonal coefficients of the mass matrix, M, are scaled by 
multiplying them by the ratio M'/S. thus preserving the total mass of 
the element.  

Af te r  the mass matrix is diagonalized, eqn (18) can be written as 

N E  } n - 1 + 2a," a7 +1 = [(AT)2/Mii] - -  ~ Kija~+l~, - a i  
j = l  

(19) 

If the values of a ° and fi0 are prescribed as initial conditions, a special 
starting algori thm can be written by noting that 

~i ° = (a 1 -- a -1) /2AT (2o) 

and eliminating a -~ from eqn (19) leads to the expression 

: --  E Kij a~ + i~i + a7 + fi7 a T (21 ) [ 2M. j = 

The  est imate of critical time step is crucial in transient analysis because the 
use of  t ime step more  than the critical will lead to numerical instability. 

The  following estimates due to Leech, 21 Tsui and T o n g  22 and Hinton 16 
respectively were used as a guide: 

--~ T1 ~ 0"25 (ph/D) u2 (Ax) 2 (22) 

[ p(l_v2)/E ]u2 (23) 
AT2<-gx  2 + 0 - 8 3 ( 1 - v ) { 1 + l . 5 ( A x / h ) 2 1  

AT3<y&~ [2 p(l_v2)/E ]1/2 
+ 0.83(1 - v){ 1 + 1-5(Ax/h) 2} (24) 

where D = Eh3/12(1- v2), Ax is the minimum distance between finite 
e lement  node  points and y is the correction factor, equal to unity for 
quadrat ic  Lagrangian elements.  



T. Kant, R. V. Ravichandran, B. N. Pandya, Mallikarjuna 331 

4 NUMERICAL EXAMPLES AND DISCUSSION 

The transient response has been studied by using 4-, 8- and 9-noded 
isoparametric elements. The selective integration scheme is used throughout 
the study, i.e. the 3 × 3 Gauss rule is used to integrate the membrane, 
bending and inertia terms and the 2 × 2 Gauss rule was used to integrate the 
shear terms numerically. All arithmetical calculations were performed in 
single precision on a CDC CYBER 180/840 machine. 

25c~ 

PLATE THICKNESS, h ; 5¢m. 

a/h=5 
ALL EDGES ARE SIMPLY SUPPOIT~D 

X 

J. a=25cm "l 

Fig. 3. Geometry boundary conditions and finite element mesh for the square plate problem. 

In the present study numerical examples drawn from literature 2° are 
considered for establishing the reliability of our higher-order space-time 
discretization. As pointed out earlier we have simultaneously developed 
software based on the Mindlin 24 formulation and with exactly the same 
discretization procedure. This is done specially to cross check our results 
with a view to having confidence in our new formulation. A square plate 
with simply supported boundary conditions as shown in Fig. 3 is analysed 
throughout. Initial conditions of zero displacements and zero velocity are 
assumed throughout the plate in all the examples. Only one quarter of the 
plate is considered due to symmetry. A 2 x 2 mesh of 9-noded Lagrangian 
isoparametric element is employed. All the stress values are reported at the 
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Gauss points nearest 
properties considered for all numerical examples are as follows: 

Whenever an isotropic plate is considered 

to their maximum value locations. The material 

E1 = Ez = E3 = 2" 1 x 106 N / c m  z 

/212 = 1213 ~ -  /223 = 0 " 2 5  

and whenever an orthotropic or layered plate is considered 

E1 E1 
. . . .  25, G12 = G23 = Gl3 = 0"5E2 
E2 E3 

Ez = 2 " 1 x 1 0 6 N / c m  2, u12 = /2z3 = u13 = 0-25 

(25) 

(26) 

TABLE 1 
Convergence of Central Deflection (w x 103 cm) and Bending Stress with Different Time 

Steps for a Simply Supported Square Isotropic Plate Subjected to Suddenly Applied Uniform 
Load  of 10 N/cm 2 (a = 25 cm, h = 5 cm, E = 2.1 × 106 N/cm 2, 19 = 8 x 10 -6 Nsec2/cm 4) 

Time Mesh Time (~s) 
step size 

(its) 40 80 120 160 200 

w 0.217 9 0.951 1 1.473 1.669 1.175 
2 x 2  

ox 7.68 90.56 123.9 156-0 96.3 
w 0.214 5 0.950 7 1.470 1.663 1. 168 

2 3 × 3  
crx 4.305 88-65 119.3 153-9 97.28 

W 
4 x 4 Unstable 

O" x 

w 0.218 0 0.951 4 1.474 1-669 1. 176 
2 x 2  

O-x 11.65 99.0 129.8 155-3 96.2 
w 0.214 7 0.952 1 1.473 1-665 1.168 

1 3 x 3  
o-x 7.538 99.49 131.3 154.5 95.37 
w 0.214 2 0.950 2 1-471 1.662 1.170 

4 x 4  
o'~ 6-275 %.25 126.5 152.3 97.64 
w 0.218 0 0.951 4 1.473 1.669 1.176 

2 x 2  
trx 12-37 98.34 125.5 156.4 102.2 
w 0.214 8 0.952 1 1.472 1.664' 1.169 

0.5 3 x 3  
o'x 8.477 99.05 125.1) 151-5 101.2 
w 0-214 2 0.950 2 1.471 1-662 1.171) 

4 x 4  
O'x 7.009 96.23 124.7 155.2 1113.9 
w 0.218 0 0.951 4 1.473 1.669 1.176 

2 × 2  
o-x 12.53 98.02 124.7 157.5 11)3-6 
w 0.214 8 0.952 1 1.472 1.663 1-169 

0-25 3 × 3 
O'x 8.70 98.76 123.5 151.5 102-1 
w 0.214 2 0-950 3 1.471 1.662 1.170 

4 × 4  
o-~ 7.230 96-04 124.3 - -  - -  
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The numerical convergence and accuracy of the transient behaviour of the 
e lement  are investigated through a simply supported isotropic plate with a 
suddenly applied uniformly distributed load of  10 N/cm 2. The results are 
given in Table 1. 

Though the displacements seem to converge at AT = 1 p,s, the stress (o-x) 
converges at only AT = 0.25/zs.  Since the main aim of the study is to 
compare the performance of  the higher-order plate element in transient 
analysis situations AT = 0.25/zs is used with a 2 × 2 mesh layout 
throughout.  

4.1 Example 1 

An isotropic square plate subjected to a suddenly applied uniformly 
distributed load of  10N/cm 2 is considered. Table 2 gives the centre 
deflection and the bending stress (o'x) up to 400 p,s, using both Mindlin and 

TABLE 2 
Central Deflection and Bending Stress for a Simply Supported Square Isotropic Plate 

Subjected to a Suddenly Applied Uniformly Distributed Load of 10 N/cm 2 

Present 

Time Mindlin theory e° Mindlin theory Higher-order theoo' 
(tzs) 

w × 103 (cm) trx(N/cm 2) w × 103 (cm) trx(N/cm e) w × 103 (cm) trx(N/cm 2) 

20 0.039 9 0.126 3 0.049 6 0.949 2 0.049 5 0.243 9 
40 0-185 5 6-533 0.219 1 4.683 0.218 0 12.530 
60 0-533 9 44.15 0.583 6 48.88 0.569 3 53.02 
80 0-924 9 82.77 0.974 3 91.57 0.951 4 98.(I2 

100 1-227 8 103.9 1.278 4 111-6 1.254 0 113.1 
120 1.459 1 120.2 1.502 4 124.8 1.473 0 124-7 
140 1.653 7 144.4 1.692 3 154.9 1-659 0 147.8 
160 1.666 7 149-5 1.694 2 157.2 1.669 0 157.5 
180 1.460 4 124-2 1.496 4 132.1 1.478 0 135-4 
200 1.172 8 94.96 1.180 4 96.74 1.176 0 103.6 
220 0.866 9 74.30 0"880 2 78.93 0.876 6 85.22 
240 0.541 0 49.22 0.544 7 50.37 0.549 8 58.59 
260 0.171 1 5.291 0.199 8 10.48 0.212 3 13.89 
280 - 0 . 0 0 4  1 -8 .085  -0 .023  5 - 15.59 -0 .012  1 - 15.81 
300 0.000 9 0-241 -0 .006  5 -2 -03  -0 .001  1 - 3 . 3 8 5  
320 0.104 5 7.046 0.107 1 7-676 0.098 3 1.273 
340 0.295 8 17-47 0.301 0 18-55 0.281 6 23.25 
360 0.629 5 48.49 0.609 8 43.69 0.583 1 46.13 
380 - -  - -  1.033 92.70 0.983 1 93.42 
400 - -  - -  1.370 2 125. ! 1.326 121.81) 
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TABLE 3 
Central Deflection and Bending Stress for a Square Orthotropic Plate Subjected to a 

Suddenly Applied Uniformly Distributed Load of 10 N/cm 2 

Present 

Time Mindlin theory 2° Mindlin theory Higher-order theory 
( ~ )  

w x 10 j (cm) ~rx(N/cm 2) w × 103 (cm) o'x(N/cm 2) w x 103 (cm) O'x(N/cm 2) 

20 0.039 8 24.64 0-050 4 30.77 0.050 5 39.92 
40 0.193 9 132.2 0.224 6 155.2 0.224 1 197.5 
60 0.430 3 282.1 0.455 1 312.2 0.444 1 399-7 
80 0.553 1 359.3 0.560 7 380.4 0.548 3 471.1 

100 0.526 4 349.7 0.515 8 355.2 0.501 6 461.8 
120 0.370 5 345.4 0.340 1 232.7 0-327 4 272.8 
140 0.177 9 115.1 0.155 8 103.8 0.150 8 128.5 
160 0.035 3 22-00 0.018 8 12.31 0.012 3 20.09 
180 -0"039 5 -20-97 -0.031 8 -24.52 -0.021 5 -24.77 
200 0.110 5 73.61 0.141 2 95.62 0.142 4 119.5 
220 0.329 6 214.1 0.354 2 242.6 0.351 4 294.5 
240 0.478 1 316.8 0.503 2 342.5 0.501 8 441.3 
260 0.554 8 368.9 0.550 9 379.8 0.532 8 51)1.0 
280 0-479 7 314.5 0.454 0 307.3 0.434 6 365.1 
300 0-200 6 194.9 0.269 2 183.9 0.258 2 229.5 
320 0.084 0 59.38 0.057 4 39.7 0.043 3 34-22 
340 -0"030 2 - 18.53 -0.036 3 -28.8 -0-029 7 - 13.14 
360 0.045 9 28.57 0.064 6 43.37 0"072 0 51.85 
380 - -  - -  0.233 3 157.3 0"252 0 198.2 
400 - -  - -  0.408 9 281.4 0.405 0 389.2 

the h ighe r -o rde r  theory .  Figure 4 shows the central  deflection versus t ime 

plot .  

4.2 Example 2 

A 0 ° o r t h o t r o p i c  plate  with the same loading as that  o f  Example  1 is 

c o n s i d e r e d  here.  Tab le  3 gives the central  deflection and  bending  stress (o-x) 
h is tory  for  400/zs.  The  displacement  response considering Mindlin as well as 

h i g h e r - o r d e r  t heo ry  is p resen ted  in Fig. 5. 

4.3 Example 3 

A 2- layered  plate  (0°/90 °) made  o f  equally thick laminae subjec ted  
to a sudden ly  appl ied load whose  spatial distr ibution is given by 
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TABLE 4 
Central Deflection and Bending Stress for a Simply Supported Square Cross-ply (0°/91) °) 

Plate Subjected to a Suddenly Applied Sinusoidally Distributed Pulse Loading 

Present 

Mindlin theory Higher-order theory ~ m e  
¢ tzs ) 

w × 103 Crx (top) w × lO s crx (top) 
(cm) (N/cm 2) (cm) (N/cm 2) 

21) 0.046 4 36.84 0.046 0 41-85 

41) O. 165 4 127.8 0.162 9 131-I 

61) 0.310 8 242.7 0.307 5 236.3 
81) 0.423 8 333. I 0.421 2 305-4 

lO0 0.460 0 363.3 0.463 9 349.3 
120 0.405 8 321.4 0.415 2 316.5 
140 I).281 2 220.3 0.295 8 228.9 
160 I).137 6 106.3 0.151 2 111-1) 
180 I).029 5 20.13 0-038 9 34-60 
21)I) 0.002 4 1.48 0.1)1)I 5 13-63 

221) 0.065 8 52.35 0-052 7 48-33 
240 0.195 1) 154.0 0-174 3 83-52 
260 I).338 5 265.8 0.317 9 232.3 
281) 0.438 4 342.8 0-429 5 330.7 
300 0.456 5 359.0 0.462 2 347.7 
320 0-384 0 302.3 0.407 8 304-5 
340 I).251 9 199.7 0.283 8 211.8 
360 0.110 2 86.11 0.141 4 117-7 
381) 0.016 9 11.23 0.032 0 36-14 
41)1) 0.008 4 4.11 0.002 2 4-44)2 

q ( x ,  y )  = qo sin rrx /a  sin 7ry/a is cons idered ,  where  q0 = l0 N / c m  2 and  
a = 25 cm (side of  the plate) .  T h e  centra l  def lect ion and  the bend ing  stress 
va r i a t ion  are  s u m m a r i z e d  in Tab l e  4 and  Fig. 6. 

4.4 Example 4 

A 2 - l a y e r e d  p la te  ( 4 5 ° / - 4 5  °) m a d e  up o f  equal ly  thick l aminae  sub jec t ed  to 
the  s a m e  load ing  as in e x a m p l e  1 is considered.  T a b l e  5 shows the var ia t ion  
o f  m a x i m u m  d i sp l acemen t  and  bend ing  stress (o'x) o v e r  t ime.  T h e  a b o v e  
quan t i t i e s  a re  also p lo t t ed  in Fig. 7. 

F r o m  this f igure,  the  effect  o f  layers (450/ -45  ° ) and  laminat ion  angle  on  
the  a m p l i t u d e  and  pe r iod  of  def lect ion is apparen t .  F r o m  T a b l e  5 it is c lear  
tha t  Mind l in ' s  t heo ry  predic ts  slightly lower  values  of  deflect ion,  pe r iod  and  
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TABLE 5 
Central Deflection and Bending Stress for a Simply Supported Square Angle-ply 

(45°/-45 °) Plate Subjected to a Suddenly Applied Uniformly Distributed Load of 
10 N/cm 2 (Full Plate is Discretized Here) 

Present 

Mindlin theory Higher-order theory Time 

(~s) 
w × 103 orx (bottom) w x 103 crx (bouom) 

(cm ) (N/cm 2) (cm) (N/cm 2) 

21) 0.050 0 5.067 0.050 2 12.25 
40 0.228 6 79.25 0.228 4 88-08 
60 0.414 5 172.8 0.433 6 171.4 
80 0.414 6 152.4 0-459 3 157.5 

100 0.317 5 122.0 0.378 8 139.3 
120 0.145 3 58.97 0.221 0 95.96 
140 -0.020 7 -30-18 0-015 4 2-628 
160 0.012 5 - 1.650 5 -0.012 8 -15,93 
180 o. 166 6 67.52 o. 103 7 36.24 
21x) 0.315 8 107.0 0-257 0 90-07 
220 0.449 0 184.2 0.442 0 171.2 
240 0-384 8 151.8 0.480 3 185.1 
260 O. 192 1 56.82 0.332 2 108.0 
280 0.061 5 28.98 0.173 1 76-97 
300 -0.019 0 -21-91 0.022 6 18.29 
320 0.062 8 6.259 -0-025 0 -28.41 
340 0.281 4 120-7 O- 130 7 42.99 
360 0.396 4 146-6 0.32l 8 120.9 
380 0.416 0 159.4 0-432 7 162.1 
400 0.316 4 132.9 0.473 8 186.4 

stresses. The  effect  o f  transverse shear on the ampli tude,  per iod of  the 

def lect ion and  stresses is clear. 

4.5 Example 5 

A 4- layered  plate (300/450/900/0 °) subjected to the same loading as in 

example  1 is analysed.  This p roblem is solved specially to show that  the 
h ighe r -o rde r  theory  gives a quadrat ic  distribution o f  transverse shear  

stresses t h rough  the thickness, as shown in Fig. 8. 

5 C O N C L U S I O N S  

A h ighe r -o rde r  shear  flexible C ° plate bending e lement  is deve loped  and  
e m p l o y e d  for  the transient  dynamic  analysis o f  composi te  plates. T h r o u g h  
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the comparative studies done here, we clearly see the importance of this 
theory for highly anisotropic plates. The effects of neglecting shear 
deformation (as in classical lamination theory) and considering constant 
shear deformation (as in the first-order shear deformation Mindlin/Reissner 
theories) on the transient response of laminated composite plates are 
investigated. In contrast to the classical shear deformation theories, the 
present theory does not require a shear correction coefficient due to more 
realistic representation of cross-sectional deformation. In addition, the 
present theory includes the effect of normal stress (O-z) in the thickness 
direction which is, though negligible, very important in the study of 
delamination mode of failure in laminated composites. 

The advantage in the use of the higher-order theory presented here over 
the Mindlin theory hitherto used is not quite evident for the isotropic plates. 
But such usage is very effective in the analysis of nonhomogeneous, aniso- 
tropic, composite or sandwich systems, and relatively thicker plates, as the 
mathematical model on which this theory is based is far superior to the 
Mindlin theory. It is, thus, seen that the formulation described here offers a 
convenient and concise method for the analysis of both thick and thin 
rectangular plates in bending. 
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