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ABSTRACT

A higher-order shear deformable C° continuous finite element is developed
and employed to investigate the transient response of isotropic, orthotropic
and layered anisotropic composite plates. The governing ordinary linear
differential equations are integrated using the central difference explicit time
integration scheme. A special mass matrix diagonalization scheme is
adopted which conserves the total mass of the element and includes the
effects due to rotary inertia terms. Numerical results for deflections and
stresses are presented for rectangular plates under various boundary
conditions and loadings. The parametric effects of the time step, finite
element mesh, lamination scheme and orthotropy on the transient response
are investigated. The numerical results are compared with those available in
the literature, and with the results obtained by solving the same problems
using the Mindlin plate element.

1 INTRODUCTION

The classical laminate theory based on Kirchhoff’s hypothesis'* was the
starting point in the analysis of laminated plates. This theory ignores the
effects of transverse shear strains and the normal strain in the thickness
direction. These effects are pronounced in laminated composite plates
owing to a very high ratio of inplane elastic modulus to transverse shear
modulus (of the order of 25-40). Further it was also noted that the classical
plate theory is computationally inefficient from the point of view of simple
finite element formulation.?
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Reissner* and Mindlin’ are the first ones to provide first-order shear
deformation theories. Both these theories yield a C° continuous finite
element formulation for the numerical analysis but have certain limitations:
the transverse shear stress/strains are assumed constant through the plate
thickness and a fictitious shear correction coefficient is introduced; the
classical contradiction whereby both the transverse normal stress and the
transverse normal strain are neglected remains unresolved.

Theories based on realistic displacement models which give rise to
nonlinear distribution of inplane normal strains and transverse shear strains
have been developed by Murthy,® and Phan and Reddy.” Lo et al.3° and
Kant! have, in addition, included the effects of transverse normal strain and
stress in their theories. Kant et al."' have presented a C° finite element
formulation of the higher-order theory. Pandya and Kant" have extended
the above formulation for generally orthotropic plates.

The linear elastic transient response of plates has been studied by
Reismann® and Lee and Reismann' using three dimensional elasticity,
classical and improved plate theories. Rock and Hinton," Hinton'® and Pica
and Hinton"*® have investigated the transient response of isotropic plates
based on Reissner-Mindlin thick plate theory. Forced motions and transient
response of rectangular composite plates have been studied by Reddy. "
Here the Newmark’s direct-integration is employed to numerically integrate
the governing differential equation.

All the work so far reported on the transient response of plates is
confined to either CPT or a first-order shear deformable theory. In the
present work, a higher-order displacement field-based C° finite element is
used to study the transient response of isotropic and layered anisotropic
plates for various loading and boundary conditions. The governing dynamic
differential equations are integrated using the central difference explicit
time integration scheme. The effects of coupling on the transient response
are also investigated.

2 THEORY AND FORMULATION

The development of the present higher-order theory starts with the
assumption of the displacement field in the following form:

Ux,y,2,1) = w(x.y.t) + 20.0x, v, 0) + 2Z2u*(x,y. 1) + 267 (x, v, 1)
Vx,y,2,0) = v(x,y, )+ 20,( 0 + v (x,y, 1) + 268 (x, v.1)

W(x,y,2,0) = wx,y. 1)+ 20,(x,y. 1) + Zw* (x.v,1) (h
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where: ¢ is the time; U, V, W are the displacements of a general point in the
x, y, z directions respectively; u, v, w are the associated midplane displace-
ments; 6, and 6, are the slopes in the xz and yz directions due to bending only
and u*, v*, w*, 67, 65 and 6, are the corresponding higher-order terms in
the Taylor series expansion and are defined at the reference plane. The
positive directions are shown in Fig. 1.

By substitution of these relations in the strain—displacement equations of
the classical theory of elasticity,' the following relationships are obtained.
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Fig. 1. Positive set of displacement components.

The stress—strain relationship for the L™ (layer) lamina of the composite

laminate has the following form:
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This may be written in a compact form as
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where ¢ and e are the stress and strain vectors respectively with reference to
the plate axes (x, y, z) (see Fig. 2). The stiffness matrix Q with reference to
plate axes is obtained from the stiffness matrix C with reference to fibre axes

(1-2-3) by using the coordinate transformation T from the relation”

Q = T_IC[T_I]T with T3 = To‘x—yz

)

Integration of eqns (3) through the plate thickness with strain terms given
by eqns (2) gives the plate constitutive relations. The constitutive relations
involving membrane forces are given by

N =D,e, + DK

(Sa)
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Fig. 2. Plate and fibre axes.
in which
N = (N N, N, . NF N} N5, N T
— T
€n = €. 6,665, €, €5y,

K = (K..K,.K,.Kf . K5 K5, K, )T
[QuH, QuH, QuH, QuH, QuH; QuH; OuH, |L"layer
Q22H1 Q24Hl Q12H3 Q22H3 Q24H3 Q23H1

QuH, QuHs QuH; QuHs Qi H,

D, = Li=1 QuHs QuHs QuHs QuH;
OnHs QuHs QnH,
QuHs QuH,;

| Symmetric OuH, | (5b)

[ QuH, QuH, QuH, QuH, QuH, QuH, QuH, | L"layer
OnH, QuH, QuHs QnH: QuH, OnH,

Qut, QuH: QuH, QuH, QuH,
D. = i OuHs QnHs QuHs QuH,
OuHe QuHs OnHi

OQuHe QuH,
| Symmetric OnH, | (50)
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The elements of the membrane force vector N are defined as follows:

N,,N¢ o
n Ry
N,,Ny = Z f o, }[1,7°]dz (5d)
L=1%hp41
N, N3, Tay
n hL
Mz}Zf o, dz (5¢)
L=1p 44

The constitutive relations involving bending moments are given by
M = D.€, +D,K (61)
where

M = {Mx,My,Mxy, M:,M;aM:vaz}T

Q22H3 Q24H3 QIZHS Q22H5 Q24H5 Q23H3
QMHS Q14H5 Q24H5 Q44H5 Q34H3
D, =) | QuH: QuH; OuH, OnHs

. .i:"HL’ '

_Q11H3 QuH; QuH; QuHs QpHs QuHs Q13H3—‘L‘hlayer

The components of bending moment vector M are defined as follows:

M, M o,

n g
M, M} = ) f o, | [2,2°]dz (6¢)
- =1 Yapi ‘



Finite element transient dynamic analysis of composite plates 325
The constitutive relations involving shear forces are given by
Q=D (7a)
where
Q = {Sm Sy* Qn Qy’ Q:a Q;}T

= * _*x\T
P = {sz*Kyzvexzveyz’exz’eyzl

[ QeHs QssH; QeH: QssHo QesHi QseHy | L™ layer
OssH; QssHy QssHy Qs QssH,
D, =Lil QsHi OssHi QuH; QscH,
OssHy QssHy QOssH,
Qe Hs QseHs
| Symmetric QssHs | (7)

The components of the shear force vector are given by
Qx~ Sx* Q: n AL Txz
= ) f (1,z,2°]dz (Tc)
Q}"S}"Q; o Ll Tyz

In all the above relations, # is the number of layers and

! )
H;, = T(hll__hll_'ﬂ) i=1,2,...,7

3 FINITE ELEMENT DISCRETIZATION

Finite element spatial discretization schemes, when applied to dynamic
transient structural analysis problems, result in a set of ordinary differential
equations. In the absence of damping these equations take the form

Mi + Ka = P(¢) (8)

in which the dots define differentiation with time ¢, a is the nodal
displacement vector, M is the mass matrix and P is the vector of forces which
varies with time, .
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The generalized displacement of the reference plane is expressed in
terms of eleven independent variables as:

a ={”vV’Wv9x99y,01,u*,\/*,w*,g;",();}T )

In C° finite element theory, the continuum displacement vector within the
element is discretized such that

NE
a= Z Ni(x,y)a; (10)

i=1

in which the term N,(x, y) is the interpolating or shape function associated
with node i, a; is the value of a corresponding to node / and NE is the number
of nodes in the elements. Equation (10) ensures that the approximate a is
not only continuous within the element but over the entire domain since the
same value of a is used for all the elements at the common nodes.

With the generalized displacement vector a known at all points within the
element as per eqn (9), the generalized strain vector € at any point is
expressed as follows:
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€ = {Em €y, €xys E:’ E;,E:y, €, Kx,Ky,ny,
K Ky K KK K €0 € €00 €8 T (11c)

The elasticity matrix D is obtained by combining eqns (5)—(7) as follows:
D, D, 0
D= | D Dy 0 (12)
0 0 D,
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It can be observed that for symmetric laminate the submatrix D, vanishes
indicating that there will not be any coupling between membrane and
bending stress resultants. The elements of the stiffness matrix can readily be
computed using the standard relation

+1 +1
K: = J' f B7DB,|J|dedn (13)
-1

-1

The computation of element stiffness matrix is economized by explicit
multiplication of the B;, D and B; matrices instead of carrying out the full
matrix multiplication of the triple product. Due to symmetry of the stiffness
matrix, only blocks lying on one side of the main diagonal are formed.”

The consistent load vector P due to distributed load p(¢) is given by

P() = f f NTp(1)|J] dedn (14)
-1 -1

In the present theory the loads may or may not act on the reference plane.
The loads p; (¢) and p; (t) are assumed to act on the positive and negative
extreme z planes respectively. When transformed in the context of the
present theory, the consistent load vector P(z) given by eqn (14) becomes,

0 N
0
1
0

P(t)=i i W, W, [JIN; < h/2 L [p: (6) + p; (1)] (15)

p=1g=1

where & is the total thickness of the plate, W, and W, are the weighting
coefficients, m is the numerical quadrature points in each direction and J is
the standard Jacobian matrix.
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4 DYNAMIC ANALYSIS

The mass matrix, M in eqn (8) is given by

M= N'mNd(Area) (16)
Area
L 0
11
I
[2
where m = &
L
I
13
1
I,
- 0 L

in which, I, [, and (I3, 1,) are normal inertia, rotary inertia and higher-order
inertias, respectively.
They are given by

n hL
(I I 15, 1) =Lgl f (1.2%,2%.2%)p"dz (17)

hr+1

where p* is the material density of the L™ layer.
The ordinary differential equation in eqn (8) is solved using an explicit
central differential scheme. This scheme can be written as,

an+1 — M—I(AT)Z(_Kan +Pn)_an—l+2an (18)

where superscripts n — 1, n, n + 1 stand for three successive time stages and
AT is the time step length. The main advantage of this approach is, if M is
diagonal, the computation at each time step is trivial. For parabolic
isoparametric elements, the mass matrix will not be diagonal. A special mass
diagonalization method is used here and is described for clarity,’

1. The diagonal coefficients of the consistent mass matrix

M; = I N'mN is computed
A
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2. The total mass of the element,
M = f pdV = f ptdA is also computed.
14 A

3. A number S, by adding the diagonal coefficients M, associated with
translation (but not rotation) is formed.

4. The diagonal coefficients of the mass matrix, M; are scaled by
multiplying them by the ratio M*/S. thus preserving the total mass of
the element.

After the mass matrix is diagonalized, eqn (18) can be written as

NE
a’ ! = [(AT)/M,] {— y Ki,-a}‘+P§'] —al 4+ 2a] (19)

j=1

If the values of a’ and &’ are prescribed as initial conditions, a special
starting algorithm can be written by noting that

a’ = (a' —a™")2aT (20)

and eliminating a~' from eqn (19) leads to the expression

ATZ NE
a;u:( )(_ S Kyal+ P! )+af‘+é§'.&T @1)
2M;; i<
The estimate of critical time step is crucial in transient analysis because the
use of time step more than the critical will lead to numerical instability.
The following estimates due to Leech,” Tsui and Tong® and Hinton'®
respectively were used as a guide:

AT, =0-25(ph/ D) (Ax)? (22)
- p(l_VZ)/E 12 23
ATZ_AX[2+O-83(1—v){1+I-S(Ax/h)z} ] (&)

AT, =<yAx [ p(—A)/E ]Uz (24)

2+0-83(1 - v){1 + 1-5(Ax/h)*}

where D = ER?/12(1 —1?), Ax is the minimum distance between finite
element node points and y is the correction factor, equal to unity for
quadratic Lagrangian elements.
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4 NUMERICAL EXAMPLES AND DISCUSSION

The transient response has been studied by using 4-, 8- and 9-noded
isoparametric elements. The selective integration scheme is used throughout
the study, i.e. the 3 X 3 Gauss rule is used to integrate the membrane,
bending and inertia terms and the 2 X 2 Gauss rule was used to integrate the
shear terms numerically. All arithmetical calculations were performed in
single precision on a CDC CYBER 180/840 machine.

25cm x

PLATE THICKNESS, h = Scm.

n =5
AL EDGES ARE SIMPLY SUPPORTED

L

p—————————a:-25cm !

Fig. 3. Geometry boundary conditions and finite element mesh for the square plate problem.

In the present study numerical examples drawn from literature® are
considered for establishing the reliability of our higher-order space-time
discretization. As pointed out earlier we have simultaneously developed
software based on the Mindlin* formulation and with exactly the same
discretization procedure. This is done specially to cross check our results
with a view to having confidence in our new formulation. A square plate
with simply supported boundary conditions as shown in Fig. 3 is analysed
throughout. Initial conditions of zero displacements and zero velocity are
assumed throughout the plate in all the examples. Only one quarter of the
plate is considered due to symmetry. A 2 X 2 mesh of 9-noded Lagrangian
isoparametric element is employed. All the stress values are reported at the
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Gauss points nearest to their maximum value locations. The material
properties considered for all numerical examples are as follows:
Whenever an isotropic plate is considered

E, = E; = E; = 2:1 x 10° N/cm®

(25)
vip = vy = v = 025
and whenever an orthotropic or layered plate is considered
E E
?; - —Ei— = 25, Gu = 623 = G13 = 05E2
E, = 2.1 x 10°N/em’, vy, = vy = vy = 0-25 (26)

TABLE 1
Convergence of Central Deflection (w X 103 ¢m) and Bending Stress with Different Time
Steps for a Simply Supported Square Isotropic Plate Subjected to Suddenly Applied Uniform
Load of 10N/cm? (@ = 25cm, & = Scm, E = 21 x 10°N/em?, p = 8 x 107 Nsec?/cm*)

Time Mesh Time (us)
step size
(us) 40 80 120 160 200
2%2 w 0-217 9 0-951 1 1-473 1-669 1-175
Ox 7-68 H)-56 1239 156-0 96-3
) 3%3 w 0-214 5 0-950 7 1-470 1-663 [ 168
Ox 4.305 88-65 119-3 153-9 9728
4x4 : Unstable
2%2 w 0-218 0 0-9514 1-474 1-669 1-176
oy 11-65 99-0 129-8 155-3 96-2
1 3% 3 w 02147 09521 1473 1-665 1-168
Ox 7:538 99-49 131-3 154-5 95.37
Axd w 0-214 2 0-950 2 1-471 1-662 1-170
Tx 6-275 96-25 126-5 152-3 9y7-64
2%2 w 0-218 0 0951 4 1-473 1-669 1-176
ax 12:37 98-34 1255 156-4 102-2
0'5 3% 3 w 0-214 8 0952 1 1.472 1-664 1169
T 8:477 99-05 1250 151-5 101-2
4x4 w 0-214 2 0-950 2 1-471 1-662 1-170
O 7-009 96-23 1247 1552 103-9
2%72 w 0-2180 0-951 4 1-473 1-669 1-176
oy 1253 98-02 1247 157-5 103-6
w 0-214 8 0952 1 1-472 1-663 1-169
025 3x3 T 8:70 98-76 123-5 151-5 102-1
Ax4 w 0-214 2 0-950 3 1:471 1-662 1-170

o 7-230 96-04 124-3 — —




Finite element transient dynamic analysis of composite plates 333

The numerical convergence and accuracy of the transient behaviour of the
element are investigated through a simply supported isotropic plate with a
suddenly applied uniformly distributed load of 10 N/cm?. The results are
given in Table 1.

Though the displacements seem to converge at AT = 1 us, the stress (a,)
converges at only AT = 0-25 us. Since the main aim of the study is to
compare the performance of the higher-order plate element in transient
analysis situations AT = 0-25us is used with a 2 X2 mesh layout
throughout.

4.1 Example 1
An isotropic square plate subjected to a suddenly applied uniformly

distributed load of 10N/cm? is considered. Table 2 gives the centre
deflection and the bending stress (o) up to 400 us, using both Mindlin and

TABLE 2

Central Deflection and Bending Stress for a Simply Supported Square Isotropic Plate
Subjected to a Suddenly Applied Uniformly Distributed Load of 10 N/cm?

Present
Time Mindlin theory® Mindlin theory Higher-order theory
(us)
w x 10° (ecm) o-X(N/cmz) wx 10° (cm) o<(Nlecm?) wx 10° (cm) o-,(N/cmz)
20 0-0399 0-126 3 0-049 6 0-949 2 0-049 5 0-243 9
40 0-1855 6-533 0219 1 4-683 0-218 0 12-530
60 0-5339 44-15 0-583 6 48-88 0-569 3 5302
80 09249 8277 0974 3 91-57 0951 4 98-02
100 1-227 8 1039 1-278 4 111-6 1-254 0 1131
120 1-459 1 120-2 1:502 4 124.8 1473 0 124.7
140 1-653 7 144-4 1-692 3 1549 1-659 0 147-8
160 1-666 7 149-5 1-694 2 1572 1-669 0 157-5
180 1-460 4 124-2 1-496 4 132-1 1-478 0 135-4
200 1-172 8 9496 1-180 4 96-74 1-176 0 103-6
220 0-866 9 74-30 0-880 2 7893 0-876 6 85-22
240 0-5410 49-22 0-544 7 50-37 0-549 8 58-59
260 0-171 1 5-291 0-199 8 10-48 02123 13-89
280 —-0-0041 —8-085 -0:023 5 —15-59 -0-012 1 —15-81
300 0-000 9 0-241 —0-006 S -2-03 -0-001 1 -3.385
320 0-104 5 7-046 0-107 1 7-676 0-098 3 1:273
340 02958 17-47 0-301 0 18-55 0281 6 23-25
360 0-629 5 48-49 0-609 8 43-69 0-583 1 46-13
380 — — 1-033 92-70 0-983 1 93.42
400 — — 1-370 2 1251 1-326 121-80
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TABLE 3

335

Central Deflection and Bending Stress for a Square Orthotropic Plate Subjected to a

Suddenly Applied Uniformly Distributed Load of 10 N/cm?

Time
(us)

Mindlin theory”

Present

Mindlin theory

Higher-order theory

wx 10° (cm) o(Nlcm®) wx 10° (cm) ax(Nlem?) wx 10° (cm) o(N/cm?)

20

40

60

80
100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400

0-039 8
0-193 9
0-430 3
0-553 1
0-526 4
0-370 5
0-177 9
0-0353
-0-039 5
0-1105
0-329 6
0-478 1
0-554 8
0-479 7
0-200 6
0-084 0
~0-030 2
0-045 9

24-64
132:2
282-1
3593
3497
345-4
115-1

22-00

-20-97

73-61
2141
316-8
368-9
314-5
194-9

59-38

—18-53

28-57

0-050 4
0224 6
0455 1
0-560 7
0-5158
0340 1
0-155 8
00188
—0-031 8
0-1412
0-354 2
0-503 2
0-5509
0-454 0
0-269 2
0-057 4
—0-036 3
0-064 6
02333
0-408 9

30-77
155-2
3122
380-4
355-2
2327
103-8

12-31

-24-52

95-62
242-6
342-5
379-8
307-3
183-9

39-7

—28-8

43-37
157-3
281-4

0-050 5
0224 1
0-444 1
0-548 3
0-501 6
0-327 4
0-150 8
00123
-0-0215
0-142 4
0-351 4
0-501 8
0-532 8
0-434 6
0-258 2
00433
-0-0297
00720
02520
0-405 0

39-92
197-5
399-7
471-1
461-8
272-8
128-5

20-09

—2477
119-5
2945
413
5010
365-1
229-5

34-22

—13-14

51-85
198-2
389-2

the higher-order theory. Figure 4 shows the central deflection versus time

plot.

4.2 Example 2

A (° orthotropic plate with the same loading as that of Example 1 is
considered here. Table 3 gives the central deflection and bending stress (o)
history for 400 us. The displacement response considering Mindlin as well as

higher-order theory is presented in Fig. 5.

4.3 Example 3

A 2-layered plate (0°/90°) made of equally thick laminae subjected
to a suddenly applied load whose spatial distribution is given by
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TABLE 4
Central Deflection and Bending Stress for a Simply Supported Square Cross-ply (0°/90°)
Plate Subjected to a Suddenly Applied Sinusoidally Distributed Pulse Loading

Present
Time Mindlin theory Higher-order theory
(us)
wx 10° oy (top) wx 107 o (top)
(cm) (Nfem?) (cm) (Njem?)
20 0-046 4 36-84 0-046 0 41-85
40 0-165 4 127-8 01629 131-1
60 0310 8 2427 0307 5 236-3
80 0-423 8 333:1 04212 305-4
100 0-460 0 3633 0-463 9 349-3
120 0-405 8 3214 0-4152 316-5
140 0-281 2 2203 0-295 8 2289
160 0-137 6 106-3 0-1512 1110
180 0-029 5 20-13 0-038 9 34-60
200 0-002 4 1-48 0-001 5 13-63
220 0-065 8 52:35 0-052 7 48-33
240 0-1950 1540 0-174 3 83-52
260 0-338 5 265-8 03179 2323
280 0-438 4 3428 0-429 5 330-7
300 0-456 5 359-0 0-462 2 3477
320 0-384 0 302-3 0-407 8 304-5
340 02519 199-7 0283 8 211-8
360 0-110 2 86-11 0-141 4 117-7
380 0-016 9 11-23 0-032 0 36-14
400 0-008 4 4-11 0-002 2 4-402

q(x,y) = gy sinmx/asinmy/a is considered, where g, = 10 N/cm? and
a = 25 cm (side of the plate). The central deflection and the bending stress
variation are summarized in Table 4 and Fig. 6.

4.4 Example 4

A 2-layered plate (45°/ —45°) made up of equally thick laminae subjected to
the same loading as in example 1 is considered. Table 5 shows the variation
of maximum displacement and bending stress (o,) over time. The above
quantities are also plotted in Fig. 7.

From this figure, the effect of layers (45°/—45°) and lamination angle on
the amplitude and period of deflection is apparent. From Table 5 it is clear
that Mindlin’s theory predicts slightly lower values of deflection, period and
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TABLE 5
Central Deflection and Bending Stress for a Simply Supported Square Angle-ply
(45°/ —45°) Plate Subjected to a Suddenly Applied Uniformly Distributed Load of

10 N/em? (Full Plate is Discretized Here)

339

Present
Time Mindlin theory Higher-order theory
(us)
wx 107 o (bottom) wx 10° o« (bottom)
{cm) (Nfem?) (cm) (Njem?)
20 0-050 0 5-067 0-050 2 12-25
40 0-228 6 79-25 0228 4 88-08
60 0414 5 172-8 0:433 6 171-4
80 0-414 6 152-4 0-459 3 1575
100 0-3175 122:0 0-378 8 139:3
120 0-145 3 58:97 02210 95-96
140 —0-020 7 -30-18 0-015 4 2-628
160 0-0125 —1-650 5 -0-012 8 -15:93
180 0-166 6 67-52 0-103 7 36-24
200 0-3158 107-0 0-257 0 N-07
220 0:449 0 1842 0-442 0 171-2
240 0-384 8 151-8 0-480 3 185-1
260 0-192 1 56-82 03322 108-0
280 0-061 5 28-98 0-173 1 76-97
300 -0-019 0 -2191 0-:022 6 18-29
320 0:062 8 6-259 —0-0250 —28-41
340 0-281 4 120-7 0-130 7 4299
360 0:396 4 146-6 0-3218 120-9
380 0-416 0 159-4 0-432 7 162-1
400 0-316 4 1329 0473 8 186-4

stresses. The effect of transverse shear on the amplitude, period of the
deflection and stresses is clear.

4.5 Example 5

A 4-layered plate (30°/45°/90°/0°) subjected to the same loading as in
example 1 is analysed. This problem is solved specially to show that the
higher-order theory gives a quadratic distribution of transverse shear
stresses through the thickness, as shown in Fig. 8.

5 CONCLUSIONS

A higher-order shear flexible C° plate bending element is developed and
employed for the transient dynamic analysis of composite plates. Through
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Fig. 8. Variation of transverse shear stresses over thickness (at time 80 us).

the comparative studies done here, we clearly see the importance of this
theory for highly anisotropic plates. The effects of neglecting shear
deformation (as in classical lamination theory) and considering constant
shear deformation (as in the first-order shear deformation Mindlin/Reissner
theories) on the transient response of laminated composite plates are
investigated. In contrast to the classical shear deformation theories, the
present theory does not require a shear correction coefficient due to more
realistic representation of cross-sectional deformation. In addition, the
present theory includes the effect of normal stress (o) in the thickness
direction which is, though negligible, very important in the study of
delamination mode of failure in laminated composites.

The advantage in the use of the higher-order theory presented here over
the Mindlin theory hitherto used is not quite evident for the isotropic plates.
But such usage is very effective in the analysis of nonhomogeneous, aniso-
tropic, composite or sandwich systems, and relatively thicker plates, as the
mathematical model on which this theory is based is far superior to the
Mindlin theory. It is, thus, seen that the formulation described here offers a
convenient and concise method for the analysis of both thick and thin
rectangular plates in bending.
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