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ABSTRACT

A C° continuous displacement finite element formulation of a higher-order
theory for flexure of thick arbitrary laminated composite plates under
transverse loads is presented. The displacement model accounts for non-linear
and constant variation of in-plane and transverse displacement respectively
through the plate thickness. The assumed displacement model eliminates the
use of shear correction coefficients. The discrete element chosen is a nine-
noded quadrilateral with nine degrees-of-freedom per node. Results for plate
deformations, internal stress-resultants and stresses for selected examples are
shown to compare well with the closed-form, the theory of elasticity and the
finite element solutions with another higher-order displacement model by the
same authors. A computer program has been developed which incorporates
the realistic prediction of interlaminar stresses from equilibrium equations.

1 INTRODUCTION

In early days, classical lamination theory! based on the Kirchhoff hypothesis

was adopted for analysis of laminated composite plates. It was soon realised

that this theory,! which neglects shear strains and transverse normal

strain/stress is inadequate for analysis of laminated composite plates as

transverse shear effects are more pronounced, even in thin composite

plates/shells, by comparison with isotropic plates, because of the low
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transverse shear moduli relative to the in-plane Young’s modulus. In
addition, these interlaminar strains/stresses play a vital role in the
delamination mode of laminated composite structures. This realisation was
the starting point in the development of the first shear deformable plate
theory. The credit for this development goes to Reissner? and Mindlin® who
pioneered first-order shear deformable theories based on the assumed stress
and displacement fields. However, both of these theories®'* neglected the
effects of transverse normal strain/stress and were based on a non-realistic
(constant) variation of the transverse shear strains/stresses through the plate
thickness. This necessitated the introduction of a shear correction factor or
factors. Later, these discrepancies were rectified by introducing higher-order
functions in the displacement model leading to the higher-order plate
theories.

Reissner* described an exact approach to the problem which reproduced
the earlier® equations of two-dimensional plate theory and led to new
supplementary information concerning certain three-dimensional aspects of
the problem. Lo, Chistensen and Wu®'® presented closed-form solutions for
isotropic® and laminated® plates with a higher-order displacement model.
The displacement model assumed by them>® incorporates the effects of
transverse normal stress/strain and leads to the realistic (parabolic)
variation of transverse shear stresses/strains. The theory, however, fails to
eliminate the transverse shear stresses/strains on the bounding planes of the
plate. Murthy’ particularized the displacement model of Lo er al” by
neglecting the effects of transverse normal stress/strain, imposing conditions
of zero transverse shear stresses/strains on the bounding planes of the plate
and assuming averaged displacements as basic variables for closed-form
solutions of laminated plates. Reddy® adopted the displacement model of
Murthy’ without following his averaged displacements concept’ which
leads to variationally inconsistent equilibrium equations. Reddy uses the
principle of virtual displacements to derive the equilibrium equations
appropriate for the assumed displacement fields leading to variationally
consistent equations.® Later, Krishna Murty® pointed out that Reddy’s
displacement model® has no provision for considering the transverse shear
strains at points in the plate where displacements are constrained to be zero
(fixed edges). To overcome this limitation, he introduced an additional
partial deflection (shear) as a variable in the transverse displacement
expression and developed a new higher-order theory of laminated composite
plates.® However, these solutions* ~° are limited to few simple loading and
boundary conditions and a need for a generalised solution technique arose.
Kant, Owen and Zienkiewicz!'® were the first to realise this and presented a
C° finite element formulation of the higher-order displacement model given
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by Lo et al.’ for isotropic plates. Later, Reddy presented the displacement*
and mixed!? finite element formulation with the displacement model
adopted earlier® for closed-form solutions. Pandya and Kant!?® have
recently extended the work of Kant ef al.!° for symmetrically laminated
plates. They have also introduced a novel approach of achieving zero
transverse shear stress conditions on the bounding planes of the plate.
Further, Kant and Pandya'* have extended their earlier'* work to
unsymmetrically laminated composite plates. The present authors have also
developed a simple isoparametric formulation®? of the displacement model
given by Lo et al.® for laminated plates.

This paper deals for the first time with a higher-order displacement model
hitherto not considered for a simple isoparametric formulation. This
displacement model is chosen to bring out the effects of neglecting transverse
normal stress/strain but at the same time retaining the higher-order in-plane
degrees-of-freedom in the formulation. The present solutioris are compared
with other finite element solutions'® by the same authors, elasticity'® and
closed-form!” solutions.

2 THEORY

The present higher-order shear deformation theory is developed with the
assumption of the displacement model in the following form:

u(x, y, 2) = ug(x, y) + z0,(x, y) + z*u$(x, y) + 230%(x, y)
vu(x, y,2) = vo(x, y) + 20,(x, y) + 2208(x, y) + 230%(x, ) (1)
w(X, 3, ¥) = Wo(x, y)

in which u,, v, and w, are the in-plane and transverse displacements of a
point (x,y) on the mid-plane respectively and 6,, 0, are the rotations of
normals to mid-plane about y and x axes, respectively. The parameters ¥,
vy, 0%, 0F are the corresponding higher-order deformation terms in the
Taylor series expansion and are also defined at the mid-plane. The
displacement model of eqn (1) differs from that given by Murthy’ and
Reddy® in the sense that the zero transverse shear stress conditions on the
top and bottom surfaces of the plate are not enforced. This displacement
model also differs from that adopted by Lo et al® in the sense that the
transverse displacement is assumed constant through the plate thickness.
We attempt here, for the first time, with the displacement field given by eqn
(1), the development of a theory and a simple C° isoparametric finite element
formulation.
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The strain expressions derived from the displacement model of eqn (1) are
as follows:

€y = £y0 + 2K, + 226¥ + 23KF
— - 2% 3%
&y =&y + ZK, + 2% + 27K}
e, =0
= 7K 2 0% =3 %
Vxy = €xy0 + ZKxy +z €xy0 +:z Ky (2)
_ - 2k
'yyz = (I)y -+ "gyzo +z C[)y
n — - 2
Vxz = (Dx t 280+ 2 ‘I’f

where

c 8110 61}0 auo ﬁvo
= —_ & o N £ = — ———
¥ ox YO gy w0 gy ox
o = 90 a0, o0, 0,
= s = - Kx —_— _‘\_.
toox Toay Yoody  ox
6% a0y o0x o0y
K¥= - K;‘ =X K:y =24 -2
ox oy Jdy  0x
oud ov out  ovd
€50 = =9 Eyo = 2, E¥y0 = — .
ox oy dy  Ox

owy 0 owg

q)y=0y+—av, (Dx:‘ x—+——-ax

Eyo0 = 208,  Ey50 = 2u5, ®F =307, @F =30% (3)

The stress—strain relations for a typical lamina L with reference to the
lamina co-ordinate axes (1-2-3) are given by

o)t Cy Cp 01" € L
o0 =|[Cia Cpp O &3
Ty2 0 0 Ci3 712

4
{Tzs}L . l:C44 0 :IL {sz;}’“
Ti3 0 Css Y13
in which (6,, 6,, T,,, T23, T13) are the stress and (g, €,, 7,3, 723, ¥13) are the

linear strain components referred to the lamina co-ordinate axes (1-2-3) as
shown in Fig. 1. The C,’s are the plane stress reduced elastic constants of the
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Typical lamina
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Fig. 1. Laminate geometry with positive set of lamina/laminate reference axes, dis-
placement components and fibre orientation.

Lth lamina and the following relations hold between these and the
engineering elastic constants.

E v E E
C..= 1 . C,..= 1242 . C,, = 2
H 1—vy,vy 12 1 —vi,vy, 22 L—vi,vy,
5
Ci3=Gyy, Caa=G13, Css=Gy3 ®

Following the usual transformation!® rule of stresses/strains between the
lamina and laminate coordinate systems, the stress—strain relations for the
Lth lamina in the laminate coordinates (x-y-z) are written as

o, |t 011 Q12 Qi [e |t
oy =012 Q22 @23 &,
xy 0135 Q@25 Qss Vxy (6)

{ryz}'“_ [Q44 Q45]L {yyz}L
L Qss Oss Pz

]
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in which, 6 = (0,, 6, T, Ty, T,)' and & = (e, &, Vs» ¥y Vi)' ar€ the stress and
linear strain vectors with respect to the laminate axes and Q, s are the plane
stress reduced elastic constants in the plate (laminate) axes of the Lth lamina.
The superscript t denotes the transpose of a matrix.

The total potential energy = of the plate of mid-surface area 4 and volume
V, loaded with an equivalent load vector P corresponding to the nine-
degrees-of-freedom of a point on the mid-plane can be represented as

n:lj s‘adV-j d'PdA (7)
2 14 A

where
d= (“o, Vo, Wo, 6x9 Hy’ ll?;, U?)‘, 0:: Ht)t (8)

The expressions for the strain components given by eqn (2) are substituted in
the energy expression eqn (7). The functional given by eqn (7) is then
minimized while carrying out explicit integration through the plate
thickness. This leads to the following eighteen stress-resultants for the n-
layered laminate:

N, ; N : rhi. Tx
N, | Ny :Z o, p [112%]dz
ny: N:y L=1 i xy
M, | M} e [0
M, My = z o, [z 2°]dz
My M) =0 9)
fo 5 LY [l e
Qy‘i Sy | Q;g Juoy (Tyz o i

Upon integration, these expressions are rewritten in a matrix form which
defines the stress-resultant/strain relations of the laminate and is given by,

N* A B 0| %
N* B 8o
M [ I u
M*>.—_- Bt]Db;‘O . >
_6__ - _,T,w ®
\Q* _O } 0 ‘} Ds~ kq)*l
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or
& =Dz (10)
in which
N=(N, N,N,),  N*=(N% N} N&)
M=(M, M, M), M* =M} M}, ML)
Q=0 Q) Q*=(S,» S,, 0%, &)
&= (san €50, 8:cyo)t’ 83 = (G:Oa 8;‘0’ 8;.:‘yo)t
K = (K,, Ky, Ky)', x* = (x¥, kf, k¥,
®=(D, D), O* = (2200 &yz00 DX D))’
[0, Hy Q1.H, QusH, Q@ Hy QHs Qi:Hi|on,
n Q22H, Qy3H, Qi2Hy QyHs Qr3H;
A= 2 Qs3H, Qi3H; Qy3Hs Qi3H;
B Q11 Hs QHs Qy3H;s
L=t 01.Hs Q,3H;s
| Symmetric Q13 H|
(QssH, QusHy QssHy QusH, QssHy QusHj) ,l,','y:,
. QusH, QusH, QuH, QusHs QuHs
D - z QssHy QusH; QssHy QusH,
T QaaHsy QusHy QuaH,
L=t QssHs QusH;s
| Symmetric QusHs]

The elements of the B matrix can be obtained by replacing H, by H,, H, by
H, and H4 by Hg in the A matrix. Similarly, the elements of the D, matrix
can be obtained by replacing H, by H,, H, by Hs and H by H, in A matrix,
where

1 . .
H'=7(hll‘—hi_l) i=1,2,3,...,7

The transverse shear stresses obtained by means of the stress—strain
relations given by eqns (6) cannot satisfy the continuity condition at the
interfaces of any two layers for the randomly laminated composite plate.
For this reason, the interlaminar shear and normal stresses (tL;, t5,, o7)
between layers L and (L + 1) at z = h, are obtained by integrating the three
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equilibrium equations of the theory of elasticity for each layer over the
lamina thickness and summing over layers 1 through n as follows:

L
b (dat ot
L - x xy
ten==) [ (Fr 5 )0
i=1
L
(ki [9gi o1
L _ — 27y Txy
=) [ (G5 a

Orlzg=n = —

rq
qu i
et e
€,
E
. 2
- [w)
)
= |5~
N
+
N
~»
~= *{L
Na——
o
N

3 FINITE ELEMENT FORMULATION

In the well-established finite element method, the total solution domain is
discretized into ‘ME’ elements (sub-domains) such that

ME

m(d) = Z ne(d) (12)

e=1

where m and n® are the potential energies of the total solution domain and the
sub-domain respectively. The potential energy for an element ‘€’ can be
expressed in terms of the internal strain energy, U¢, and the external work
done, W¢, such that

ne(d) = U — we (13)

in which d is the vector of nodal degrees-of-freedom of an element and is
already defined by eqn (8). Adopting the same shape function ‘N’ to define all
the components of the generalized displacement vector, d, we can write

NE
i=1

in which, NE is the number of nodes in the element. Now, referring to the
expressions in eqn (3) the extensional strains (&, £¥), the bending curvatures
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(x, x*) and the transverse shear strains (®, ®*) can be written in terms of the
nodal displacements d using the matrix notations as follows:

&

{:*} =Lyd (15)

L
{Q*}=Lsd

in which the subscripts E, B and S refer to extension, bending and shear
respectively and the matrices Lg, Ly and Lg attain the following form

2 90000 0 00]
ox
0
0 — 000 0 0 0O
oy
—a-ioooo 0 00
dy 0x
Lg= ;
0 0 000 — 0 0O
Ox
0
0 0 000 0 — 00
dy
o 0
|0 ooooa—ya—xoo_
_ ; ]
000 — 0 00 0 O
ox
0
000 0 — 00 0 O
oy
oooiﬂooo 0
dy Ox
Ly= ]
000 0 0 00 — O
ox
0
000 0 0 00 0 —
dy
o 0
(000 0 Oooaaj
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(16)

Knowing the generalized displacement vector, d, at all points within the
element, the generalized strain vectors at any point are determined with the
aid of eqns (14) and (16) as follows:

NE NE
{:2} = LEd = LEle'dl' = ZBiEdi = BEa
0 i=1 i=1
NE NE
K
{K*} = LBd == LBZNidi =zBini = BBa
i=1 i=1

NE NE
{z*} =Lgd = LSZ Nd, = ZBiSdi = Bsa
i=1 i=1

in which

and

BiE = LENi,

BiS = LSN is

a=(dy,d5, ... dyp)

(17)

(18)
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Combining the expressions in eqn (18), the B matrix for the ith node can be
written as

Big
i=| Bis (19)
B

The internal strain energy of an element is determined by integrating the
products of in-plane, moment and shear stress resultants with the
extensional, bending and shear strains, respectively, over the area of an
element. This is expressed as

1 N M
Ue = 5 J;l}ab, axt){N*} + (e, x*t){M*} + (@, Q*t){g*}:l dA (20)

Replacing stress-resultants by. the product of rigidity matrix and strains in
the strain energy expression in eqn (20), we get

ve=2 | | (et a4t + et e8] ® Lt et w2yl 0
2 Ja T34 K* &§

+(, x*‘)DB{:*t} + (@, Q*')Ds{i*}:l dA (1)

The internal strain energy expression in terms of the nodal displacements is
derived by substituting relations in eqn (17) into eqn (21). The result is

Us= % f R (a*ByABga + a'ByBBia + a' By BBpa
+ a'BgDyBga + a' ByD¢Bsa)dA
or
Ue=3a'Ka (22)

in which K* is the element stiffness matrix and is expressed as
A

The computation of the element stiffness matrix from eqn (23) is economised
by explicit multiplication of the B, D and B; matrices instead of carrying out
the full matrix multiplication of the triple product. In addition, because of
the symmetry of the stiffness matrix, only the blocks K;; lying on one side of
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the main diagonal are formed. The integral is evaluated numerically using
the Gauss quadrature rule,

1 1
K= JL 1 J“ 1 BiDB|J|dedn
g g

K= z Z W, .WJ|B:DB,; (24)
a=1b=1

in which W, and W, are weighting coefficients, g is the number of numerical
quadrature points in each of the two directions (x,y) and |J| is the
determinant of the standard jacobian matrix. The subscripts / and j vary
from one to the number of nodes per element. The matrices B; and D are
given by eqns (19) and (10) respectively and B; is obtained by replacing i by j.

For the flexural analysis, the total external work done by the applied
external loads for an element, e, is given by

we=a'F_+ a‘J (Nlg + N{P,,)dA (25)
A

in which suffix, i, varies from one to the number of nodes per element. F_ is
the vector of concentrated nodal loads corresponding to nodal degrees-of-
freedom. ¢ and P,, are the uniform and sinusoidal distributed load
intensities acting over an element e in the z direction.

The integral of eqn (25) is evaluated numerically using the Gauss
quadrature rule as follows

g

P — z z W, W JINH0 01000000} <q+ P,, sinT—Zfsmfgﬁ) (26)

13

a=1b=1

in which a and b are the plate dimensions, x and y are the Gauss point
coordinates and m and n are the usual harmonic numbers.

4 NUMERICAL EXAMPLES

The validity of the theory, the finite element formulation, and its
implementation in the computer program is established by comparison of
numerical results for examples available in the literature. In examples 1 and
2, the individual laminae are taken to be of equal thickness whereas for the
sandwich plate of example 3, the thickness of each face sheet is one-tenth of
the total thickness of the plate. For all three examples considered, the plate is
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discretized with four nine-noded quadrilateral elements in a quarter plate.
The numerical values of stress-resultants and stresses are at the nearest
Gauss points for the finite element solutions. The superscripts ¢ and e used in
the various tables represent the values of stresses obtained from constitutive
and equilibrium relations respectively. The material properties used for each
lamina of the laminated composite or sandwich plate are as follows:

Material I
El G12 G23 6
—_— — = Rmanadt— § M E = E - 10
B4 =06 3205 E=E
Gl3=Glz and v12=v23=vl3=0'25 (27)
Material 11
El Glz G23 6
—_ = - § I —=0‘2 E =E = 10
E2 259 E2 0 5’ Ez H 2 3
Gl3=Glz and v12=V23=V13=0‘25 (28)

Material II1

Material properties for each face sheet are given by eqn (28) with the fibres
parallel to x-axis and the core material is transversely isotropic with respect
to z and is characterized by the following properties:

E,=E,=04x 10 E, =05 x 10°
G,.=G,,=06x10°, G, =016x 10° (29)
Viz = Vyp = Vyyy = 025

The deflection, internal stress-resultants, and stresses are presented here in

non-dimensional form using the following multipliers:

m _ 0B, m _10 m _10 L _h (30)
1= ga* Z“qaz’ 3_qa m4_qa2’ ms_qa

The three examples selected from the literature are described below:

4.1 Example 1

A simply-supported square cross-ply (0°/90°) plate under uniform
transverse load is considered for comparisons of maximum deflection and
stress-resultants. The set of material properties used is given by eqn (27) and
the results are presented in Table 1. Further, the behaviour of the same plate
under sinusoidal load and a set of material properties given by eqn (28) is
examined. The results for maximum stresses are compared with the three-
dimensional elasticity solutions in Table 2.
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4.2 Example 2

A simply-supported square angle-ply (15°/—15°) plate under uniform
transverse load is considered here. The numerical results are presented in
Table 3, considering the full plate.

4.3 Example 3

A simply-supported square sandwich plate under sinusoidal transverse load
is considered for comparisons of stresses. The set of material properties used
is given by eqn (29) and the results are presented in Table 4.

5 CONCLUSIONS

A simple C° isoparametric formulation of an assumed higher-order
displacement model is presented. The present shear deformable theory does
not require the usual shear correction factors generally associated with the
Mindlin—Reissner type of theory. Comparisons of numerical results using
two different displacement fields, with the 3D-elasticity and available closed-
form solutions show that the use of the complete generalised Hooke’s law
which includes the effects of transverse normal stress/strain minimizes the
errors. In general, the agreement of both the finite element solutions is
excellent for thin-to-thick laminated composite and sandwich plates when
compared with 3D-elasticity/closed-form solutions. With the present
displacement model, it is not possible to satisfy the zero transverse shear
stress conditions on the bounding plane of the plate. Further, the continuity
conditions on the interfaces for the interlaminar stresses are also not met in
the realm of any two-dimensional plate theory for laminates. For these
reasons, the computer program developed makes use of three-dimensional
equilibrium equations to predict the interlaminar stresses realistically. The
in-plane lamina stresses are evaluated as usual from the plate constitutive
relations. The difference in the results of transverse shear stresses obtained
using equilibrium equations and plate constitutive relations is found to be a
maximum for the sandwich plate rather than the laminated plates.
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