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ABSTRACT 

A C O continuous displacement finite element formulation of a higher-order 
theory for flexure of  thick arbitrary laminated composite plates under 
transverse loads is presented. The displacement model accounts for non-linear 
and constant variation of  in-plane and transverse displacement respectively 
through the plate thickness. The assumed displacement model eliminates the 
use of  shear correction coefficients. The discrete element chosen is a nine- 
noded quadrilateral with nine degrees-of-freedom per node. Results for plate 
deformations, internal stress-resultants and stresses for selected examples are 
shown to compare well with the closed-form, the theory of elasticity and the 
finite element solutions with another higher-order displacement model by the 
same authors. A computer program has been developed which incorporates 
the realistic prediction of interlaminar stresses from equilibrium equations. 

1 I N T R O D U C T I O N  

In early days, classical lamination theory I based on the Kirchhoffhypothesis 
was adopted for analysis of  laminated composite plates. It was soon realised 
that this theory, 1 which neglects shear strains and transverse normal 
strain/stress is inadequate for analysis of  laminated composite plates as 
transverse shear effects are more pronounced, even in thin composite 
plates/shells, by comparison with isotropic plates, because of  the low 
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transverse shear moduli  relative to the in-plane Young's modulus. In 
addition, these interlaminar strains/stresses play a vital role in the 
delamination mode of  laminated composite structures. This realisation was 
the starting point in the development of  the first shear deformable plate 
theory. The credit for this development goes to Reissner 2 and Mindlin s who 
pioneered first-order shear deformable theories based on the assumed stress 
and displacement fields. However, both of these theories 2'3 neglected the 
effects of transverse normal strain/stress and were based on a non-realistic 
(constant) variation of the transverse shear strains/stresses through the plate 
thickness. This necessitated the introduction of a shear correction factor or 
factors. Later, these discrepancies were rectified by introducing higher-order 
functions in the displacement model leading to the higher-order plate 
theories. 

Reissner 4 described an exact approach to the problem which reproduced 
the earlier 2 equations of two-dimensional plate theory and led to new 
supplementary information concerning certain three-dimensional aspects of 
the problem. Lo, Chistensen and Wu s'6 presented closed-form solutions for 
isotropic 5 and laminated 6 plates with a higher-order displacement model. 
The displacement model assumed by them 5'6 incorporates the effects of 
transverse normal stress/strain and leads to the realistic (parabolic) 
variation of transverse shear stresses/strains. The theory, however, fails to 
eliminate the transverse shear stresses/strains on the bounding planes of the 
plate. Murthy 7 particularized the displacement model of Lo e t  al .  6 by 
neglecting the effects of  transverse normal stress/strain, imposing conditions 
of zero transverse shear stresses/strains on the bounding planes of  the plate 
and assuming averaged displacements as basic variables for closed-form 
solutions of laminated plates. Reddy 8 adopted the displacement model of 
Murthy v without following his averaged displacements concept 7 which 
leads to variationally inconsistent equilibrium equations. Reddy uses the 
principle of virtual displacements to derive the equilibrium equations 
appropriate for the assumed displacement fields leading to variationally 
consistent equations. 8 Later, Krishna Murty 9 pointed out that Reddy's 
displacement model 8 has no provision for considering the transverse shear 
strains at points in the plate where displacements are constrained to be zero 
(fixed edges). To overcome this limitation, he introduced an additional 
partial deflection (shear) as a variable in the transverse displacement 
expression and developed a new higher-order theory of laminated composite 
plates. 9 However, these solutions 4- 9 are limited to few simple loading and 
boundary conditions and a need for a generalised solution technique arose. 
Kant, Owen and Zienkiewicz '° were the first to realise this and presented a 
C o finite element formulation of the higher-order displacement model given 
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by Lo et aL 5 for isotropic plates. Later, Reddy presented the displacement x 1 
and mixed 12 finite element formulation with the displacement model 
adopted earlier a for closed-form solutions. Pandya and Kant ~3 have 
recently extended the work of Kant et aL x° for symmetrically laminated 
plates. They have also introduced a novel approach of achieving zero 
transverse shear stress conditions on the bounding planes of the plate. 
Further, Kant and Pandya ~4 have extended their earlier ~3 work to 
unsymmetrically laminated composite plates. The present authors have also 
developed a simple isoparametric formulation 15 of the displacement model 
given by Lo et aL 6 for laminated plates. 

This paper deals for the first time with a higher-order displacement model 
hitherto not considered for a simple isoparametric formulation. This 
displacement model is chosen to bring out the effects of neglecting transverse 
normal stress/strain but at the same time retaining the higher-order in-plane 
degrees-of-freedom in the formulation. The present solutioris are compared 
with other finite element solutions 15 by the same authors, elasticity ~6 and 
closed-form~ 7 solutions. 

2 THEORY 

The present higher-order shear deformation theory is developed with the 
assumption of the displacement model in the following form: 

u(x,y,  z) = Uo(X,y ) + zOx(x,y) + z2u~(x,y) + z30*x(X,y) 

v(x,y, z) -- Vo(X,y ) + zOy(x,y) + z2v~(x,y) + z30*(x,y)  (1) 

w(x, y, y) = wo(x, y) 

in which Uo, v 0 and w 0 are the in-plane and transverse displacements of a 

point (x,y) on the mid-plane respectively and 0x, 0y are the rotations of 
normals to mid-plane about y and x axes, respectively. The parameters u*, 
v~, 0", 0* are the corresponding higher-order deformation terms in the 
Taylor series expansion and are also defined at the mid-plane. The 
displacement model of eqn (1) differs from that given by Murthy 7 and 
Reddy a in the sense that the zero transverse shear stress conditions on the 
top and bottom surfaces of the plate are not enforced. This displacement 
model also differs from that adopted by Lo et al. 6 in the sense that the 
transverse displacement is assumed constant through the plate thickness. 
We attempt here, for the first time, with the displacement field given by eqn 
(1), the development of a theory and a simple C o i soparametric finite element 
formulation. 
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The strain expressions derived f rom the displacement  model  o f eqn  (1) are 
as follows: 

where 

8Uo 
8xO --  OX ' 

2 * .3  
8 x = S x O ° r - Z K  x + Z  8 x O + ~  K x 

2 , 3 , 

~ = 0 
~2 * _3 , 

~xy ~ ExyO -~ ZKxy -[- " 8xy0 71- ,z Kxy 
2 , = Oy + zey~o + z Oy 7y~ 
2 * 

~U o 
%0 = 8y '  

~U o ~V o 
Myo-  8y 4 c~x 

(2) 

80x 
tCx = ~ X '  

80y 

K),- Or' 

80x 80~, 

~C,,y- ~7.V- ~- ~x 

K* - 9 0 *  

8x'  

. ,  0 0 "  

%' - By' 

K~*- ao* oo* 

83' ~ ~x 

, _ ,~u~ 
8xO ~X ' ~*o ~v* ~y 

au~ av{ 
~*yo - + c?y O.,c 

C q W 0 ~ W 0 
Oy = Oy + ~m, • x= O~ + ~x 

%~o=2V*, e=o=2U~,  ~ * = 3 0 " ,  0 " = 3 0 "  (3) 

The stress-strain relations for a typical lamina L with reference to the 
lamina co-ordinate axes (1-2-3) are given by 

0-2? ~ 2 C22 ~';2 

"g12 J 0 C33  ] "~12 

1713) ( . 7 1 3 )  

(4) 

in which (0.1, 02, 1712, '~23, "~13) a r e  the stress and (e 1, ,g2, •12, ~23, ~)13) a re  the 
linear strain componen t s  referred to the lamina co-ordinate axes (1-2-3) as 
shown in Fig. 1. The Cu's are the plane stress reduced elastic constants  of  the 
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L t h  lamina  and  the fol lowing re la t ions  hold  be tween these and  the 
engineer ing  elastic constants .  

E l  C12 - v 12E2 CE 2 - Eu 
C11 - 1 -- VluV21' 1 - VluV21' 1 - v12v21 

Ca3 = 612, C44 = G23, C55 = G1a (5) 

Following the usual transformation 18 rule of stresses/strains between the 
lamina and laminate coordinate systems, the stress-strain relations for the 
L t h  lamina  in the lamina te  coord ina te s  (x-y-z) are wr i t ten  as 

o,, 

¢=j LQ,, QssJ O'=J 
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in which, a = (a~, %, rxy, rye, Zx~) t and e = (e~, % 7xy, 7y~, 7x~) ~ are the stress and 
linear strain vectors with respect to the laminate axes and Q~j's are the plane 
stress reduced elastic constants  in the plate (laminate) axes of  the Lth lamina. 
The superscript t denotes the transpose of  a matrix. 

The total potential  energy n of  the plate of  mid-surface area A and volume 
V, loaded with an equivalent load vector P corresponding to the nine- 
degrees-of-freedom of  a point  on the mid-plane can be represented as 

7r = ~ attr d V -  dip dA (7) 
4 

where 

d = (u0, v0, Wo, 0~, 0y, u*, v*, 0", 0")' (8) 

The expressions for the strain componen ts  given by eqn (2) are substi tuted in 
the energy expression eqn (7). The functional  given by eqn (7) is then 
minimized while carrying out explicit integration through the plate 
thickness. This leads to the following eighteen stress-resultants for the n- 
layered laminate: 

f 
Nx 
Ny 

N~y 

My 
Mxy 

N * ~ :  , a y  
I~ L--I N;, J ~xy L = I  

Ez 

Qyi s y l o * J  = 
L = I  

[1  Z 2]  d z  

z 3] dz 

z { z 2] dz 

(9) 

U p o n  integration, these expressions are rewritten in a matr ix form which 
defines the stress-resultant/strain relations of  the laminate and is given by, 

Q* I 

i I 0 A I B ~  

I I 

Bt '~ Db q~ O 
! 

oloiD  
I " 
1 I 

so l 
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or 

in which 

fl 

L=I 

n 

Ds= 

L = I  

N = (Nx, Ny, N~,)', 

M = (Mx, My, M~,)', 
Q = (Qx, Qy)t, 

8o = (~xo, ~o, ex~o)', 

= (Kx, K,, ~.x,)', 

-QIIH1 QI2H1 
Q22H1 

_ Symmetric 

-Q55HI Q,,sHI 

Q4.4.HI 

Symmetric 

8 = D~ 

N*= (N*, N*, N*y)t 

M * =  (M*, M*, M*,)' 
Q*= (S~, S~ Q*, Q*)I 

8~=(:o,  S,o,* :,o)' 
K*= (~*, ~*, ~x*)' 

• *=  (~=o, ~.o, ~*, ~*)' 

Qt3Hx Q11H3 Q12H3 QxaH3- 
Q23H1 Q12H3 Q22H3 Q23H3 
Q33HI QI3H3 Q23H3 Q33H3 

Q11H5 Q12H5 Q13H5 
Q22H5 Q23H5 

Q33H5 

QssH2 Q45H2 Q55H3 Q45H3- 
Q45H2 Q44H2 Q45H3 Q44H3 
QssH3 Q45H3 Qs5H4 Q45H4 

Q44H3 Q45H4 Q44H4 
QssH5 Q45Hs 

Q44H,. 

(10) 

L t h  
layer 

L t h  

layer 

The elements of the B matrix can be obtained by replacing H a by H 2, H 3 by 
//4 and Hs by//6 in the A matrix. Similarly, the elements of the D b matrix 
can be obtained by replacing H1 by H 3, H3 by Hs and H5 by H7 in A matrix, 
where 

i=  1,2,3 ..... 7 

The transverse shear stresses obtained by means of the stress-strain 
relations given by eqns (6) cannot satisfy the continuity condition at the 
interfaces of any two layers for the randomly laminated composite plate. 
For this reason, the interlaminar shear and normal stresses (z~,, ~ , ~ )  
between layers L and (L + 1) at z = hi. are obtained by integrating the three 
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equilibrium equations of the theory of elasticity for each layer over the 
lamina thickness and summing over layers 1 through n as follows: 

L 

E£ %) ~_~ \ c3x + dz 
i = 1  

L 

E£ 
i=i 

(11) 

L 

E;;(+) a~l~=h = - c~'r~ c3ryz ,-,--~--x + dz 
i = 1  

3 FINITE ELEMENT FORMULATION 

In the well-established finite element method, the total solution domain is 
discretized into 'ME' elements (sub-domains) such that 

ME 

n(d)=~-[ne(d) 

e = l  

(12) 

where n and n e are the potential energies of the total solution domain and the 
sub-domain respectively. The potential energy for an element 'e' can be 
expressed in terms of the internal strain energy, U e, and the external work 
done, W e, such that 

r e ( d )  = u o - w o ( 1 3 )  

in which d is the vector of nodal degrees-of-freedom of an element and is 
already defined by eqn (8). Adopting the same shape function 'N' to define all 
the components of the generalized displacement vector, d, we can write 

NE 

d = ~ Nid i 

i = 1  

(14) 

in which, NE is the number of nodes in the element. Now, referring to the 
expressions in eqn (3) the extensional strains (eo, e~), the bending curvatures 
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(r, •*) and the transverse shear strains (0, 0*) can be written in terms of the 
nodal displacements d using the matrix notations as follows: 

8~ = LEd 

{'t r* = LBd (15) 

in which the subscripts E, B and S refer to extension, bending and shear 
respectively and the matrices L~, LB and Ls attain the following form 

L E = 

L B = 

o o o o o  o o o  

0 ~ 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 
Oy Ox 

o o O O ~ x  o o o  

0 0 0 0 0 ~vv 0 0 

0 0 0 0 0 0 
Oy Ox 

0 
0 0 0 0 0 0 0 0 ~yy 

0 0 0 0 0 0 0 
Oy Ox 

0 
o o o Ux o o o o o 

0 
0 0 0 0 ~vv 0 0 0 0 

0 0 0 0 0 0 0 
Oy Ox 

0 
o o o o o o o = -  o 

Ox 



1 4 6  B. N. Pandya, T. Kant 

L S = 

0 0 ~ 1 0 0 0 0 0  

0 0  ~ 0 1 0 0 0 0  

0 0  0 0 0  2 0 0  0 

0 0  0 0 0 0  2 0 0  

0 0  0 0 0 0 0  3 0 

0 0  0 0 0 0 0 0  3 (16) 

Knowing the generalized displacement vector, d, at all points within the 
element, the generalized strain vectors at any point are determined with the 
aid of eqns (14) and (16) as follows: 

NE NE 

i = 1  i = 1  

NE NE 

Z Z r*  = LBd = LB Nidl  = 

i = l  i = l  

Biad i = BBa (17) 

NE NE 

i = 1  i = l  

Bisd i = Bsa 

in which 

BiE = LENi, BE = 

NE 

~ Bir 

i = 1  

Bin = LBNi, BB = 

NE 

~ BiB 
i = 1  

Bis = LsNi, 

NE 

B s = ~ Bis 
i = 1  

and 
t a = (dtt, d~, . . . ,  dNE) (18) 
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Combining the expressions in eqn (18), the B matrix for the/th node can be 
written as 

B~E ] 
B~ (19) = BiB 

Bis 

The internal strain energy of an element is determined by integrating the 
products of in-plane, moment and shear stress resultants with the 
extensional, bending and shear strains, respectively, over the area of an 
element. This is expressed as 

1 U, = ~ fA[(ab, ,,,i'M ] t , t  I ' M )  

Replacing stress-resultants by the product of rigidity matrix and strains in 
the strain energy expression in eqn (20), we get 

+ (#,.*t)DB~'.t~ + (. t ,O*t,D.{ : ( .  ) . } IDA (21, 

The internal strain energy expression in terms of the nodal displacements is 
derived by substituting relations in eqn (17) into eqn (21). The result is 

U* = ~ (atB~AB~a + atB~BBEa + atI~EBB.a 

+ atBBD.BBa + atB~DsBs a) dA 

o r  

U e = ~atKea (22) 

in which K" is the element stiffness matrix and is expressed as 

= fA (BtEABE + I~.BBE + B~BB. + BtBDBB. + B~DsBs)da (23) K" 

The computation of the element stiffness matrix from eqn (23) is economis~d 
by explicit multiplication of the Bt, D and B; matrices instead of carrying out 
the full matrix multiplication of the triple product. In addition, because of 
the symmetry of the stiffness matrix, only the blocks K~; lying on one side of 
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the main diagonal are formed. The integral is evaluated numerically using 
the Gauss quadrature rule, 

Ki~ = B~DBjlJt de d~/ 
- 1 ,  - 1  

g g 

a = l b = l  

in which W, and Wb are weighting coefficients, g is the number of numerical 
quadrature points in each of the two directions (x,y) and IJI is the 
determinant of the standard jacobian matrix. The subscripts i and j vary 
from one to the number of nodes per element. The matrices Bi and D are 
given by eqns (19) and (10) respectively and Bj is obtained by replacing i byj. 

For the flexural analysis, the total external work done by the applied 
external loads for an element, e, is given by 

= atF¢ + at fA (Ntq + NtPm~) W ~ dA (25) 

in which suffix, i, varies from one to the number of nodes per element. F¢ is 
the vector of concentrated nodal loads corresponding to nodal degrees-of 
freedom, q and Pro, are the uniform and sinusoidal distributed load 
intensities acting over an element e in the z direction. 

The integral of eqn (25) is evaluated numerically using the Gauss 
quadrature rule as follows 

g g 

p i =  WaWblJlNt{O0 1 0 0 0 0 0 0 } '  q+P , , , s i n  a s in- i f - )  (26) 

a = l b = l  

in which a and b are the plate dimensions, x and y are the Gauss point 
coordinates and m and n are the usual harmonic numbers. 

4 NUMERICAL EXAMPLES 

The validity of the theory, the finite element formulation, and its 
implementation in the computer program is established by comparison of 
numerical results for examples available in the literature. In examples 1 and 
2, the individual laminae are taken to be of equal thickness whereas for the 
sandwich plate of example 3, the thickness of each face sheet is one-tenth of 
the total thickness of the plate. For all three examples considered, the plate is 
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discretized with four nine-noded quadrilateral elements in a quarter plate. 
The numerical values of stress-resultants and stresses are at the nearest 
Gauss points for the finite element solutions. The superscripts c and e used in 
the various tables represent the values of stresses obtained from constitutive 
and equilibrium relations respectively. The material properties used for each 
lamina of the laminated composite or sandwich plate are as follows: 

Material I 

Material II 

E-i= 40, G I 2  = 0"6, G23 = 0"5 ,  E 2 = E 3 = 1 0  6 

E2 E2 E2 

G13 = GI2  a n d  v12 = v23 = v13 = 0.25 (27) 

Material III 

E--Zt = 25, G I 2  = 0"5 ,  G23 = 0"2, E 2 = E a = 1 0  6 

E2 E2 E2 

GI3 = GI2 a n d  vl2 = 1~23 = •13 = 0.25 (28) 

Material properties for each face sheet are given by eqn (28) with the fibres 
parallel to x-axis and the core material is transversely isotropic with respect 
to z and is characterized by the following properties: 

Ex = Ey = 0"4 x 105, Ez = 0"5 x 106 

Gxz = Gy~ = 0"6 x 105, Gxy = 0"16 x l0 s (29) 

vxz = vy~ = vxy = 0"25 

The deflection, internal stress-resultants, and stresses are presented here in 
non-dimensional form using the following multipliers: 

10E2 ha 10 10 h 2 h 
m l -  qa 4 ' m2 qa 2' ma qa m4 - ~ ,  ms qa (30) 

The three examples selected from the literature are described below: 

4.1 Example 1 

A simply-supported square cross-ply (00/90 °) plate under uniform 
transverse load is considered for comparisons of maximum deflection and 
stress-resultants. The set of material properties used is given by eqn (27) and 
the results are presented in Table 1. Further, the behaviour of the same plate 
under sinusoidal load and a set of material properties given by eqn (28) is 
examined. The results for maximum stresses are compared with the three- 
dimensional elasticity solutions in Table 2. 
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4.2 Example 2 

A simply-supported square angle-ply (15°/-15 °) plate under unilbrm 
transverse load is considered here. The numerical results are presented in 
Table 3, considering the full plate. 

4.3 Example 3 

A simply-supported square sandwich plate under sinusoidal transverse load 
is considered for comparisons of stresses. The set of material properties used 
is given by eqn (29) and the results are presented in Table 4. 

5 CONCLUSIONS 

A simple C O isoparametric formulation of an assumed higher-order 
displacement model is presented. The present shear deformable theory does 
not require the usual shear correction factors generally associated with the 
Mindlin-Reissner type of theory. Comparisons of numerical results using 
two different displacement fields, with the 3D-elasticity and available closed- 
form solutions show that the use of the complete generalised Hooke's law 
which includes the effects of transverse normal stress/strain minimizes the 
errors. In general, the agreement of both the finite element solutions is 
excellent for thin-to-thick laminated composite and sandwich plates when 
compared with 3D-elasticity/closed-form solutions. With the present 
displacement model, it is not possible to satisfy the zero transverse shear 
stress conditions on the bounding plane of the plate. Further, the continuity 
conditions on the interfaces for the interlaminar stresses are also not met in 
the realm of any two-dimensional plate theory for laminates. For these 
reasons, the computer program developed makes use of three-dimensional 
equilibrium equations to predict the interlaminar stresses realistically. The 
in-plane lamina stresses are evaluated as usual from the plate constitutive 
relations. The difference in the results of transverse shear stresses obtained 
using equilibrium equations and plate constitutive relations is found to be a 
maximum for the sandwich plate rather than the laminated plates. 
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