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Abstract-This paper presents a refined higher-order theory for free vibration analysis of unsymmetricaliy 
laminated multilayered plates. The theory accounts for parabolic distribution of the transverse shear 
strains through the thickness of the plate and rotary inertia effects. A simple Co linite element formulation 
is presented and the nine-noded Lagrangian element is chosen with seven degrees of freedom per node. 
Numerical results are presented showing the parametric effects of aspect ratio, length,&hickness ratio, 
number of layers, and lamination angle. The present theory predicts the frequencies more accurately when 
compared with firs&order and classical plate theories. 

INTRODUCTION 

With the increase in the usage of multi~ye~ struc- 
tures in the field of structural engineering, the 
search for various methods for studying the dynamic 
behaviour of these structures has gained momentum. 
A great variety of shear deformation theories have 
been proposed and some are reviewed in [l]. They 
range from the first such theory by Yang et al. [2] 
for laminated anisotropic plates to various effective 
stiffness theories such as those discussed by Sun 
and Whitney [3], Whitney and Sun’s higher-order 
theory [4] and the three-dimensional elasticity theory 
approach of Sri&as et al. [S, 61 and Noor [7]. 
Fortier and Rossettos [8] analysed free vibration of 
thick rectangular plates of unsymrnetric cross-ply 
construction, while Sinha and Rath [9] considered 
both vibration and buckling for the same type of 
plates. Bert and Chen [lo] presented a closed form 
solution for free vibration of anti-symmetric angle- 
ply laminates using the theory of Yang et al. 121. 

While considerable effort has been expended in the 
finite element vibration analysis of isotropic plates, 
only limited investigations of laminated anisotropic 
plates can be found in the literature [11,12, 191. In 
recent years, many refined plate theories have been 
presented to improve the static (13-161 and the dy 
namic [17-211 themes of laminated construction. The 
present paper attempts to provide a simple refined 
higher-order theory with a Co finite element formula- 
tion. With the simplicity of this model, economic 
solutions can be obtained for both symmetric and 
anti-s~met~c multi-layered composite and sand- 
wich plates. A special mass matrix ~ago~l~tion 
scheme is adopted which conserves the total mass of 
the element and includes the effects due to rotary 
inertia terms. 

GOWRNING EQUATIONS 

In this section, a brief presentation of the govern- 
ing equations of motion corresponding to the present 
shear deformation theory is given. The matrix 
equation governing free vibrations may be expressed 
as 

Kd-02Md=0, W 

where K and M are the global stiffness and mass 
matrices respectively (obtained by the assembly of 
the corresponding element matrices), d is the vector 
of global nodal displacements and o is the natural 
frequency of free vibration of the system. For the 
purpose of evaluation, eqn (la) is converted to the 
standard eigenvalue format, 

(K-AM@=0 withA=&. (lb) 

A subspace iteration technique 1231 is used to obtain 
the eigenvalues 1, and the corresponding eigen- 
vectors d,. 

A Cartesian co-ordinate system (x, y, z) is con- 
sidered. The total thickness of plate (h,, hz, 5, 
etc., are the individual thicknesses in the case of a 
layered plate) is assumed to be h; a and b are assumed 
to be the length and width of the plate. The compo 
nents of displacements are taken as follows (see 
Fig. 1): 

u(x, Y% .G 0 = ua(x, Y* tf + 44% Y, t) + ~YXJc, Y, t) 

4x, Y, 2, t) = %c$, Y, 0 + z3/,@, Y, 0 + zv,.cxt Y* t) 

w(x, Y, 2, t) = WdX~Y, t). (2) 
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(1,2 ,3 I - LAHINA REFERENCE AXES 

LAMINATE MID-PLANE 

1 x,y, 7. I - LAHINATE REFERENCE AXES 

Fig. 1. Laminate geometry with positive set of lamina/laminatc reference axes, displacement components 
and fibre orientation. 

In these equations, 24, V, w are the displacement 
components of a generic point in plate space in 
the x-, y-, z-directions, respectively; uc,, u,, are the 
in-plane (stretching) displacements of a point lying in 
the middle plane, and JI, and Jly are the normal 
rotations about the y and x axes respectively. 
The higher-order terms $: and tj,’ account for the 
flexural mode of deformation in the Taylor series 
expansion and are also defined at the midplane. 

The strain-displacement relations, using the above 
displacement forms, may be written as 

ah a+ ___lfZ3~ “=aySz ay ay 

Ez = 0 

yyr= &+f$ +z'(3$,+) ( > 
Yxr = ll,+~ +zw3. ( ) 

Owing to the existence of a plane of elastic symmetry, 
the constitutive relations for any layer in the (x, y) 
system are of the form 



where 
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Q,, = Cuc4 + 2(Cu + 2C3Jszc2 + C,s’ 

Q,, = (C,, + C,, - 4C33)szc2 + C&s’ + c4) 

Q, = Cl,s4 + 2(C,, + 2C3,)s2c2 + C22c4 

Q13 = (Cl1 - G2 - Gh3 

+ (Cl2 - c, + 2C&3c 

Q23 = (cl1 - c,2 - %,b’C 

+ (cl2 - c22 + 2c33)SC3 

Q,, = (C,, + C,, - 2C,2 - 2Cjg)S2c2 

+ C&s4 + c4) 

Qe( = C,c2 + Cs$ 

Cl, = 
El 

1; 

c,, = -25; E2 

1 - v12v21 
c22 = 

icy2j 

C 33 = G2; C,., = G,,; C,, = G13. (4c) 

We have the following definitions for stress-resultant 
expressions appropriate to the present shear deforma- 
tion theory: 

=:,r+’ z (1,.7,z3)dz @a) = ‘ 

[I ZXY 

Q45 = (G, - G&C 

Qss = C,s2 + Cssc2, 

Substituting eqns (4) in eqns (5) and integrating with 

(4b) 
respect to z we obtain the stress-resultants expressed 
in terms of seven generalized displacements as 

Qdfl Q22fh Q13ffl Q11~72 Q12H2 Q13H2 Q11H4 Q12H4 Q13ff4 

Q22F Q23H1 Q12ff2 Q22H2 Q23H2 Q12H4 Q22H4 Q23H4 

QssH1 Q13H2 Q23H2 Q33H2 Ql3H4 Q23H4 Q33H4 

QllH3 QlzH3 Ql3H3 QllHs Ql2Hs Ql3fh 

QzzH3 Q23H3 Ql2Hs Q22K Q23H5 

SYMMETRIC Q& Q&s Q23Hs Q& 

QJ4 QJ-4 Q,& 

Q& Q& 

(6b) 

L Qy+ ] L SYMMETRIC Q&1 L 3ti: ] 

cw 321SM 
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In the above relations, q is the number of layers and 

Hi=f thi_+l -hi), i = 1,2,3,4,5,7. (W 

ELEMENT STIFFNESS MATRIX 

In the present paper, the element under consider- 
ation is a nine-noded Lagrangian quadrilateral iso- 
parametric element. At any point, the ~ntinu~ 
displacement vector within the element is discretized 
such that 

(7a) 

where Ni is the shape function associated with node 
i, NN is the number of nodes in an element, and 

ai= I%, uoi, w ti 011 XI 9 $ lift +$ll’* Y ’ (7b) 

The generalized strain 5 at any point within an 
element can be expressed by the following relation- 
ship: 

(8a) 

where 

from a consistent mass matrix and is discussed else- 
where [20-U]. 

The mass M in eqn (1) is given by 

M = 
s 
NTmN d(Area), 

A 

where 

N=fN,,N,,N,,...,N,,l, 

L 

in which 

n tW+l 
(~,,~2,&)= c 

J 

(1, zz, Z?PL k 

L-l hr 

where pL is the material density of the Lth layer; Z,, I2 
and ZJ are normal inertia, rotary inertia and higher- 
order inertia terms respectively. 

ii= 
[ 

ah au, au0 au, a+, 

32~‘~ + ad ax 
- -9 W 

Elements of non-zero terms of strain~spla~ment 
matrix B are given below: 

NUMERICAL EXAMPLES AND DISCUSSIONS 

B,>] = B,*, = Bde4 = B,<, = B,,6 = B9,, = Blo,, = $ 

B 10.4 = BI 1.5 = 4 

B 2,2 = B,., = 4, = Be,4 = 4.~ 4.6 = 4,~ = aNi 
ay 

B 12,6 = B,,., = 3N,. (8c) 

Upon evaluating the D and B1 matrices as given by 
eqns (6) and (8) respectively, the element stiffness 
matrix c-an be readily computed using the standard 
relation 

For the numerical computations, two computer 
programs were developed: PHOST7-Program for 
Higher Order Shear deformation Theory, with seven 
degrees of freedom per node; and PFOST5- 
Program for First Order Shear deformation Theory, 
with five degrees of freedom per node (i.e. Mind~in- 
Reissner theory). The selective integration scheme 
based on Gauss-quadrature rules, viz. 3 x 3 for 
membrane, coupling, flexure and inertia terms and 
2 x 2 for shear terms, was employed. For all the 
numerical examples, a full plate is discretized with 
4 x 4 mesh of the nine-m&d Lagrangian quadri- 
lateral elements. All the computations were carried 
out on CYBER 180/840 computer in single precision. 
The following material properties are used in the 
examples. 

11 
K;= 

ss 
BTDB,j Jldt de, (9) 

-1 -1 
Material 1: Dimensionless material property (typical 
of grap~te/e~xy) 

where J is the Jacobian matrix. 

ELEMENT MASS MATRIX 
E1 40 -= ) 
E2 

2 =c 2 = 0.6, %=O.S, vl,=0.25. 
2 

A diagonal mass matrix is more sophisticated The values of Ez and p are arbitrary because of the 
than a lumped mass matrix as used here. It is derived non-~rne~io~~~tion used (set to unity here). 
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Material 2: Face-sheets (graphite/epoxy prepreg 
system): 

E, = 1.308 x 10’ N/cm*, Ez = 1.06 x lo6 N/cm2 

G12 = ‘5s = 6.0 x 10s N/cm2, G23 = 3.9 x 10s N/cm2 

p = 1.58 x lo-‘N-sec+m’, v12 = 0.28 

thickness of each top stiff layer = 0.025h 
thickness of each bottom stiff layer = 0.01825 h. 

Core (U.S. commercial aluminium honeycomb l/4- 
inch cell size, 0.003-in. foil): 

G 23 = 1.772 x 10’ N/cm’, G,, = 5.206 x 10” N/cm2 

p = 1.009 x 1O-6 N-sec2/cm4 

thickness of core = 0.6 h. 

The boundary conditions used for the simply sup- 
ported and clamped plates are as follows: 

1. (a) Cross-ply boundary conditions (WSS 1) 

u0=w,=6,=tI~=0 atx=O,a 

~=w0=6,=6:=0 aty=O,b. 

(b) Angle-ply boundary conditions (WSSZ) 

,=w,=e,=epo atx=O,a 

uo = w, =eXEe: -0 aty -0,b. 

2. Clamped plate (WCC) 

u, = 0, = w, =e,=e,=e; = e,+ = 0 on all edges. 

The results presented in Tables l-4 pertain to 
material 1. The effects of orthotropy, number of 
layers and the coupling between bending and stretch- 
ing of the skew-symmetric laminate on the funda- 
mental frequencies are shown in Table 1. The ratio of 
El/E2 was varied between 3 and 40 and number of 
layers varied between two and 10. The predictions in 
Table 1 are compared with those obtained by 3D 
elasticity theory [I. The present results are very close 
to 3D-elasticity solutions. It was also found that for 
skew-symmetrically laminated plates, as the number 
of layers increased from two to four, the accuracy of 
the CPT sharply deteriorated. Further increase of the 
number of layers does not have a significant effect on 
the accuracy. The error in the CPT predictions is 
mainly attributed to the neglect of shear deformation. 
This is demonstrated by the fact that the error in 
the predictions of present theory did not exceed 
2.5% (even for the case of a highly orthotropic thick 
plate with EJE2=40,a/h = 5). It is seen that the 
fundamental frequency increases with the increase 
in number of layers and/or increase of degree of 
orthotropy. 

Two problems are further considered with 
material 1: (1) a two-layer, equal thickness, anti- 
symmetric angle-ply (45”/ - 45”) square plate, (2) an 
eight-layer, equal thickness, antisymmetric angle-ply 
(45”/ - 45”/45” . . .) square plate. The smallest circu- 
lar frequencies as a function of plate side-to-thickness 
ratios are tabulated in Table 2. The CPT solution is 
obtained with the rotary inertia terms included. It 
is found that the results of the present higher-order 

Table 1. Effect of degree of orthotropy of individual layers on the fundamental frquency of simply supported 
square. multilayered composite plates with u/h = 5; ci = o~@h~/E&‘/~, material 1 (WSSI) 

WE2 
No. of 

source layers 3 10 20 30 40 

30 elasticity theory [7j 2 0.2503 1 0.27938 0.30698 0.32705 0.34250 
Present 0.24909 0.27981 0.31252 0.33414 0.35138 

(-0.48) (+0.15) (f1.80) (+2.16) (+2.59) 
CPT 0.27082 0.30968 0.35422 0.39335 0.42884 

(+8.19) (+ 10.84) (+ 15.38) (+20.27) (+25.21) 
0.32578 0.37622 0.40660 0.427 19 3D&tidy theory [7] 

CPT 

4 0.26182 
0.26055 

(-0.48) 
0.28676 

0.32870 0.38014 0.41247 0.43786 
+ 0.89) (+1.04) (+ 1.44) (+2.49) 

0.38877 0.49907 0.58900 0.66690 
(19.33) (+ 32.65) (+44.86) (+56.11) (+9.52) 

3DclaGty theory [7j 6 0.26440 
0.26275 

(-0.62) 
CPT 0.28966 ___. 

( + 1.16) (+ 1.07) (+ 1.73) (+2.21) 
0.40215 0.52234 0.61963 0.70359 

(+9x) (+ 19.48) (+32.71) (+44.83) ( + 56.03) 
3D elasticity theory [7J 10 0.26583 0.34250 0.40337 0.44011 0.46498 
Present 0.26389 0.34142 0.40377 0.44178 0.46771 

(-0.72) (-0.31) (+0.09) (+0.37) (+0.58) 
CFT 0.29115 0.40888 0.53397 0.63489 0.72184 

(+9.52) (+ 19.38) (+32.37) (+44.25) (+ 55.24) 

Values in parenthesis give percentage errors with respect to the elasticity solution [7]. 

0.3j657 0.39359 0.42783 0.45091 
0.33712 0.39784 0.43526 0.46090 
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Table 2. Non-dimensionahzed fundamental frequencies, @ = (oa2/h),/@/E2) of simply supported 
anti-symmetric angle-ply square plates (WSS2), material 1 

[45/-451 [45/-451 . . . . . . . . . . . . . ] S-layer 

Closed form Closed form 
a/h Present HOST solution 1171 CPT Present HOST solution [ 171 CPT 

5 10.692 
(-1.36) 

10 13.207 
(-0.42) 

20 14.228 
(-0.12) 

50 14.568 
( - 0.027) 

100 14.619 
(-0.013) 

IO.840 13.885 
(+28.09) 

13.263 14.439 
(+8.86) 

14.246 14.587 
(12.39) 

14.572 14.630 
(+0.39) 

14.621 14.636 

12.967 
(-0.038) 

19.274 
(-0,041) 

23.236 

(%? 
(-0:016) 

25.173 
(+0.102) (-0.004) 

12.972 15.708 
(+21x@) 

19.266 25.052 
(30.03) 

23.239 25.212 
(+8.49) 

24.905 25.258 
(l-1.41) 

25.174 25.264 
(+0.35) 

Values in brackets give percentage errors with respect to the closed form solution [lg. 

Table 3. ~rnen~onl~ fun~men~l frequencies, (It = ~2~~~*h2~“2, for various lon~tud~ and transverse 
wave numbers (m and n) of a simply supported square plate; a/h = 10, material 1 stacking sequence: 

45/- 45/45/- 45, WSS2 

Reddy [12] 

Half-plate Half-plate Half-plate Classical 
Present Present Bert and 2x2 2x2 4x2 plate 

111 n HOST FOST Chen 1101 NDF=5 NDF-3 NDF=3 theory _ _ 
I 1 18.32 18.45 18.46 18.259 19.244 19.153 23.53 
1 2 34.54 34.54 34.87 
2 2 49.71 49.99 50.52 
1 3 53.63 53.87 54.27 
2 3 65.02 65.08 67.17 
1 4 75.65 75.25 75.28 
3 3 83.14 81.99 82.84 
2 4 86.75 85.05 85.27 
1 5 99.45 98.46 97.56 
3 4 100.88 99.45 99.02 

35.585 36.512 
- 

- 54.367 55.727 
70.315 70.895 
79.315 79.882 
99.597 lOo.012 

- 

- 108.665 109.792 
- 182.255 

35.405 
- 

55.390 
67.637 
76.412 
84.725 

105.057 
109.292 

53.74 
94.11 
98.87 

147.65 
160.35 
211.75 
214.97 
238.72 
288.76 

2 5 103.28 100.22 104.95 - 226.432 116.385 297.30 

shear~efo~ation theory (HOST) are in excellent 
agreement with the closed form solution (CFS) 
[17]. It is obvious that the CRT overestimates the 
frequencies. 

A comparison of the effects of both the longi- 
tudinal and transverse wave numbers (m and n) on 

Table 4. Effects of plate aspect ratio (a/b), lamination angle 
and length-to-thickness ratio (a/h) on the dimension- 
less fundamental frequency, 03 = w @h2/Et)‘/2 x 10, of a 
simply supported rectangular plate (material 1) of stacking 

sequence (e/-e/e/-e) 

a alb 

i; 8” 0.5 1.0 2.0 4.0 

{ 
30 3.7448 4.8554 7.5261 15.3144 

5 45 3.4594 5.0178 8.5404 17.0529 
60 2.9357 4.8554 8.9875 11.6581 

30 1.2829 1.7513 2.9357 6.1819 
10 { 45 1.1501 1.8326 3.4594 7.5371 

60 0.9376 1.7513 3.7448 5.9289 

-I 
30 0.3646 0.5165 0.9376 2.1461 

20 45 0.3213 0.5450 1.1501 2.8785 
60 0.2563 0.5165 1.2829 2.9793 

0.0609 0.0877 0.1660 0.4121 
0.0533 0.0928 0.2088 0.5962 
0.0422 0.0877 0.2376 0.7621 

the associated frequencies, as predicted by the present 
HOST and FOST with the CFS [lo] and finite ele- 
ment results using FOST [12] and CRT, is made in 
Table 3. Just as in the cases of isotropic plates and 
cross-ply plates [24], it is seen that the difference 
between the predictions of the present theories 
(HOST and FOST) and CRT increases with increas- 
ing m .and n. Results of the present HOST and FOST 
are very close to CFS[lO], whereas FOST finite 
element results using an eight-noded serendipity 
element given by Reddy [12] are far away from the 
CFS [IO]. This could be due to analysing angle-ply 
laminate by discretizing quarter- and/or half-plates. 
It should be noted that no mirror image of the 
cross-sectional plane of symmetry exists for angle-ply 
laminates and thus a full plate should be discretized 
for the analysis. 

To facilitate extrapolation to aspect ratio (a/b) 
other than one or infinity, Table 4 presents dimen- 
sionless frequency as a function of ajb for various 
values of a/k and lamination angle. It is observed 
from the table that the fundamental frequencies 
decrease with the increase in lamination angle for 
a/b = 0.5, and for a/b = 2.0 frequencies increase with 
the increase in the lamination angle. As the a/h ratio 
increases, the f~d~ental frequency decreases. 
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In the fast example, thick and thin composite- 
sandwich plates (material 2) were analysed using 
present HOST and FOST for two different boundary 
conditions: simply supported and clamped. It is seen 
from Table 5 that for a thick plate (u/h = lo), the 
difference between the predictions of the two theories 
(HOST and FOST) increases with increasing mode 
numbers. The effect of shear modulii G,, and G,, of 
stiff layers are more pronounced in thicker plates 
than for thin plates. 

CONCLUSION 

A refined higher-order theory with simple Co finite 
element formulation for the vibration of anisotropic 
laminates is presented. This model can take into 
account any lamina material properties. The predic- 
tions of anisotropic laminated plate behaviour are in 
good agreement with 3D elasticity solutions and 
closed form solutions of a higher-order theory. The 
effects of plate aspect ratio on the fundamental 
frequencies and transverse shear moduli of stiff layers 
on the natural frequencies are more pronounced in 
thicker plates than in thin plates. The errors in CFT 
and FOST as compared with HOST increase very 
severely with an increase in either the lon~tudinal or 
the transverse wave numbers. The present theory 
does not require any shear correction coefficients and 
the results reaffirm that the effects of anisotropy, 
transverse shear deformation, thickness and plate 
aspect ratio play an important role in the free vibra- 
tion frequencies of anisotropic laminates. 
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