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Abstract-A higher-order displacement model for the behaviour of symmetric and unsymmetric laminated 
composite and sandwich cylindrical shells based on Co finite element discretization is presented. Two 
theories, namely, (1) Geometrically Thin Shell Theory, based on the assumption that the ratio of the shell 
thickness to radius (h/R) is less than unity, and (2) Geometrically Thick Shell Theory, in which (h/R)’ 4 1, 
are developed. These theories incorporate a more realistic non-linear variation of longitudinal displace- 
ments through the shell thickness and thus eliminate the use of shear correction coefficients. The influence 
of (h/R) for a thick shell is studied and the results are compared with those of geometrically thin shell 
theory and other available results. 

INTRODUCTION 

A shell of revolution is an important structural 
component in all industrial applications, especially 
those relating to nuclear, aerospace and petro- 
chemical engineering. The multilayered composites 
are important structural materials in weight sensitive 
aerospace applications, where high strength-to- 
weight and stiffness-to-weight ratios are desired. Such 
composites, idealized as orthotropic lamina, are 
bonded together to form a laminate and are used as 
structural components. 

The finite element formulation provides a con- 
venient method of solution for such laminated 
composites having complex geometry, arbitrary 
loadings and boundary conditions. 

Any two-dimensional shell theory is an approxi- 
mation of real three-dimensional elasticity problems. 
The solution of problems in three-dimensional theory 
of elasticity involves vast complications, which are 
overcome only in a few special cases. 

In a shell theory the three-dimensional system is 
reduced to a two-dimensional one by deploying a set 
of simplifying assumptions. The classical Love’s thin 
shell theory is based on Kirchhoff’s hypothesis. It 
assumes the laminae to be in the state of plane stress 
and neglects the effects of transverse shears and 
normal strain in the thickness direction. The first thin 
shell theory for laminated orthotropic material was 
developed by Ambartsumyan [l]. This author as- 
sumed that the individual orthotropic layers were 
oriented such that the principal axes of material 
symmetry coincided with that of the principal co- 
ordinates of the shell reference surface. This theory 

t To whom all correspondence should be addressed. 

also incorporates the bending-stretching coupling 
due to unsymmetric lamination in composites. Dong 
and Taylor [2] presented an extension of Donnell’s 
shallow shell theory to thin laminated shells. These 
theories are based on the Kirchhoff-Love hypothesis 
in which transverse shear deformation is neglected. 

In the case of composite shells, which are generally 
identified in practice as (i) ‘Fibre Reinforced Shells’, 
in which layers of composite material with high ratio 
of Young’s to shear modulli are bonded together, and 
(ii) ‘Sandwich Shells’, in which layers of isotropic 
material with some layers having significantly lower 
elastic moduli than others are bonded together, the 
effects of transverse shear deformation are significant 
and thus Love’s theory is inadequate. 

In recent years, an attempt has been made to do 
away with one or more of the foregoing Kirchhoff 
assumptions. This is to establish a more rigorous base 
for the numerical analysis of a wide spectrum of shell 
problems. Dong and Tso [3] were perhaps the first to 
present a first-order shear-deformation theory, which 
included the effect of transverse shear deformation 
through the shell thickness, and then to construct a 
laminated orthotropic shell theory. The theory is only 
applicable, however, to cylindrical shells in which 
the orthotropic axes of each layer coincide with 
the reference axes of the shell surface. This theory 
can be regarded as an extension of Love’s first- 
approximation theory for homogeneous isotropic 
shells. Another refined theory for laminated aniso- 
tropic cylindrical shells was presented by Whitney 
and Sun [4], who derived a set of governing equations 
and boundary conditions which included both 
transverse shear deformation and transverse normal 
strain. Widera and Chung [5] derived a first- 
approximation theory for the unsymmetric defor- 
mation of a non-homogeneous anisotropic cylindrical 
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shell through asymptotic integration of elasticity HIGHER-ORDER THEORIES FOR COMPOSITE 

equations. LAMINATES 

The second-order transverse shear deformation 
effects have been included by Kant [6], who has 
developed governing equilibrium equations for a 
thick shell theory. The theory is based on a three-term 
Taylor series expansion of the displacement vector 
and generalized Hooke’s law, which is applicable to 
orthotropic material having planes of symmetry coin- 
cident with the orthogonal reference flame and also 
for a system comprising layers of different materials. 
Bhimaraddi [7] has presented a higher-order theory 
for a cylindrical shell, using assumed displacement 
form which results in parabolic variation for trans- 
verse shear strains and also satisfies shear-free surface 
boundary conditions, by introducing a function i(z) 
in the displacement expression, whose first derivative 
vanishes at the extreme fibres. In another paper, 
Bhimaraddi and Stevens [8] have given a procedure 
for developing the governing equilibrium equations 
for a cylindrical shell using a vectorial approach in a 
correct and consistent manner. In this paper a few 
other alternative forms for c-function have been 
given. Rogers and Knight ]9] have formulated a linear 
higher-order finite element which uses a single high 
displacement order finite element to mode1 through 
thickness of an axisymmetric composite structure. 
The displacement order for the inplane directions 
remains linear while through thickness, a higher order 
is used. This is achieved by increasing the number of 
nodes along the thickness direction. Numerical inte- 
gration for stiffness is evaluated with respect to the 
varying material property and laminate thickness in 
each individual element. Murthy and Reddy [ 101 have 
proposed a higher-order theory for the analysis of 
composite cylindrical shells, by expanding the dis- 
placement variables in the form of power series and 
retaining a finite number of terms. The formulation 
allows for arbitrary variation of inplane displace- 
ment. However, all the above works are based on C’ 
continuity. 

The development of the present theory is based on 
the following displacement model: 

u.=u +ze~+z%:+z%*, (i= l,2) I , I 

v, = u, (1) 

in which the functions Vi (i = 1,3) are defined in 
space at a distance z with reference to a curvihnear 
surface. The mid-surface of the shell is treated as this 
reference surface. The remaining functions (IQ, u2, uj) 
and (f?, , 0,) are the reference surface displacement 
components and rotations respectively, whereas UT 
and @,* (i = 1,2) are the corresponding higher-order 
terms of the Taylor’s series expansion [6] and are 
defined at the reference surface only. These are 
two-dimensional quantities. Equation (1) contains 
the minimum number of terms to include the effects 
of transverse shear deformation with warping of the 
transverse normal cross-section. Thus the generalized 
displacement vector 6” of the reference surface in the 
she11 coordinates consists of 

SS=(U,,U*,Uj,e,,s,,u:,u:,BT,e:)‘. (2) 

By substituting eqn (1) into the strain-displace- 
ment equations (see Kraus [I I], Kant [6]f and reducing 
it for a cylindrical shell, the physical strain compo- 
nents are derived. In the present work, two theories 
have been developed: (1) a Geometrically Thin 
Shell Theory, in which the ratio of the thickness to 
radius of curvature is negligible compared to unity, 
i.e. h/R e 1 and (2) a Geo~etricaif3~ Thick Shell 
Theory, in which the square of the ratio is negligible 
as compared to unity, i.e. (h/R)’ 4 1, where h and R 
are thickness and radius respectively. The strain 
components, thus, for the two theories are given as 
fol1ows. 

Geometrically thin shell: 
In first-order shear defo~ation theory we assume 

a constant shear rotation through the shell thickness 
and this requires the use of a shear correction co- 
efficient whose accurate prediction for an anisotropic 
laminated shell is cumbersome and problem depen- 
dent. In addition, this theory does not include the 
effect of cross-sectional warping which is very essen- 
tial in the case of thick sandwich shells, which are 
generally composed of a middle weak core sand- 
wiched between stiff facings, and hence a refined 
theory, which considers more realistic parabolic vari- 
ations of transverse shear stresses through the thick- 
ness and warping of the transverse cross-section, is 
found essential. Thus a Co finite element formulation 
based on a higher-order displacement model and 
including the effect of transverse shear deformations, 
which is suitable for the analysis of thin/moderately 
thick anisotropic laminated cylindrical shells under 
any arbitrary loadings, is developed here. 

e? = (ci + ZK, + 2%: + z’rci*), (i = 1,2) 

ri* = (CIZ + ZK,2 + z%& + z3rc(3:2) 

~~f3=(#i+Z~i+z2~~), (i = 1,2). (3a) 

The 18 new functions appearing in eqn (3a) form the 
generalized strain vector F of the reference surface 
and are related to the generalized displacement vector 
6” by the following matrix relation: 



Higher-order theories for composite and sandwich cylindrical shells with Co finite element 1193 

and c is a differential operator matrix of size 18 x 9 
and its non-zero elements for a cylindrical shell are 
obtained by substituting eqn (1) in the strain- 
displacement equation (refer to Appendix A). 

Similarly for a geometrically thick shell: 

Ei = (t, + ZK, + Z*C: + Z3KT)/(1 + Z/R) 

tj = (62 + ZK2 + Z*C: + Z3K;) 

Y72 = (t,2 + ZKl2 + Z 612 + Z3K;“2)/(1 + Z/R) 
2 * 

+ (Q, + ZK21 + Z*C,*, + Z3K;,) 

Yi3=(4,+Z$,+z24:+z3$:). (44 

The 23 new functions appearing in eqn (4a) form the 
generalized strain vector E of the reference surface 
and are related to the generalized displacement vector 
6” by the following matrix relation: 

Z=FSS (4b) 

in which 

KI, K2, KIZ, KZI, KI , * K:, K:2, K:,, 

~*,~,,~:,~:.~*,~lr~:) (44 

and F”, like c, is a differential operator matrix of size 
23 x 9 for a geometrically thick shell theory and its 
non-zero elements for a cylindrical shell are obtained 
by substituting eqn (1) in the strain-displacement 
equation (refer to Appendix A). 

The stress-strain relationship for the Lth layer 
(lamina) of the composite has the following form. 

This is written in a compact form as 

a = QL (sb) 

where u and t are the stresses and the strains with 
respect to the cylindrical axes as shown in Fig. 1. The 
stiffness matrix Q with respect to shell coordinates is 
obtained by transforming the stiffness matrix Q in the 

(1’,2’,3’) - Lamina reference axes 

(1 ,2,3 ) - Laminate reference axes 

Fig. 1. Laminate geometry with positive set 
laminate axis, displacement components 

orientation. 

of lamina/ 
and fibre 

principal material coordinates (I’-2’-3’) to shell co- 
ordinates (l-2-3) using coordinate transformation 
matrix [12]. This is given by the relation 

Q = [T-‘][C][T-‘I’. (5c) 

The elements of matrices C and Q are defined in 
Appendix B. 

The total potential energy 7c of the system could be 
written as 

By introducing the stress resultants and couples, 
which are obtained by integrating the physical stress 
components through the shell thickness in eqn (6a), 
defined per unit arc length of the reference surface of 
the shell, the potential energy of the system can be 
written as 

The components of the stress resultant vector Cs are 
as follows for geometrically thin and thick shell 
theories. 

Geometrically thin shell (h/R Q 1): 
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(W 

Geometrically thick shell [(h/R)2 Q 1]: 

1% N:l 

N2 N: I I N,, Ni% 

1 N,, NT, j 

b2 
X [a, z3 

r12 
r71 

Idz 

r,,Az dz 

s hr +I 

tn[z, z.‘] dz, (7b) 
L=l kr 

where A = (1 + z/R) and NL is the number of layers. 
Thus by substituting eqn (5) in eqns (7a, b), for 

geometrically thin shell and thick shell theories re- 
spectively, and using eqns (3b) and (4b), we get the 
constitutive relationship for the shell, which is as 
follows. 

N 
&I DC 0 

CO 

N" 6s 
___- ___*s.___--_-- “-- 

M KO 
= 0: DB 0 @a) 

M* Kg* 
__-- ___*___*_____ --- 
Q 40 

0 0 Ds 
Q* cpo* 

or 

(8b) 

in which 

N = (N, > N2, NJ; N* = (N:, N;, N:;) 

M=(M,,M2,M12)1; M*=(M;,M:,M$) 

Q = (Q,> PI)‘; Q*=(Q:,Q:,S>&) 

Gl=(~,7~2r~iZY; *- 
60 -(~?,~:,~:2)’ 

KO=tK,,K?,Kl?)t; K$=(K:,K:,K:2) 

40 = (92 144 )‘; 40*=(42*,4:?ti23ti,)’ 

(84 

for geometrically thin shell theory, and 

N = tN,> N2, N,,, N,,)‘; N* = (N:,N;,N;",,N,*,)' 

M = (M,, M,, M,,, M,,)'; 

M*=(M~,~~,M~*,M~~ 

Q=(QzrQ,K Q*=(Q2*,Q:,%,S,rS:) 

~o=(~,r~2,E,*r~2,)‘; ~o*=(t:,~:,C:2,t:,)l 

Kg=(KirK2,KmK21)f; “$=(K:,K:,K:?,K:i) 

40 = (#J21&)‘; cPo*=(dG,+:.$*?)I/r,ti:)’ 

for geometrically thick shell theory. The 
sub-matrices of the rigidity matrix D are 

Qrmembrane rigidity matrix 

individual 

Qcmembrane-flexure coupling matrix 

QB--flexure rigidity matrix 

&--shear rigidity matrix. 

The elements in each of the above mentioned sub- 
matrices are defined in Appendix C and Appendix D, 
for the geometrically thin and thick shell theories 
respectively. 

FINITE ELEMENT DISCRETIZATION 

We follow the standard finite element discreti- 
zation procedure in which the total domain fz is 
subdivided into NE sub-domains or elements such 
that the total potential energy of the system can be 
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expressed in terms of the potential energies of the 
elements given by the expression 

IT(s) = F Ilysq (9) 
c= I 

where II and I’I’ are the potential energies of the 
system and the element respectively. We further have 

I-P(P) = U’ - W’ (10) 

in which U’ and WV are the internal strain energy and 
the external work done respectively. Thus the total 
potential energy of the system can be written as 
follows. 

It can be seen that the potential energy given by the 
above expression contains only the first derivatives of 
the elements in 6” and thus only Co continuity is 
required for the shape functions to be used in the 
element formulations. In the Co finite element theory, 
the continuum displacement vector within the 
element is discretized such that 

(12) 

where hJ,(B, X) is the interpolating or shape functions 
associated with node i, Sf is the displacement vector 
corresponding to node i, and NN is the number of 
nodes per element. Equation (11) ensures that the 
displacement vector S” is not only continuous within 
the element but over the entire domain since the same 
value of 6” is used for all the elements at the common 
nodes. Thus Co formulation makes the relation (9) a 
true one. For more details, reference may be made to 
Zienkiewicz [13J, Cook [14], Chaudhary [15], Kant 
et al. [16], Kant [17], etc. 

To avoid membrane/shear locking, a phenomenon 
quite well-known with Co formulations of shear- 
deformation theory, the contributions to the stiffness 
terms are evaluated in parts-membrane, flexure and 
shear. The contribution of the individuals to the 
stiffness terms are evaluated using the selective inte- 
gration technique. There exists an extensive literature 
on this selective integration technique (see e.g. Kant 
and Kulkarni [ 181, Malkus and Hughes 1191). 

In the present work, a four-noded bilinear and 
a nine-noded quadrilateral element from the 
Langragian family and an eight-noded quadrilateral 
element from the Serendipity family have been used 
along with isoparametric formulation. 

NUMERICAL EXAMPLES 

A computer programme incorporating existing 
higher-order theories is developed for the analysis of 

composite cylindrical shells. Unless stated otherwise, 
in all numerical examples, a quarter shell is dis- 
cretized with two or three elements in the circumfer- 
ential direction and eight elements in the meridional 
direction. In the case of cylindrical tanks with the 
same boundary conditions at the opposite ends, only 
half of the tank is considered for the discretization. 
The selective integration scheme, namely 3 x 3 x 2, 
has been employed for the contributions of mem- 
brane, flexure and shear to the element stiffness. The 
displacements and the stress-resultants are presented 
in non-dimensional form using the multiplier as 
defined in the respective examples such that 

Non-dimensional radial displacement 
= m, x actual displacement 

Non-dimensional circumferential force 
= m, x actual circumferential force 

Non-dimensional meridional moments 
= m, x actual meridional moment 

Non-dimensional circumferential moments 
= m, x actual circumferential moment 

Non-dimensional transverse shear 
= m, x actual transverse shear. 

Example 1 

An isotropic cylindrical shell, fixed at the ends and 
subjected to uniform internal pressure (PO) = 1 kg/ 
cm* is analysed for various radius-to-thickness ratios 
(R/t = 5, 10 and 20). The uniform pressure is 
assumed to be acting on the mid-surface in geo- 
metrically thin shell theory and on the inner surface 
in geometrically thick shell theory. The material 
properties are E = 2.1 x IO’ kg/cm* and p = 0.1. The 
length of the shell L = 800 cm and radius R = 200 cm 
[Fig. 5(a)]. The various non-dimensional multipliers 
are given as 

Eh 1 4 4 
m,=-’ m2=_. 

poR2 PER’ 
m3=-..--’ 

poRh’ 
ma=------. 

PpoRh 

Their variations along the length of the cylinder are 
shown in Figs 2(a-l), and are compared with values 
obtained by Kant [6]. 

Example 2 

A cantilever cylinder subjected to a uniform radial 
shear (P) = 1 lb/in. at the free end is considered. The 
material properties and size of the cylinder are as 
follows. E = 30 x lo6 lb/in’, p = 0.3, L = 25 in., 
R = 10 in. and the thickness h = 2.5 in. [Fig. 5(b)]. 
The non-dimensional values of the radial displace- 
ments and the stress resultants are calculated using 
the multipliers defined below. Their variations along 
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Fig. 2(a-h) 
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Fig. 2. (a) Variation of radial displacement along the length of the cylinder, for R/h = 20, (b) for 
R/h = IO, (c) for R/h = 5. (d) Variation of circumferential force along the length of the cylinder, for 
R/h = 20, (e) for R/h = 5, (f) for R/h = 10. (g) Variation of meridional moments along the length of the 
cylinder, for R/h = 5, (h) for R/h = IO, (i) for R/h = 20. (i) Variation of circumferential moments along 

the length of the cylinder, for R/h = 5, (k) for R/h = IO, (1) for R/h = 20. 

the length are shown in Fig. 3(a-d). 

Eh$ii 
m,=T; 

4Jjij; 
m3=m; M =4@ 

4 
m’ 

Example 3 

A cylinder fixed at the ends, made up of ortho- 
tropic material subjected to an internal pressure 
p,, = 1 kg/cm2 is analysed [Fig. 5(a)]. The material 
properties and geometry of the shell are defined as 
follows [6]. 

c22 = 2.1 x IO5 kg/cm2 
C,, = 0.26293 1 x C,, kg/cm2 

C, , = 0.543 103 x C,, kg/cm2 
C, = 0.1599 14 x C,, kg/cm2 

C,r = 0.233190 x C,, kg/cm2 

C,, = 0.266810 x C,, kg/cm2 

L = 800 cm, R = 200 cm, 

thickness h = 40, 20 and 10 cm. 

The variations of non-dimensionalized radial dis- 
placement and stress resultant along the length of the 
shell have been presented in Fig. 4(a-I), using the 
multipliers defined below. The maximum values of 
these quantities are presented in Table I. 

E,,h 1 4 
ml=-’ 

poR2’ 
m,=-; 

P,R 
m)=-’ 

p&’ 

16 1 
m,=-; 

PoRh 
m,=-. 

P,fi 
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Distance from free end 

(b) 
2.8 I- 

Geometrically thin ahell theory 
Geometrically thlok shell theory 
with 8/9 node quadrilateral 

- Geometrically thin ahell theory 
A Geonwtrto~lty thick *hell theory 

with a/s node quadrilateral 
---- Ref. (61 

0 Ref. 1221 

Distance from free end 

Fig. 3. (a) Variation of radial displacement along the length of the cylinder. (b) Variation of circumfer- 
ential force along the length of the cylinder. (c) Variation of meridional moments along the length of the 

cylinder. (d) Variation of circumferential moments along the length of the cylinder. 

Example 4 

A fixed cylindrical shell made up of four-layered 1.25 x 10’ psi, G13 = 0.63 x lo6 psi = G,3 and P,~= 
angle-ply, (45”/ -45”/ -45”/45”) and (0°/90”/90”/oO), 0.25. The general shape of the tank is defined as 
of equal thickness and subjected to internal pressure L = 20 in., R = 20in. and h = 1.0 and 0.20in. 
of p,, = (6.41/n) psi is considered. The material [Fig. 5(a)]. 
properties of the fibres are given by [20], as fol- Table 2 gives the maximum value of the normal 
lows. E, = 7.5 x lo6 psi, E, = 2.0 x IO6 psi, G,,= displacement at the centre of the cylindrical shell. 

Table 1. Maximum values of displacement and stress resultants in Example 3 

Non-dimensional form of dependent variables 

R 

h 
Theories a3 x ml N, x ml M2 x m3 Ml x m4 Q2xmS 

5 

10 

20 

Geom. 
thin 

Geom. 
thick 

Ref. [6] 

Geom. 
thin 

Geom. 
thick 

Ref. (61 

Geom. 
thin 

Geom. 
thick 

Ref. [6] 

1.049 1.025 - 1.092 - 1.050 0.675 

0.947 0.925 - 1.020 - 0.960 0.602 
1.061 1.030 -1.2i6 -1.150 0.704 

0.998 I .032 -1.163 - 1.090 0.722 

1.049 0.980 - 1.095 - 1.070 0.682 
1.089 1.035 - 1.351 -1.200 0.750 

1.024 1.037 - 1.131 - 1.056 0.732 

1.049 1.013 -1.100 - 1.024 0.712 
1.086 1.035 - 1.430 -1.200 0.800 



Higher-order theories for composite and sandwich cylindrical shells with Co finite element 1199 

Geometrically thin rhell theory 
Geometrically thidc ehell theory 
with 84 node quadrilateral 
(R/h-5) 

I 
200 400 

Distance from fixed end 

- Geometrically thin eheil theory 
---- Geometrically thidc ehell theory 

with 5j3 node quadrilateral 
(R/h-10) 

I I 
200 

Distance from fixed end 

400 

1 

ii 
G-- 
c 27 
ii - 
C’ 

05 
‘f E 
(D 0 0.5 
E: ._ - 
uop 
& .m 
On 
z 

- Geometrically thin ahell theory 
---- Geometrically thick shell theory 

with a/s node quadrilateral 
(RI h=101 

- Geometrically thin rhell theory 
- - - - Geometrically thick l heli theory I , with 8/D node quadrilateral 

(RI h-20) 

I 

200 400 

Distence from fixed end 

I 
0 200 400 

Distance from fixed end 

Distence from fixed ends 

- Geometrically thin ehell theory 
- - - - Geometrically thick rhell theory 

with s/s node quadrilateral 
(Rl h-20) 

- Geometrically thin ahell theory 
---- G?ometrically thick ?hell theory 

;tFhyl;;de quadnlateral 

0 200 400 

Distance from fixed end 

(d) 
I (h) I 

--w--_ -_ 

- Geometrically thin l hell theory 
---- Geometricrlly thick ehell theory 

with 819 node quadrilateral 
(R/h-5) 

C 

-0.1 

-1 

Distance from fixed ends 

Geometrically thin ahell theory 
G?ometrically thick thell theory 
r;yhy55;0de quadnlateral 

Distance from fixed end 

Fig. 4(a-h) 



1200 T. KANT and M. P. MENON 

0) 

In 
\ 

- Geometrically thin ahell theory 
---- Geometrically thick ahell theory 

with s/9 node quadrilateral 
( R/ h40) 

Ii) 

‘-,_Dietance from fixed 
-----_____ 

- Geometrically thin shell theory 
---- Geometrically thickshell theory 

r;;;f55;0do quadrdateral 

ends 

(k) 

: Distance from fixed ends 

- Geometrically thin shell theory 
---- Geometrically thick ehell theory 

;Y;I:hNJ;;de quadrdateral 

E 
5 

5E o 
co ‘. _____-______-___ 

.g E ts Distance from fixed ends 

EZ .- 
u?! 
cc -05 
SE * 

- Geometrically thin ehell theory 
---- 

z 
Geometrically thick ehell theory 

.z 
y;tFhy2;;de quadrdateral 

-1 I-- 

Fig. 4(i-I) 

Fig. 4. (a) Variation of radial displacement along the length of the cylinder for R/h = 5, (b) for R/h = 10, 
(c) for R/h = 20. (d) Variation of circumferential force along the length of the cylinder for R/h = 5, (e) 
for R/h = 10, (f) for R/h = 20. (g) Variation of meridional moments along the length of the cylinder for 
R/h = 10, (h) for R/h = 5, (i) for R/h = 20. (j) Variation of circumferential moments along the length of 

the cylinder for R/h = 5, (k) for R/h = IO, (1) for R/h = 20. 

Because of symmetry of the layered shell, only a orientations considered are (-45”/45”); (45”/ -45”/ 

quarter of the shell was discretized. -45”/45”) and (O”/90”/90”/Oo). The material proper- 

Example 5 
ties and the geometry of the shell are the same as 
described in Example 4. The problem is solved for 

A 90” cylindrical shell clamped at all the edges and different thickness to radius ratios given as R/h = 20, 
subjected to a uniform pressure of p. = (6.41/x) psi 100 and 300, and for each different fibre orientation. 
is considered [Fig. 5(c)] [20]. The different fibre The maximum value of radial displacement at the 

Table 2. Radial displacements u, x (E, h/P,,R2) in Example 4 

Thin shell theory Thick shell theory Reference[ZO] 

R Fibre Nine- Eight- Four- Nine- Eight- Four- 4x4 6x6 
r, Angle noded noded noded noded noded noded mesh mesh 

20 (45”/ - 45” 2.21 2.21 1.94 2.16 2.16 1.89 2.20 2.21 
-45”/45”) 

100 (45”/ - 45” I .95 1.96 I .98 1.94 1.95 1.91 1.91 1.96 
-45”/45”) 

20 (0°/900 1.67 1.61 1.51 I .63 1.63 1.47 1.64 1.64 
9o”jO”) 

100 (P/90 1.55 1.55 1.59 1.55 1.55 1.58 1.55 1.55 
90”/0”) 
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Fig. 5. (a) Cylindrical shell, fixed at the ends and subjected to internal pressure. (b) Cantilever shell 
subjected to radial shear at free end. (c) 90” cylindrical shell clamped at all the edges and subjected to 
uniform pressure. (d) Cylindrical shell with free ends under a distributed line load around the central circle. 

(e) Shell discretization for Example 6. 

centre is given in Table 3. Because the problem is 
non-axisymmetric, the full shell is discretized to get 
the solution. 

Example 6 

A sandwich and layered circular cylindrical shell 
under uniformly distributed line loads of P = 14417 
lb/in. around a central circle is analysed [21]. The 
geometry is as follows: length L = 80 in., total thick- 
ness h = 2.4 in., radius R = 18 in. [Fig. 5(d)]. The 

shell is discretized as shown in Fig. 5(e). The material 
and cross-sectional properties are: (a) three layered 
sandwich, isotropic shell, thickness of facing 
t, = 0.2 in., thickness of core t,. = 2.0in., material 
constants E(= 10’ psi, G,= 3.846 x 106psi, p, = p[= 
0.25, EC = 10’ psi, G, = 3.846 x lo4 psi; (b) cross-ply 
shell (O”/900/O”), thickness of each layer = h/3 = 
0.8 in., material constants E, = 10’ psi, E2 = 4 x 
lo5 psi, Glz = 2 x 10’ psi, G,, = G,, 10.8 x lo5 psi; 
(c) cross-ply shell (90”/O”/90”) has the same properties 
as in (b). The results are shown in Table 4. 
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Table 3. Radial displacements u, x (E,h/P,R*) in Example 5 

Thin shell theory Thick shell theory Reference[ZO] 
R Fibre Nine- Eight- Four- Nine- Four- 4x4 6x6 
h 

Eight- 
Angle noded noded noded noded noded noded mesh mesh 

20 -45”/45” 3.51 2.71 1.76 3.42 2.70 1.71 2.68 2.68 
100 -45”/45” 2.12 2.05 1.63 2.10 2.04 1.63 1.52 1.64 
300 -45’145” 3.60 2.00 I .62 3.59 2.00 1.62 I .87 2.06 
20 (45”/ - 45” 3.53 2.75 1.77 3.44 2.68 1.72 2.68 2.67 

-45”/45”) 
100 (4501 - 45” 3.59 2.06 1.63 3.57 2.06 1.62 1.65 1.65 

-45”/45”) 
300 (45”/- 45” 3.60 2.01 1.62 3.59 2.00 1.62 1.91 2.03 

-45”/45”) 
20 (OD/90” 2.99 2.51 1.50 2.91 2.44 1.47 2.10 2.11 

90’/0°) 
100 (0”/90” 3.03 1.98 1.44 2.96 1.97 1.42 1.35 1.36 

SW/V) 
300 (0”/90” 3.04 1.90 1.43 3.03 1.90 1.43 1.63 1.61 

9WjV) 

Table 4. Maximum value of stresses and displacement in sandwich and cross-ply (Example 6) 

Shell 
Types Theories 

Eh,/% 

“’ POR2 
N, x df% h4* x lo 

PoR P&G 
M, x lo 

PPOJRh 
Remarks 

Sandwich 
isotropic 

Cross-ply 
(0°/90”/00) 

Geom. 
thin 

Geom. 
thick 

Ref. [21] 
Ref. [23] 
Geom. 

thin 
Geom. 

thick 
Ref. [21] 

Cross-ply 
(9O”/W/90”) 

Geom. 
thin 

Geom. 
thick 

Ref. I211 

5.610 1.040 1.552 

5.640 0.990 1.657 
7.122 1.206 1.526 
6.180 I.128 1.531 

3.010 2.009 0.726 

3.011 2.008 0.727 
2.802 1.534 1.044 

3.581 

3.596 
3.772 

1.199 I.441 -0.056 E = E2 

1.199 1.439 -0.063 
1.194 1.457 -0.095 

- 1.678 E = E, 

-0.580 
- 1.452 
- I.531 

-0.596 E = E, 

-0.681 
- 9.760 

CONCLUSIONS 

The results from a set of higher-order theories 
(geometrically thin shell and geometrically thick 
shell) for a composite and sandwich cylindrical shell 
subjected to different loadings and end conditions are 
presented. These theories do not require the usual 
shear correction coefficients. The results show excel- 
lent agreement with the other theories for thin to 
thick shells. In the case of axisymmetric isotropic, 
orthotropic, sandwich and cross-ply (symmetrically 
layered), under axisymmetric loadings, it is observed 
that eight-noded and nine-noded elements yield the 
same results. 

It is seen from the result shown in Figs 2-4 that 
both the theories discussed here give the same results 
in the thin limits and the value is one predicted by the 
classical Love theory of shells. 

The influence of (h/R) ratio in thick shells is quite 
pronounced. Consistently, the circumferential 
moment M, is the one most affected, while the 
meridional moment h4* is less affected. It is also 

observed that the displacements and membrane 
stresses for a thick shell do not vary much in these 
two theories. The slight variation is merely due to the 
assumption that the loadings act on the mid surface 
for geometrically thin shell theory and on the inner/ 
outer surface as the case may be for geometrically 
thick shell theory, which is actually so. 

The cross-ply shell shows a drastic redistribution of 
stresses in the shell due to the layering effect and 
anisotropy. The results in Table 4 show that the 
(0”/90”/0°) arrangement is definitely the more efficient 
one, compared to (90”/0’/90”). 

Thus the geometrically thick shell theory should be 
used for a more reliable and accurate analysis of both 
thick and thin shells, under any arbitrary loading and 
boundary conditions. 
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Qss _ 
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C,, = 
E,, v,.~ E2 E* 

1 -Y,+,.; 
c,2 = pp’ 

1 - Y,.z.v~,.’ C*, = 1 - v,.2.Y2.,. 

C,, = G,.,.; C, = G2.).; C,, = G,., 

and following the usual transformation rule of 
stresses/tensorial strains between the lamina (I’-2’-3’) and 
the laminate (I -2-3) coordinate systems, the elements of Q!, 
matrix are as follows: 

Q,, = c4C,, + s”C,, + 2. c2. s2(c,, + 2. c,,) 

Q,2 = cz s’(C,, + C,, - 4. C,,) + c,# + s4) 

Q,, = c3. s(C,, - C,, - 2 C,,) + c s3(c,, - c,, + 2 c,,) 

Q22 = s4C,, + c4C2, + 2 c2s2(C,, + 2. C,,) 

APPENDIX A 

The non-zero terms of strain displacement matrix c for 
a geometrically thin shell theory are given as follows. 

L,, = L,, = L,, = L,, = L,d = L,, = L,,., = L,,,g 

= L,,., = g 

L,, = L,, = L,, = Lti = L,, = L, = L,,,g = L,*,, 

= L,,,, = ; 

L,, = -L,,,, = ; ; L,,,, = L,,., = 1; L,,, = L16.8 = 3 

L 17.7 = LB.6 = 2. 

Similarly, the non-zero terms of strain-displacement 
matrix F” for a geometrically thick shell theory are given as 
follows. 

Fx = F4, = Fe, = FM = F,,, = F,,,, = Fu.9 = FIG 

= F,,,, = 5 ox 

F,, = -FM., = 40.6 = ;; Fm = FM = 1 

F,,,g = F2o.g = 3; Fz,., = F22.6 = 2; F23.8 = ;. 

APPENDIX B 
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Qs, = c . s)(C,, - C,r - 2. C,,) + s c’(C,, - Cz2 + 2. Cs3) 

Q,, = (s4 + c4)C,, + c’s*(C,, - 2 C,r + Cz2 - 2 . C,,) 

Q4 = c2C, + s2C,,; Q45 = c . s (C,, - C,) 

The elements of the DC matrix are obtained by replacing H,, 
H, and H, by Hz, H4 and H6 respectively in the Du matrix 
mentioned above. Similarly the Da matrix is obtained by 
replacing H,, H, and H, by H,, H5 and H, respectively in 
the D,,, matrix. 

Qs5 = s2C, + c2C,, 

where, if a is the angle between the fibre axis (1’) and 
APPENDIX D 

laminate axes (1) as shown in Fig. 1, then, c = cos G(, 
s = sin a, c2 = cos2 tl, s2 = sin2 a and so on. 

The elements of D matrix for the 
defined here as follows. If we set 

APPENDIXC 

The elements of D matrix for a geometrically thin shell 
theory are given here as follows. If we set 

H,=&+, 
i 

-4 

H;=(H,-K,H,+,) 

thick shell theory are 

H:=(H,+K.H,+,), whereK=k 

such that i takes an integer value between 1 and 7, then the and i takes an integer value between 1 and 8, then the 
sub-matrix can be readily obtained in the following forms sub-matrix can be readily obtained in the following forms 
based on the geometrical assumption, (h/R) * I. based on the geometrical assumption, (h/R)* 4 I. 

H,Q,, H,Qn H,Q,, H,Q,, H,Qu 4Qu Lth layer 

Dw= f 
H,Q,, H,Q,, H,Qz H,Q,, 4Q2, 

H,Q,, H,Q,, H,Q,, f&Q,, 
L=l HsQ,, H,Q,, %Q,, 

f&Q22 fhQ2, 
Symmetric f&Q,, _ 

r 
H,Q+, H,Q,, H,Qw H,Qe 428~ %Qe Lth layer 

&= F 
ff,Q,, H,Qs H,Qs KQM 4Qs 

HsQH HsQe 4Qu fbQ45 
!.,=I H,Q,, BQu KQss 

H,Qu H,Q,s 
Symmetric H,Qs _ 

H;Q,, H,Qu H;Qu H,Qu H;Q,, 4Qu H;Q,, 
H: Q22 H, Q2, H: Q2, f&Q21 H: Q22 H,Q,, 

H; Q,, H, Q,, H, Q,, H, Q,2 H; Q,, 

K’Q,, f&Q,, H:Q,, H,Q,, 
H;Q,, f&Q,2 H;Q,, 

Symmetric I-G Q22 H, Q2, 

H; Q,, 

H: Q44 H, Q45 H: Q44 H, Q4, H: Q44 H2 Q4s H4 Q45 

Hr Qss ff,Qs4 HcQ,, H2Q9 H; Qss ff, Qs 

H: Q44 H, Q45 H: Q44 H4Q45 f&Q45 

H; Qs H4Qs4 Hc Qs H, Qs 

H: Q44 H, Q45 HsQ4, 

Symmetric H; Qss H;Q,, 
H;Q,, 

H3Qu Lth layer 

H: Q23 

H,Q,, 

H: Q,, 

HsQ,, 

W Q2, 

KQ,, 

H: Q,, _ 

Lth layer 

The elements of the D, matrix are obtained by replacing H, , 
H:, H;, H,, H:, H,, H,, Hz and H; by Hz, H:, H;, 
H4, H4+, H; , H6, H,C and H; respectively in the QM matrix 
mentioned above. Similarly Ds matrix is obtained by replac- 
ing H,, Hf , H;, H,, H:, H;, H,, H: and H; by ff3> 
H:, H,, H,, H:, H,, H,, HT and H; respectively in the 
I& matrix. 


