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Abstract—A higher-order displacement model for the behaviour of symmetric and unsymmetric laminated
composite and sandwich cylindrical shells based on C° finite element discretization is presented. Two
theories, namely, (1) Geometrically Thin Shell Theory, based on the assumption that the ratio of the shell
thickness to radius (k/R) is less than unity, and (2) Geometrically Thick Shell Theory, in which (#/R)’ < 1,
are developed. These theories incorporate a more realistic non-linear variation of longitudinal displace-
ments through the shell thickness and thus eliminate the use of shear correction coefficients. The influence
of (#/R) for a thick shell is studied and the results are compared with those of geometrically thin shell

theory and other available results.

INTRODUCTION

A shell of revolution is an important structural
component in all industrial applications, especially
those relating to nuclear, aerospace and petro-
chemical engineering. The multilayered composites
are important structural materials in weight sensitive
aerospace applications, where high strength-to-
weight and stiffness-to-weight ratios are desired. Such
composites, idealized as orthotropic lamina, are
bonded together to form a laminate and are used as
structural components.

The finite element formulation provides a con-
venient method of solution for such laminated
composites having complex geometry, arbitrary
loadings and boundary conditions.

Any two-dimensional shell theory is an approxi-
mation of real three-dimensional elasticity problems.
The solution of problems in three-dimensional theory
of elasticity involves vast complications, which are
overcome only in a few special cases.

In a shell theory the three-dimensional system is
reduced to a two-dimensional one by deploying a set
of simplifying assumptions. The classical Love’s thin
shell theory is based on Kirchhoff’s hypothesis. It
assumes the laminae to be in the state of plane stress
and neglects the effects of transverse shears and
normal strain in the thickness direction. The first thin
shell theory for laminated orthotropic material was
developed by Ambartsumyan [1]. This author as-
sumed that the individual orthotropic layers were
oriented such that the principal axes of material
symmetry coincided with that of the principal co-
ordinates of the shell reference surface. This theory
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also incorporates the bending-stretching coupling
due to unsymmetric lamination in composites. Dong
and Taylor [2] presented an extension of Donnell’s
shallow shell theory to thin laminated shells. These
theories are based on the Kirchhoff-Love hypothesis
in which transverse shear deformation is neglected.

In the case of composite shells, which are generally
identified in practice as (i) ‘Fibre Reinforced Shells’,
in which layers of composite material with high ratio
of Young’s to shear modulli are bonded together, and
(ii) ‘Sandwich Shells’, in which layers of isotropic
material with some layers having significantly lower
elastic moduli than others are bonded together, the
effects of transverse shear deformation are significant
and thus Love’s theory is inadequate.

In recent years, an attempt has been made to do
away with one or more of the foregoing Kirchhoff
assumptions. This is to establish a more rigorous base
for the numerical analysis of a wide spectrum of shell
problems. Dong and Tso [3] were perhaps the first to
present a first-order shear-deformation theory, which
included the effect of transverse shear deformation
through the shell thickness, and then to construct a
laminated orthotropic shell theory. The theory is only
applicable, however, to cylindrical shells in which
the orthotropic axes of each layer coincide with
the reference axes of the shell surface. This theory
can be regarded as an extension of Love's first-
approximation theory for homogeneous isotropic
shells. Another refined theory for laminated aniso-
tropic cylindrical shells was presented by Whitney
and Sun [4], who derived a set of governing equations
and boundary conditions which included both
transverse shear deformation and transverse normal
strain. Widera and Chung[5] derived a first-
approximation theory for the unsymmetric defor-
mation of a non-homogeneous anisotropic cylindrical
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shell through asymptotic integration of elasticity
equations.

The second-order transverse shear deformation
effects have been included by Kant[6], who has
developed governing equilibrium equations for a
thick shell theory. The theory is based on a three-term
Taylor series expansion of the displacement vector
and generalized Hooke’s law, which is applicable to
orthotropic material having planes of symmetry coin-
cident with the orthogonal reference flame and also
for a system comprising layers of different materials.
Bhimaraddi [7] has presented a higher-order theory
for a cylindrical shell, using assumed displacement
form which results in parabolic variation for trans-
verse shear strains and also satisfies shear-free surface
boundary conditions, by introducing a function {(z)
in the displacement expression, whose first derivative
vanishes at the extreme fibres. In another paper,
Bhimaraddi and Stevens [8] have given a procedure
for developing the governing equilibrium equations
for a cylindrical shell using a vectorial approach in a
correct and consistent manner. In this paper a few
other alternative forms for {-function have been
given. Rogers and Knight [9] have formulated a linear
higher-order finite element which uses a single high
displacement order finite element to model through
thickness of an axisymmetric composite structure.
The displacement order for the inplane directions
remains linear while through thickness, a higher order
is used. This is achieved by increasing the number of
nodes along the thickness direction. Numerical inte-
gration for stiffness is evaluated with respect to the
varying material property and laminate thickness in
each individual element. Murthy and Reddy [10] have
proposed a higher-order theory for the analysis of
composite cylindrical shells, by expanding the dis-
placement variables in the form of power series and
retaining a finite number of terms. The formulation
allows for arbitrary variation of inplane displace-
ment. However, all the above works are based on C!
continuity.

In first-order shear deformation theory we assume
a constant shear rotation through the shell thickness
and this requires the use of a shear correction co-
efficient whose accurate prediction for an anisotropic
laminated shell is cumbersome and problem depen-
dent. In addition, this theory does not include the
effect of cross-sectional warping which is very essen-
tial in the case of thick sandwich shells, which are
generally composed of a middle weak core sand-
wiched between stiff facings, and hence a refined
theory, which considers more realistic parabolic vari-
ations of transverse shear stresses through the thick-
ness and warping of the transverse cross-section, is
found essential. Thus a C° finite element formulation
based on a higher-order displacement model and
including the effect of transverse shear deformations,
which is suitable for the analysis of thin/moderately
thick anisotropic laminated cylindrical shells under
any arbitrary loadings, is developed here.

T. KanT and M. P. MenoN

HIGHER-ORDER THEORIES FOR COMPOSITE
LAMINATES

The development of the present theory is based on
the following displacement model:

U=u+z26,+zur+20*% (i=1,2)

Us=u, ey

in which the functions U, (i = 1,3) are defined in
space at a distance z with reference to a curvilinear
surface. The mid-surface of the shell is treated as this
reference surface. The remaining functions (i, u,, u;)
and (6,,0,) are the reference surface displacement
components and rotations respectively, whereas u¥*
and 8} (i =1, 2) are the corresponding higher-order
terms of the Taylor’s series expansion [6] and are
defined at the reference surface only. These are
two-dimensional quantities. Equation (1) contains
the minimum number of terms to include the effects
of transverse shear deformation with warping of the
transverse normal cross-section, Thus the generalized
displacement vector é° of the reference surface in the
shell coordinates consists of

55:(unuzaua,al’gz,ui',ui",efﬁi")'~ 2

By substituting eqn (1) into the strain—displace-
ment equations (see Kraus[11], Kant [6]) and reducing
it for a cylindrical shell, the physical strain compo-
nents are derived. In the present work, two theories
have been developed: (1) a Geometrically Thin
Shell Theory, in which the ratio of the thickness to
radius of curvature is negligible compared to unity,
ie. h/R <1 and (2) a Geometrically Thick Shell
Theory, in which the square of the ratio is negligible
as compared to unity, i.e. (h/R) €1, where 2 and R
are thickness and radius respectively. The strain
components, thus, for the two theories are given as
follows.

Geometrically thin shell:

e=(g+zn+2%¥+2%¥), (=12

I 2 3
Pia =€ + 2 + 2%l + 2k )

vii=(¢;+ 2y, +2%F), (=12 (3a)
The 18 new functions appearing in eqn (3a) form the
generalized strain vector € of the reference surface
and are related to the generalized displacement vector
é° by the following matrix relation:

e=L% (3b)
in which
E=(c;, 6, €m el €, eh, K, Ky, K, KT, KE,
kh, 02, 0, @3, 0T ¥ 1) (3c)
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and L’ is a differential operator matrix of size 18 x 9
and its non-zero elements for a cylindrical shell are
obtained by substituting eqn (1) in the strain-
displacement equation (refer to Appendix A).
Similarly for a geometrically thick shell:

€ =(e, +zr, +z%¥ +2°x*)/(1 + z/R)
€3=(e;+ 2k, + 2% ¥ + 2°x¥)
Vie= (€ + 2K + 2%l + 2’k 1)/(1 + 2/R)
+ (€ + 2Ky + 2%H + 27k 3)
Y= (¢ + 2%, +2°¢$)/(1 + z/R)
Yis=(d + 2y, + 2%t + 2 ). (4a)
The 23 new functions appearing in eqn (4a) form the
generalized strain vector € of the reference surface

and are related to the generalized displacement vector
&° by the following matrix relation:

i=Fo (4b)
in which
E=(e, 6, €2, 6, €, €5, ¢h, €8,
Ky Ky Kigy Ky, KF K F, kD, K],
b2 @1, 03, T U, WL Y TY (40)

and F*, like L’, is a differential operator matrix of size
23 x 9 for a geometrically thick shell theory and its
non-zero elements for a cylindrical shell are obtained
by substituting eqn (1) in the strain—displacement
equation (refer to Appendix A).

The stress—strain relationship for the Lth layer
(lamina) of the composite has the following form.

rol W —Qfl 0h QOh _} ffl T
0, 05 0% 0% €
St = 05 Q0L 0% 4 712 r
T2 Qu Q% T2
(T3 Jo L Q% QgsJ b’ls JL
(Sa)

This is written in a compact form as

a = Qe (5b)
where @ and ¢ are the stresses and the strains with
respect to the cylindrical axes as shown in Fig. 1. The
stiffness matrix @ with respect to shell coordinates is
obtained by transforming the stiffness matrix C in the
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{1,2,3 ) - Laminate reference axes

Fig.ﬁ 1. Laminate geometry with positive set of lamina/
laminate axis, displacement components and fibre
orientation.

principal material coordinates (1-2"-3") to shell co-
ordinates (1-2-3) using coordinate transformation
matrix [12]. This is given by the relation
Q=[T"CNT"Y. (5¢)
The elements of matrices C and @ are defined in
Appendix B.
The total potential energy = of the system could be
written as

1'[=1J Xy dV—.[ (6°)q d4
2 )y 4

=1J (je’a dz)dA —f (6°)q dA. (6a)
2 A A

By introducing the stress resultants and couples,
which are obtained by integrating the physical stress
components through the shell thickness in eqn (6a),
defined per unit arc length of the reference surface of
the shell, the potential energy of the system can be
written as

n =1J &6 dA — f (6)qdA4. (6b)
2 )4 4

The components of the stress resultant vector 6 are
as follows for geometrically thin and thick shell
theories.

Geometrically thin shell (/R < 1):

N, N? NL  fhy 4| 1

N, N{|=Y% a, [[1,2%dz
L=1Jh

Ny, N ‘ T2
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-M, Mt NL ] Ot

M, MP|=Y o, |lz.2°)dz
L=1Jk

M, M} ‘ Ty

[0, 0% = [ [Tzs:l 2
= =1, z9d
_Q1 Q?] LZK hy T13 (1,214

s-EL L)
= z dz. 7a
_Sx Lgl iy T3 (72)
Geometrically thick shell [(#/R)* < 1]:
N, N}
N, N
le Nﬁ L=t
Ny N3
1 0 0 0] [q
e 10040 0| | e
X [1,z%dz
J‘kl, 0 0 1 0 T2
00 0 4 )
M, Mt
M2 M%k _ NE
M12 M?‘Z L=1
MZl M’Z“l_
1000 [e]
mea g 4 0 0 o,
X [z, z%dz
L 6 01 0O T2 :
0 0 0 4 Ty

0. 0f < th ! [A 0 =] 2
= 1,z%d
[Ql Q}'] Lz-_;l iy 0 1] _713_[ ldz

NL  *hp
S2= Z Tz}AZ dz
L=1Jn
NL AL 41
[, Stl=X% 1312, 271 dz, (7b)
L=1Jn

where 4 = (1 + z/R) and NL is the number of layers.

Thus by substituting eqn (5) in eqns (7a, b), for
geometrically thin shell and thick shell theories re-
spectively, and using eqns (3b) and (4b), we get the
constitutive relationship for the shell, which is as
follows.

N €

Dy D O
N* el
M| ®o

=|D. Dy O (8a)

M* K
C2 N %

0 0 D .
Q* | |®9]
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or
& = Dé (8b)
in which
N=(N,, N, Np);  N*=(N¥,Nf, NLY
M= (M, M* M,); M*=(M¥M$ ML)
Q=(0: Q) Q*=(0%,01. 5, 8)
€= (€, €, €)' e =(ef.e¥, ey
Ko = (K, K2, K12)s kF=(f,xf xh)
¢ =(¢2, 1) ¢F=(d¥, 0%, ¥, ¥
(8¢)

for geometrically thin shell theory, and
N=(Ny, Np, Ny, Ny )s N*=(NT, N NG, NRY
M=(M,, My, M5, My));
M*=(M¥, M3, M}, M%)
Q=(2,,. Q)5 Q*=(Q%,0F. 5,5, 5
€ =1{€1,€, €, 1)’
k= (k¥ 6 ch. kL)

Ko = (K;, K3, K135 Ky )

&0 =1(¢2, $1)" §=(0F, ¢F Vi YTy

(8d)

for geometrically thick shell theory. The individual
sub-matrices of the rigidity matrix D are

D,—membrane rigidity matrix

D —membrane-flexure coupling matrix
Dy—Aflexure rigidity matrix

Dg¢—shear rigidity matrix.

The elements in each of the above mentioned sub-
matrices are defined in Appendix C and Appendix D,
for the geometrically thin and thick shell theories
respectively.

FINITE ELEMENT DISCRETIZATION

We follow the standard finite element discreti-
zation procedure in which the total domain Q is
subdivided into NE sub-domains or elements such
that the total potential energy of the system can be
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expressed in terms of the potential energies of the
elements given by the expression

NE
e) = Y, 1) ®

e=

where TT1 and I1° are the potential energies of the
system and the element respectively. We further have

ITe(8°) = U — We (10)
in which U¢ and W¢ are the internal strain energy and
the external work done respectively. Thus the total

potential energy of the system can be written as
follows.

NE
G = 3y {J é'd d4 —f (8*)Yq dA}. (1)
€= A A

It can be seen that the potential energy given by the
above expression contains only the first derivatives of
the elements in 8° and thus only C® continuity is
required for the shape functions to be used in the
element formulations. In the C° finite element theory,
the continuum displacement vector within the
element is discretized such that

NN
5= N(0,x)5
i=1

i=

(12)

where N,(8, x) is the interpolating or shape functions
associated with node i, é; is the displacement vector
corresponding to node i, and NN is the number of
nodes per element. Equation (11) ensures that the
displacement vector 8° is not only continuous within
the element but over the entire domain since the same
value of 8° is used for all the elements at the common
nodes. Thus C? formulation makes the relation (9) a
true one. For more details, reference may be made to
Zienkiewicz {13}, Cook [14], Chaudhary[15], Kant
et al. [16], Kant [17], etc.

To avoid membrane/shear locking, a phenomenon
quite well-known with C° formulations of shear-
deformation theory, the contributions to the stiffness
terms are evaluated in parts—membrane, flexure and
shear. The contribution of the individuals to the
stiffness terms are evaluated using the selective inte-
gration technique. There exists an extensive literature
on this selective integration technique (see e.g. Kant
and Kulkarni [18], Malkus and Hughes [19]).

In the present work, a four-noded bilinear and
a nine-noded quadrilateral element from the
Langragian family and an eight-noded quadrilateral
element from the Serendipity family have been used
along with isoparametric formulation.

NUMERICAL EXAMPLES

A computer programme incorporating existing
higher-order theories is developed for the analysis of
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composite cylindrical shells. Unless stated otherwise,
in all numerical examples, a quarter shell is dis-
cretized with two or three elements in the circumfer-
ential direction and eight elements in the meridional
direction. In the case of cylindrical tanks with the
same boundary conditions at the opposite ends, only
half of the tank is considered for the discretization.
The selective integration scheme, namely 3 x 3 x 2,
has been employed for the contributions of mem-
brane, flexure and shear to the element stiffness, The
displacements and the stress-resultants are presented
in non-dimensional form using the multiplier as
defined in the respective examples such that

Non-dimensional radial displacement
=m, x actual displacement

Non-dimensional circumferential force
= m, X actual circumferential force

Non-dimensional meridional moments
= m; x actual meridional moment

Non-dimensional circumferential moments
= m, % actual circumferential moment

Non-dimensional transverse shear
= m; x actual transverse shear.

Example 1

An isotropic cylindrical shell, fixed at the ends and
subjected to uniform internal pressure (p,) = 1 kg/
cm? is analysed for various radius-to-thickness ratios
(R/t =35, 10 and 20). The uniform pressure is
assumed to be acting on the mid-surface in geo-
metrically thin shell theory and on the inner surface
in geometrically thick shell theory. The material
properties are E = 2.1 x 10°kg/em? and gz = 0.1, The
length of the shell L = 800 cm and radius R =200 cm
[Fig. 5(a)]. The various non-dimensional multipliers
are given as

Eh 1 4 4

! PaRz : PR ? PoRh ¥ #po RA

Their variations along the length of the cylinder are
shown in Figs 2(a-1), and are compared with values
obtained by Kant [6].

Example 2

A cantilever cylinder subjected to a uniform radial
shear (P) = 1 Ib/in. at the free end is considered. The
material properties and size of the cylinder are as
follows. E =30x 10%1b/in’, u =03, L=25in,
R =10in. and the thickness 4 = 2.5in. [Fig. 5(b)].
The non-dimensional values of the radial displace-
ments and the stress resultants are calculated using
the multipliers defined below. Their variations along
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Fig. 2. (a) Variation of radial displacement along the length of the cylinder, for R/h =20, (b) for

R/h =10, (c) for R/h = 5. (d) Variation of circumferential force along the length of the cylinder, for

R/h =20, (e) for R/h =5, () for R/h = 10. (g) Variation of meridional moments along the length of the

cylinder, for R/h = 5, (h) for R/h =10, (i) for R/h =20. (j) Variation of circumferential moments along
the length of the cylinder, for R/h =5, (k) for R/h =10, (1) for R/h =20.

the length are shown in Fig. 3(a—d). C, = 0.233190 x C,, kg/cm?
. Eh\/ﬁ. \/—IE Css = 0.266810 x C,, kg/cm?
| =gy M= 5
PR? PR L =800cm, R =200cm,
e = 4./Rh _ 4./ Rh thickness & =40, 20 and 10 cm.
" PRR’ ' uPRh’

Example 3 The variations of non-dimensionalized radial dis-

A cylinder fixed at the ends, made up of ortho- placement and stress resultant along the length of the
tropic material subjected to an internal pressure shell have been presented in Fig. 4(a-l), using the
po= 1 kg/cm? is analysed [Fig. 5(a)]. The material multipliers defined below. The maximum values of
properties and geometry of the shell are defined as  these quantities are presented in Table 1.
follows [6].

C22=2.l X loskg/cmz ml_—__ﬁl_,;; m2=L; ms; = 4 ;
Cy;, = 0.262931 x Cy, kg/cm? o R PR PoRA
C,, = 0.543103 x Cj, kg/cm? __16 . 1

= s Mms= .
Cus = 0.159914 x C,; kg/cm? PoRA i Po~/ Rh
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Fig. 3. (a) Variation of radial displacement along the length of the cylinder. (b) Variation of circumfer-
ential force along the length of the cylinder. (c) Variation of meridional moments along the length of the
cylinder. (d) Variation of circumferential moments along the length of the cylinder.

Example 4

A fixed cylindrical shell made up of four-layered 1.25 x 10°psi, G5 =0.63 x 10°psi=G,; and p,=
angle-ply, (45°/ —45°/—45°/45°) and (0°/90°/90°/0°), 0.25. The general shape of the tank is defined as
of equal thickness and subjected to internal pressure L =20in., R =20in. and #=10 and 0.20in.
of p,=1(6.41/n) psi is considered. The material [Fig. 5(a)].
properties of the fibres are given by [20], as fol- Table 2 gives the maximum value of the normal
lows. E =7.5x10%psi, E,=20x10°psi, G,,= displacement at the centre of the cylindrical shell.

Table 1. Maximum values of displacement and stress resultants in Example 3

Non-dimensional form of dependent variables

L—Q Theories Uy X my N, xm, M, x my M, xm, Q, x mq
5 Geom.
thin 1.049 1.025 -1.092 —1.050 0.675
Geom.
thick 0.947 0.925 —1.020 —0.960 0.602
Ref. [6] 1.061 1.030 —1.216 —1.150 0.704
10 Geom.
thin 0.998 1.032 —1.163 —1.090 0.722
Geom.
thick 1.049 0.980 —1.095 —1.070 0.682
Ref. [6] 1.089 1.035 —1.351 —1.200 0.750
20 Geom.
thin 1.024 1.037 —1.131 —1.056 0.732
Geom.
thick 1.049 1.013 —1.100 —-1.024 0.712

Ref. [6] 1.086 1.035 —1.430 —1.200 0.800
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Fig. 4. (a) Variation of radial displacement along the length of the cylinder for R/h = 5, (b) for R/h = 10,

(c) for R/h =20. (d) Variation of circumferential force along the length of the cylinder for R/h =5, (e)

for R/h =10, (f) for R/h = 20. (g) Variation of meridional moments along the length of the cylinder for

R/h =10, (h) for R/h =35, (i) for R/h = 20. (§) Variation of circumferential moments along the length of
the cylinder for R/h =5, (k) for R/h =10, (1) for R/h = 20.

Because of symmetry of the layered shell, only a
quarter of the shell was discretized.

Example 5

A 90° cylindrical shell clamped at all the edges and
subjected to a uniform pressure of p, = (6.41/n) psi
is considered [Fig. 5(c)][20]. The different fibre

orientations considered are (—45°/45°); (45°/—45°/
—45°/45°) and (0°/90°/90°/0°). The material proper-
ties and the geometry of the shell are the same as
described in Example 4. The problem is solved for
different thickness to radius ratios given as R/h = 20,
100 and 300, and for each different fibre orientation.
The maximum value of radial displacement at the

Table 2. Radial displacements u; x (E h/P,R?) in Example 4

Thin shell theory Thick shell theory Reference[20]

R Fibre Nine-  Eight-  Four- Nine- Eight- Four- 4 x4 6x6

N Angle noded noded noded noded noded noded mesh mesh

20 (45°] —45° 221 2.21 1.94 2.16 2.16 1.89 2.20 221
—45°/45°)

100 (45°/ — 45° 1.95 1.96 1.98 1.94 1.95 1.97 1.97 1.96
—45°/45°%)

20 (0°/90° 1.67 1.67 1.51 1.63 1.63 1.47 1.64 1.64

90°/0°)
100 (0°/90° 1.55 1.55 1.59 1.55 1.55 1.58 1.55 1.55

90°/0%)
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Fig. 5. (a) Cylindrical shell, fixed at the ends and subjected to internal pressure. (b) Cantilever shell

subjected to radial shear at free end. (c) 90° cylindrical shell clamped at all the edges and subjected to

uniform pressure. (d) Cylindrical shell with free ends under a distributed line load around the central circle.
(e) Shell discretization for Example 6.

centre is given in Table 3. Because the problem is
non-axisymmetric, the full shell is discretized to get
the solution.

Example 6

A sandwich and layered circular cylindrical shell
under uniformly distributed line loads of P = 14417
Ib/in. around a central circle is analysed [21]. The
geometry is as follows: length L = 80 in., total thick-
ness 4 =2.4in., radius R =18in. [Fig. 5(d)]. The

shell is discretized as shown in Fig. 5(e). The material
and cross-sectional properties are: (a) three layered
sandwich, isotropic shell, thickness of facing
t;=0.2in., thickness of core r.=2.0in., material
constants E,= 107 psi, G, = 3.846 x 10°psi, pt, = ;=
0.25, E. = 10°psi, G, = 3.846 x 10° psi; (b) cross-ply
shell (0°/90°/0°), thickness of each layer=#h/3 =
0.8in., material constants E,=10"psi, E,=4 x
10°psi, G, =2x10°psi, G,;=Gy=0.8 x 10° psi;
(c) cross-ply shell (90°/0°/90°) has the same properties
as in (b). The results are shown in Table 4.
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Table 3. Radial displacements u; x (E,h/PyR?) in Example 5
Thin shell theory Thick shell theory Reference[20]
R Fibre Nine-  Eight- Four-  Nine- Eight- Four- 4x4 6x6
h Angle noded noded noded noded noded noded mesh mesh
20 —45°/45° 3.51 2.77 1.76 3.42 2.70 1.71 2.68 2.68
100 —45°/45° 2.12 2.05 1.63 2.10 2.04 1.63 1.52 1.64
300 —45°/45° 3.60 2.00 1.62 3.59 2.00 1.62 1.87 2.06
20 (45°/ —45° 3.53 2.75 1.77 344 2.68 1.72 2.68 2.67
—45°/45°)
100 (45°/ —45° 3.59 2.06 1.63 3.57 2.06 1.62 1.65 1.65
—45°/45°)
300 (45°/—45° 3.60 2.01 1.62 3.59 2.00 1.62 1.91 2.03
—45°/45°)
20 (0°/90° 2.99 2.51 1.50 291 2.44 1.47 2.10 2.11
90°/0°)
100 (0°/90° 3.03 1.98 1.44 2.96 1.97 1.42 1.35 1.36
90°/0°)
300 (0°/90° 3.04 1.90 1.43 3.03 1.90 1.43 1.63 1.61
90°/0°)
Table 4. Maximum value of stresses and displacement in sandwich and cross-ply (Example 6)
Shell . Eh./Rh x,/RH P w10
Types Theories Y P, R? '" PR 2 P, @ ! WP, \/ﬂ Remarks
Sandwich Geom.
isotropic thin 5.610 1.040 1.552 —1.678 E=E
Geom. '
thick 5.640 0.990 1.657 —0.580
Ref. [21] 7.122 1.206 1.526 —1.452
Ref. [23] 6.180 1.128 1.531 —1.531
Cross-ply Geom.
(0°/90°/0°) thin 3.010 2.009 0.726 —0.596 E=E,
Geom.
thick 3.011 2.008 0.727 —0.681
Ref. [21] 2.802 1.534 1.044 —9.760
Cross-ply Geom.
(90°/0°/90°) thin 3.581 1.199 1.441 —-0.056 E=E,
Geom.
thick 3.596 1.199 1.439 —0.063
Ref. [21] 3.772 1.194 1.457 -0.095
CONCLUSIONS observed that the displacements and membrane

The resuits from a set of higher-order theories
(geometrically thin shell and geometrically thick
shell) for a composite and sandwich cylindrical shell
subjected to different loadings and end conditions are
presented. These theories do not require the usual
shear correction coefficients. The results show excel-
lent agreement with the other theories for thin to
thick shells. In the case of axisymmetric isotropic,
orthotropic, sandwich and cross-ply (symmetrically
layered), under axisymmetric loadings, it is observed
that eight-noded and nine-noded elements yield the
same results.

it is seen from the result shown in Figs 24 that
both the theories discussed here give the same results
in the thin limits and the value is one predicted by the
classical Love theory of shells.

The influence of (#/R) ratio in thick shells is quite
pronounced. Consistently, the circumferential
moment M, is the one most affected, while the
meridional moment M, is less affected. It is also

stresses for a thick shell do not vary much in these
two theories. The slight variation is merely due to the
assumption that the loadings act on the mid surface
for geometrically thin shell theory and on the inner/
outer surface as the case may be for geometrically
thick shell theory, which is actually so.

The cross-ply shell shows a drastic redistribution of
stresses in the shell due to the layering effect and
anisotropy. The results in Table 4 show that the
(0°/90°/0°) arrangement is definitely the more efficient
one, compared to (90°/0°/90°).

Thus the geometrically thick shell theory should be
used for a more reliable and accurate analysis of both
thick and thin shells, under any arbitrary loading and
boundary conditions.
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APPENDIX A

The non-zero terms of strain displacement matrix L° for
a geometrically thin shell theory are given as follows.

CAS 33/5—F
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Ly =Ly=Lg=Lg=Lsy=Los=Lypg=Ly,

L= 10

=53 = papg
Ly=Ly=Lg=Lg=Lgs=Loy= Lys= le.s

Rl =R

1
Ly=—-Ly, = R i Lps=Lys=1 Lig=Lis=3
Lm = LiS,é =2

Similarly, the non-zero terms of strain-displacement
matrix F* for a geometrically thick shell theory are given as
follows.

Fn=F32=F56=F77=F94=F11,5=F13.8=F15.9

g1
- Rag
F22=F4|=F67=F86=F|0,5=F|2.4=F|4‘9=F|6,8
0
=F;= .
1
F|3=—F|s‘1=F20‘6:E§ F17.5=F18.4:l
2
Flog=Fyng=3;, Fy;=Fng=2 Fpgz= r
APPENDIX B
(¢, C, 0 0 0
C, 0 0 0
C= Cy; 0
Symmetric Cy O
L Css
—Qn Q. Qs 0
On @u 0 O
Q = Os; 0
Symmetric Qu Qs
L Oss

where the elements of the C; matrix are the plane stress
reduced elastic constants of Lth lamina and the following
relations hold good between these and the engineering

elastic constants.

E vy Ey E,
Cll—l l C|2=l . Cp= :
— ViV — ViV 1= vipvy
Ci=0G1y; Cu=0Gyry; Cois=Gpy

and following the wusual transformation rule of
stresses/tensorial strains between the lamina (1°-2’-3") and
the laminate (1-2-3) coordinate systems, the elements of Q,
matrix are as follows: B
Qu=c'Cp+s'Cp+2-¢?s¥C, +2-Cyy)
Qu=0c*5C; + Cp—4-Cy) + Cpylc* +5%)
Oi=c’s(C,—Cy=2-Cy)+c-53(Cpy— Cpp+ 2 Cy)

0n =5'Cl +¢*Cpy+ 2 ¢3XC, + 27 Cyy)
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Op=c sNCy—Cpy—2-Cy)+5 cXCp~Cp+2Cyy)
Q=064+ ¢NCy + ¢5HC, =2 C+ Cp—2-Cyy)
Qu=cCyu+5Cs5; Qus=c 5 (Css— Cyy)

5= 52C4 + ¢*Cs5
where, if o is the angle between the fibre axis (1") and

laminate axes (1) as shown in Fig. 1, then, ¢ =cosa,
s =sina, c2=cos?a, s =sin’a and so on,

APPENDIX C

The elements of D matrix for a geometrically thin shell
theory are given here as follows. If we set

| - ;
Hi=;(hll.+1-hlL)

such that i takes an integer value between 1 and 7, then the
sub-matrix can be readily obtained in the following forms
based on the geometrical assumption, (#/R) < 1.

T. KaNT and M. P. MENON

The elements of the D matrix are obtained by replacing H|,
H, and H; by H,, H, and H respectively in the D,, matrix
mentioned above. Similarly the D, matrix is obtained by
replacing H,, H, and H, by H,, H, and H, respectively in
the D,, matrix.

APPENDIX D

The elements of D matrix for the thick shell theory are
defined here as follows. If we set

.
Hy= (i~ hy)

HS =(H~K H.,)

1
where K = —
R

Hf=(H+K H._,)
and i takes an integer value between | and 8, then the
sub-matrix can be readily obtained in the following forms
based on the geometrical assumption, (h/R)? < 1.

HQ, HQ, HQ; HQu HQ, HQ; Lth layer
NL HQp HQn HQ, HQy, HQ,
Dy= H\Qy HiQy HQn HQy,
Lt HQ, HQ, HQ;
HQp HQy
L Symmetric HQy; |
HQ, HQs HQu HQs HQu HyQ4s 1 Lth layer
NL HQs HQs HQs HQs HYQs
Ds= HQy  HsQos HiQu HiQs
L=t HQss HQs HQss
HQu  HyQus
L Symmetric H,Q J
HiQ, HQ, H{Q, HQ, H;Q, HQ, HjQ, HQ; ]| Lthlayer
HYQn HQn H{Qyn H,Q, HIQy HQyn HiQn
HiQy HQnw HiQy HQ0n HyQy HQy
Dy=3 HfQu HiQn HiQn HQy HiQn
L=l H;Q, HsQ, H;Q; HQ;
Symmetric HiQp; HsQ; HIQy
Hy Qs HsQy
L H¥ Qs |
( HiQu H\ Qi HiQu H,Qu HiQuw HyQu HiQu | Lth layer
Hy Qs H:Qs HyQss HyQs HyQss HiQss
NL HYQu H;Qu HIQu HQu HeQis
Dg= HS Qs H,Qy H;Qss HgQss
HIQu HQus HQu
Symmetric H; Qs Hi Qs
H7 Qs |

The elements of the D matrix are obtained by replacing H,,
Hy H; ,H,,Hf ,Hy ,H;, Hf and H; by H,, Hf , H;,
H, H},H;, H, Hf and H respectively in the D), matrix
mentioned above. Similarly D, matrix is obtained by replac-
ing H, Hf , H{ , H;, HY , Hy , Hs, Hf and H; by H,,
Hf ,H; Hy,Hf ,H; , H,, Hf and H7 respectively in the
D,, matrix.



