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Abstract—A critical analysis of parallelogram-shaped plates under bending using a2 Mindlin nine-node
Heterosis element is carried out. The performance of this quadratic quadrilateral element is evaluated on
isotropic rhombic skew plates up to large skew angles with different support conditions and under
uniformly distributed as well as point loads. The suitability and limitations of the element for each case
are clearly brought out. The numerical results of the present formulation are compared with the available
data in the literature. Morley’s acute skew plate involving singularity is studied in detail. Oblique boundary
transformation required for all the sides simply supported boundary condition is discussed. In addition,
numerical results for transverse shear forces are presented for the first time in the literature, for future

reference.

INTRODUCTION

Skew plates are often used in modern structures in
spite of the mathematical difficulties involved in their
study. Swept wings of aeroplanes can be idealized by
introducing substitute structures in the form of skew
plates. Complex alignment problems in bridge design
are often solved by use of skew plates due to
functional, aesthetic or structural requirements.
Various other applications of skew plates can be
found in ship hulls, as well as parallelogram slabs in
buildings.

The rigorous formulation and solution of the
governing differential equation is extremely tedious
due to the use of a non-orthogonal coordinate
system. Analytical solution procedure requires use of
a series in one form or another [1-21]. Trignometric
series [1,2], power series{l, 10, 14-16, 18], poly-
nomial  series [3,4,9,13], complex series [5],
biharmonic  eigen-functions{6,7] and  Fourier
series [8, 11, 12, 17, 19, 20] have been employed in the
past for the analysis of skew plates. Recently,
GangaRao and Chaudhary [21] presented a plate
bending solution for skew plates using a combination
of trignometric and polynomial functions with un-
determined coefficients. In spite of extensive research
done in the area of skew plate bending, researchers
are still looking for a suitable choice for trial solution
functions that could lead to more accurate and
economical solutions [21]. Morley [22] presents a
good overview of the analytical series solution.

Finite difference techniques have also been
favourably employed [22-29] for the analysis of skew
plates but have limited accuracy even for reasonably
small skew angles.

The Finite Element Method has been extensively
employed for small deflection analysis of thin paral-
lelogram-shaped plates. The displacement based
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Kirchhoff plate bending elements [30-46], which
neglect the transverse shear deformation effects, have
been used for the analysis of skew plates. These thin
plate elements reqire C' continuity of the displace-
ment field as the variational theorem for these con-
tains derivatives of the kinematic variables up to the
second order. Reissner {47] and Mindlin [48] were the
first to provide first order shear deformable theories
based on the thin plate assumptions for variation of
stresses and displacements through the thickness of
the plate. Both these theories give rise to a sixth order
partial differential system of equilibrium equations
and permit satisfaction of three boundary conditions
on each edge. This Reissner-Mindlin theory requires
only C® continuity on the approximations of
kinematic variables in the variational statement.
Moreover, low order interpolation functions can be
employed while numerical simplifications may be
introduced at the element level. This theory allows
adequate modelling of classical thin plates as well as
moderately thick, sandwich and composite plates.
The displacement based Mindlin elements [49-65]
have exhibited good results for the analysis of skew
plates. Akay [66] employed first and second order
mixed plate bending elements for analysis. The
Hybrid Stress Model[67] based on Kirchhoff
theory [29] as well as Discrete Kirchhoff theory [67]
has been usefully employed for analysis. Hybrid
Trefftz’s element [68,69] and Lyon’s modified
element [70] also exhibit good results. Anisotropic
skew plates [43, 51, 56] as well as skew laminated
plates [49, 50] have also been studied.

In addition, various other techniques have also
been used for the analysis of skew plates. Variational
solution [13, 15, 22, 71-74), electrical analogy [75, 76],
point matching [77, 78}, conformal mapping [79, 80],
equivalent grid method [81]), finite strip method [82-85]
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and experimental investigations [18, 24, 25, 32, 86-89]
have been used. Large deflection analysis of skew
plates [85, 90-92] has also been carried out.

The ‘Heterosis’ element is generally believed to be
a safe and robust element[93,94] and possesses
numerous advantages over other elements. Therefore,
it was thought appropriate to employ this element for
the analysis of skew plates.

REISSNER/MINDLIN PLATE THEORY

The main assumptions in the development of this
theory are as follows. (a) Displacements are small
compared to plate thickness. (b) The stress g, normal
to the midsurface is negligible. (¢) The strain ¢,
normal to the middle surface is zero. (d) Normals to
the midsurface before deformation remain straight
but not necessarily normal to the middle surface after
deformation.

The theory is based on the kinematic displacement
model (Fig. 1),

u(x,y,z)=z2"0,(x,y)
v(x, s Z) =z" By(x’ J’)

w(x, y,2) = wy(x, y) 0y
where u, v, and w define the displacement components
in the directions x, y and z respectively. Both x and
y coordinates lie in the reference plane of the plate
which is assumed to be unstrained. The terms 6, and
6, are the usual average rotations of the normals to
the reference plane along the x and y directions
respectively, while w, defines the lateral displacement
at the reference surface. Thus, the displacement vec-
tor of the reference plane is defined as
5 =[w,,0,,0,1. )
The strain—displacement relations are expressed as
follows:

e_&u__ .66,‘_2_,(
*“ox | ox ¥
6‘_60_2_60y__z'x
Y“oax  ay y
Oy .
ex
Wo
y
z

Fig. 1. Positive set of displacement components.
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7""ay x dy ox =2y

_Ou 6w_0+6w0_¢
Te = Tax T T ax
ov ow Owg
= —_— -—=0 '—=¢. 3
Ty 6z+6y ’+6y ’ ®
If we define

‘Z = [éx, £y9 YXy] =z- [Kx, Ky, ny]

6.; = [yxz’ yyz] = [¢x7 ¢y]

€ =[e;, €] @
and
alb = [GXQ ay’ txy]
ﬂ; = [sz’ Tyz]
¢'=[o},0;] (5)

then the 3D stress—strain relations can be written in
a compact form as follows:

6,=E, ¢
o.=E ¢
6=E-¢ 6)
where
Ell ElZ 0
E,=|E, En O
E, ©
E=|" X 7
=[50 o

For an isotropic material, the elastic constants are

E
E1|=Ezz=ﬁ—_—v'23
E,=v-Ey
1-v E
Bo=—3 En=gq1n~¢
E,=E,=G. ®)

The total potential energy expression is written as

N=U-w

1
=§Le'-a‘dv—£u‘-b'dv,

w =[u,v,w] is the vector of displacement compo-
nents of a point in the plate space

©)

where
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b = vector of body forces
v = domain of interest.

Total strain energy U can be split into two compo-
nents for bending (U,) and shear (U,) as follows:

U=Ub+UJ
”

1
€ -o,dv +—f € -o,dv
JU 2 v

,

N —= N =

] G ex+0, 6,41, 7,)dv

1
+ EJ‘ (sz " Pxz + Tyz . yyz) dU

N[ ==

0.z k. +0, 2z K,+1,-2"K,)d4 -dz

JU

1
+5J (T d+71,-¢,)d4 - dz

([l )o([ -
; ny< f o2 'dZ)]dA - f [«m( f Tx,-dz>
v, ([ 5oree)|aa

1
='2'J‘ [Kx'Mx+Ky'My+xxnyy]dA

1
+§j‘ [¢.- Q.+ ¢,-0,]d4 (109
in which
M,=fax z-dz
My=Jay-z-dz
Mxy=frxy-z-&
Qx='[1xz'dz
Qy=j 7,,+dz. (11)
Thus we may define
1{_ . 1. .
U=3| & 6,dd+5| &-6,d4, (12)
2 )4 2 )4

in which

€§,=[xx,xy,xxy]

é&=[d. 9]

€' =[é},&] generalized strain vector;

(13)

é,=[M,, M, M,
é;=[0x, 0]

¢'=[a;,d;] generalized stress vector; (14)
and
G,=Dy§
6,=D; ¢
é=D-¢E (15

Thus the 3D deformation problem is reduced to a
2D plate bending problem in which all the quantities
are defined at the middle surface of the plate.

The middle surface strains are

0 d8/ox 0
: 0 0 d8/3y | [we
i= {_”} = 0 d/dy o)ox 8,
& dfex 10 P
8oy 0 1 ’

| bls_;.
_[L_J 5=L-3. (16)

These can also be written separately as follows:

-b=Lb'5
&=L,8, a7n
where
0 d/ox 0O
L,=|10 0 d/oy
0 d/dy dfox
and
diox 1 0
L= . 18
L= { 18)

The generalized elasticity matrices D, and D, are
expressed as

Dll DlZ 0
l_)b = D|2 Dzz 0
0 0 D,

and
D, 0
D =|"° A 19
N
For an isotropic material, the various coefficients
in eqn (19) are

Dyp=v-Dy
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D _l—vD _Gt3 wlNP 0 0 ]{wy
S V) =Yl 0 N 0 Kéup (23)
Dy,=D,=k -G 1, (20) “'Lo o w0,
where G = E/2(1 4 v) and the shear correction factor
k = 5/6. 1e.
Thus, the total potential energy in the generalized NN
2D plate bending problem is 5~y N3, (24)
N=U,+U~W =
1{ ., . i 1{ . where
=3 Ae,, é, +5Le,-o',~dA Nmo 0 0
5 . dd N=}] 0 N& 0 (25)
| Wo* D; 0 0 NY
1, _ 1{ . _
==| & D, &-d4d+-| € -D,-€-dA4 If we define
2 A 2 A
d[ = [WOI s exl L] Oyl Wo2, gxl, 9y2 : Wois exi’ 0yi tte Wonn» exNN9 ayNN] (26)
and
Ny 0 0 Ny 0 O NP0 O Ny 0 0
N=|0 N O 0 Ny 0 ¢ 0 N 0 0 Nfy O 27
0 0 N»: 0 O NY: 0 0 N%: 0 0 N%
then
- f 5 p-da, @n F-N-d 28)
The generalized strain vectors for bending and shear
where are
5 =[w,,0,,0, N
[, 6x. 6,] G=L, 5=L,5 N5,
p=107,0,0] i=1
NN
B, is the transverse distributed load. (22) =4 B8 . Bu=Ly ¥,
FINITE ELEMENT DISCRETIZATION =B,d
NN
The solution of the fundamental eqns (1)22) pre- &=L -8~L, N3,
sented earlier can conveniently be obtained using a i=1
NN

finite element displacement formulation. The element
properties are derived from the principle of minimum
potential energy by assuming a displacement field
which ensures completeness within the element and
compatibility across the element boundaries.

We assume an ‘NN’ noded element having three
degrees of freedom per node, namely wy, 6, and 6,.
The generalized displacement vector § and the nodal
displacement vector &, are related with the help of

shape functions as

(W )

2 NP p) - wy

i=1

Wo NN
§=10, ﬁj X N y) 6, p
Bv fw=]
i NN
ZN?"(x’y)'gyi

=1

=B, 29
where
r =
ONY
— 0
0 ox
N
By= |0 0 —a;"
AN  ON?
L oy ox |
[ aaN; N o
g;f= AN™o (30)
— 0 N}
I
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Thus,

1 NN NN

ETPIPIIE. )

l-lj-

1 NN NN

+= 225‘ Ky,-8,— 25 f

I-lj-

=i K-d+id-K-d—d'-f, 31
where the contributions to the submatrix of the
element stiffness matrices linking nodes i and j are
given by

K=K+ Ky, (32
in which
K;tj=JJ BZi'Db'Bbj'dA
4
=jj B D, B;-d4, (33)
4

and the consistent load vector for node i is given by

If total number of elements is NE, the total poten-
tial energy is computed by summing the individual
element’s contributions such that

(34)

NE
N~y I

e=]

(35)

The minimization of IT and IT¢ leads to the system
and the element equations of equilibrium respec-
tively, as follows:

K-D=f (36)
Kd=f 37
in which
NE
K K
e=|
NE
f= Z f, (38)

e=]

and D defines the total system degrees of freedom.

ISOPARAMETRIC REPRESENTATION

In isoparametric representation, the geometry and
the displacement fields are interpolated using the
same shape functions. However, while using iso-
parametric formulation the following interesting

points need to observed. (a) The isoparametric
concept allows any arbitrary geometry to be closely
approximated thereby reducing any error associated
with modelling the geometry and without resorting to
use of a fine mesh along the boundaries. (b) The rigid
body displacement as well as constant strain criteria
are satisfied. (c) Numerical integration can be carried
out conveniently as a standard procedure for
evaluating the integrals.
The space coordinates are expressed as

x] MWIN, 0]{x
SR

y i=1 i
where x; and y; are the coordinates of the node i and
N" = N% = N% = N, are shape functions in the local

coordinate system (—1<é<1,-1<n <)
The Jacobian matrix of the element is defined as

(39)

_[oxje¢ oy/oe

_[6x/611 6y/6r]] “0)
NN aﬁa NN a]V
L L

= ) 41
NN alv NN a}v

_'.xi i :
igl on igl on ’

To evaluate the Cartesian shape function deriva-
tives the chain rule of differentiation is followed, so
that

ON; 0N, 65 +6N' i ar,
ox 6{ ox on ox
ON, 0N, ¢ ¢N, ‘6r,

DR @)
d4 =dx~dy=|.[|-d§-dr1. 43)
Thus
1 L+l
KZU=J‘_[ _[—1 _bi'Db'Bbj‘ I-.Ildf dn (44)
+1 f+1
_nj=J. J’ —.’vi'Ds £si I"I dé d" (45)
J j ‘N;°b- IJI dé - dé. (46)

THE HETEROSIS ELEMENT

The nine-node Heterosis quadrilateral element
exhibits improved characteristics in comparison with
the eight-node serendipity and nine-node Lagrange
elements [93, 94]. In particular, the element stiffness
matrix possesses correct rank and good accuracy is
achieved for thin plate situations.

The element as shown in Fig. 2 has three degrees
of freedom (w,, 8., 6,) per boundary node i =1, 2,
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o 1w,,Ox AND By DEFINED
¢:0x AND By DEFINED
DEGREES OF FREEDOM PER ELEMENT = 26

Fig. 2. Nine-node Heterosis element.

3-8 and only two degrees of freedom (0,,0,) for the
central node i =9. The serendipity shape functions
are employed for the transverse displacement w,,
and the Lagrange shape functions for the rotations
0, and 6,. The selective reduced integration scheme,
in which the shear energy is evaluated by a one order
lower Gauss quadrature than the one required for
exact integration of bending energy, has been re-
sorted to throughout.

However, for research purposes, it is useful to
implement the eight-node serendipity (S8), nine-node
Lagrange (L9) as well as the present nine-node
Heterosis (H9) quadrilateral elements in one code and
thus a hierarchical formulation has been adopted.
Thus, for a typical element e the following shape
functions are adopted (Fig. 2):

for corner nodes i =1, 3, 5, 7

N =1+ &) +m)E&+m~1), (@7
for midside nodes i =2, 4, 6, 8
_ & o M .
Ns—‘z—(l +&E)1—n )+5(1 +an)(1 =&,
(48)

For central node i =9, the bubble function used is

N=(1-E)A -9 49)

The hierarchical degrees of freedom at the central
node i =9 are viewed as the perturbations from the
associated serendipity interpolants. To choose any

out of S8, L9 and H9 we can proceed as follows. (a)
To obtain the S8 element, all degrees of freedom at
central node 7 =9 are constrained to zero to obtain
a 24 degrees of freedom quadrilaterial element. (b) To
obtain L9, all degrees of freedom at central node
i =9 are permitted so as to obtain a 27 degrees of
freedom quadrilateral element. (c) To obtain the
Heterosis element H9, the lateral displacement degree
of freedom at the central node i =9 is restrained to
zero to generate a 26 degrees of freedom quadrilateral
element.

OBLIQUE BOUNDARY TRANSFORMATION

For skew plates simply supported on two adjacent
edges and even for shells, the edges of the boundary
elements may not be parallel to the global axes x and
y. Thus, we cannot specify the boundary conditions
in terms of the global displacements wy, 8, and 8,. To
specify the boundary conditions at the oblique edge,
we must use the local edge displacements wy, 8, and
6,. 8, and 8, are the usual average rotations of the
normals to the reference plane, tangential and normal
to the oblique edge respectively. It is thus necessay to
transform the element matrices corresponding to
global axes (x, y, z) to local edge axes (1, n, z) along
which the boundary conditions can be conveniently
specified.

Considering 8., 6,, 6, and 6, as vectors (Fig. 3)

0,=0,-cosr —8,-sinr

6,=8, sinr+6, cosr. 50
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6t OBLIQUE EDGE
Lt
4
PLATE .—— .
8y
t : Axis along oblique edge
n: Axis normal to oblique edge
x, y :Global coordinate system
n,t:Local edge coordinate system
Fig. 3. Global and local edge coordinate system for oblique boundary transformation.
So, the displacement transformation for a node i on However, in the global system
the oblique boundary is fixed as
K-d=f. (55)
Wy 1 0 0 w,
6.;=10 cosr —sinr K67 (51) The vectors d and f* undergo transformation using
0, 0 sinr cosr |18 the same transformation matrix 7, as follows:
ie. d=7,-d (56)
§=T,35, (52)
. =T f. 57
where 8, and §; are the generalized displacement
vectors in the global and local edge coordinate system S0, eqn (55) becomes
respectively. The node transformation matrix for a
node i on the boundary is K-T,.¢=T,-f. (58)
1 0 0 Pre-multiplying both sides by 7!
T,=|0 cosr —sinr | (53)
~t.ge. T & =T' T
0 sinr cosr Te K Te 4= Te Ic r
The above matrix is valid only for three degrees of T.;-K T,)d=I1F
freedom (wp, 6, and 8)) per _node. For higher degrges T=T! and T-'-T,=1I
of freedom per node, a similar node transformation
matrix can be found out by treating each degree of Thus
freedom as a vector. For nodes which are not on the ’
oblique boundary, the node transformation matrix K d = (59)
consists of all elements being zero except the principal = ’
diagonal elements, which are equal to unity. Thus, for where
an ‘NN’-noded boundary element, the element trans-
formation matrix is written as K'=T -K-T. (60)

Z'ln

(54)

INNn

In effect, for the boundary elements the first two
transformations carried out are
K'=T,-KT,

=T (61)
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The displacements for the nodes on the boundary are
then converted from the local edge coordipate system
to the global system of coordinates as per eqn (52).

NUMERICAL EXAMPLES

A computer program has been developed for nu-
merical computation of various types of examples.
All computations have been performed on the CDC
CYBER 180/840 system in single precision with 14
significant digits of real rounded arithmetic accuracy

(word length).

Except where specifically mentioned, the following
p =Skew angle values are adopted for analysis (Fig. 4):

alb = Aspect ratio{=1for rhombic plate)

2a=2b=8

ig. 4. i = late. X
Fig. 4. Skew rhombic (a =) plate ¢ (thickness of plate) = 0.08

96.59258
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Fig. 5. (a) Skew mesh (8 x 8). (b) Non-refined special mesh (8 x 12). (c) Refined special mesh (8 x 12).
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—_— e —— X

Fig. 6. Positive set of bending moment and shear forces.

E (Young’s modulus of elasticity) = 8.736 x 10’
v (Poisson’s ratio) = 0.3
D (plate rigidity) = E3/12(1 — v?) = 4096
k (shear correction coefficient) = 5/6
2a/t (side to thickness ratio) = 100
¢ (uniformly distributed load) = 16
Q (concentrated load) = 64. (62)
In general an 8 x 8 skew mesh using a Heterosis
element (H9) as shown in Fig. 5a is adopted except
for convergence study and Morley’s acute skew plate
problem. A selective reduced integration scheme based
on Gauss Legendre product rules, viz. 3 x 3 and
2x 2, has been employed for flexural and shear
contributions respectively. A bilinear extrapolation
of Gauss point stresses is carried out to obtain nodal
stresses. All results have been presented in non-
dimensional form so that they may be applicable for
a set of values other than those mentioned previously.
The boundary conditions considered in the present
study are

clamped (CL): wy=6,=6,=0

just supported (SS1): w, =0

simply supported (SS2): w,=6,=0, (63)
where 6, and 6, are the normal and tangential
rotations of an edge respectively. The notations
adopted for the stresses are shown in Fig. 6.

Example 1

Test for locking: a clamped (CL) skew plate with
skew angle (B) of 45° subjected to uniformly
distributed transverse load is considered. Central
deflection results normalized with respect to
Morley’s [22] analytical solution are presented in

CAS 34/1—C

Fig. 7 for side to thickness ratio (2a/t) ranging from
5 to 1000 using an 8 x 8 skew mesh.

Example 2

Convergence study: a clamped (CL) skew plate
with large skew angle of 75° subjected to uniformly
distributed transverse load is considered. Graphical
results normalized with respect to Iyengar and
Srinivasan [17] are presented in Fig. 8 using 2 x 2,
4 x4, 6x6, and 8 x 8 skew mesh. From the results
of Examples 1 and 2, an 8 x 8 skew mesh with a side
to thickness ratio (2a/t) equal to 100 is considered
adequate for further analysis.

Example 3

Clamped skew plate: a skew plate having all edges
AB, BC, CD and AD (see Fig. 4) as clamped (CL) for
various skew angles (#) under uniformly distributed
load as well as central concentrated load is analysed.
The results in the form of maximum central
deflection, maximum and minimum principal
bending moment at centre as well as shear forces at
points 1 and 2 (see Fig. 4) are presented in Tables 1
and 2.

For uniformly loaded plate good agreement of
central deflection with that of Iyengar and
Srinivasan [17] is achieved even up to a large skew
angle of 75°. Maximum principal bending moment
also agrees reasonably well. Deflection profiles for
various skew angles along section ‘de’ are shown in
Fig. 9.

For central concentrated load, limited comparison
for only central deflection is available up to 45° skew
angle. Deflection profiles for various skew angles
along section ‘de’ are shown in Fig. 10.
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2:5-
o
2-04
I 151 P = 45°
*p a/b=1-0
< ] 8X 8 MESH
3 KL * MORLEY [22]
10 0 0 = 5= L <
250 500 550 1000
20/t ————=
0-5F
Fig. 7. Locking test for 45° skew clamped plate under uniformly distributed load.
0-500
0-625|-
y
2b
N A A—
5 b— 20—+
*;E 0-750 p- 75°
< 2a/t =100
g * IVENGAR [17]
Z
0-8751-
1-000 s 0 4\
00 0 16 32 48 64

NO. OF ELEMENTS ——

Fig. 8. Convergence of centre deflection with mesh refinement for a 75° skew clamped plate under uniformly distributed
load.
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Fig. 13. Deflection profile for cantilever skew plate under uniformly distributed load.

Example 4

Cantilever skew plate: a cantilever skew plate
having side AB (see Fig. 4) as clamped (CL) for
various skew angles is analysed under uniformly
distributed load and concentrated load at the centre
of free edge CD (see Fig. 4). Deflection at points 3
and 4, principal bending moments as well as shear
forces at the centre of the clamped edge are presented
in Tables 3 and 4.

For a uniformly loaded cantilever skew plate
limited comparison for only 60° skew angle was
found in the literature, which shows good agreement.
Deflection profiles along sections ‘de’, ‘dh’ and ‘ef’
are shown in Figs 11-13 respectively. However, no
results are reported in literature for concentrated load
at the centre of free edge CD. Deflection profiles
along sections ‘d’e” and ‘g’f” are shown in Figs 14
and 15 respectively.

Example 5
Skew plate clamped on two opposite sides: a skew

plate clamped (CL) on sides BC and AD (Fig. 4) was
analysed for various skew angles under uniformly
distributed as well as centrally concentrated load.
Central deflection, principal bending moments at
centre as well as shear forces at points 1 and 2 are
presented in Tables 5 and 6. Deflection profiles along
‘de’ for uniformly distributed and concentrated load
are shown in Figs 16 and 17, respectively. However,
no results are available in literature for comparison.

Example 6

Skew plate simply supported on two opposite sides:
a skew plate simply supported (SS1 as well as SS2) on
sides BC and AD (Fig. 4) was analysed for various
skew angles under uniformly distributed as well as
central concentrated load. Central deflection, princi-
pal bending moments at centre as well as shear forces
at points 1 and 2 (Fig. 4) arec presented in Tables 7
and 8.

For uniformly distributed load, reasonable
accuracy is achieved for the limited results for central
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Fig. 18. Deflection profile for skew plate simply supported on two opposite edges under uniformly distributed load.

deflection reported in the literature. Deflection
profiles along sections ‘de’ and ‘fg’ are shown for the
SS2 boundary condition in Fig. 18. For central
concentrated load, agreement with other reported
values is satisfactory. Deflection profiles along
sections ‘de’ and ‘fg’ are shown for the SS2 boundary
condition in Fig. 19.

Example 7

Skew plate having all sides simply supported: a
skew plate simply supported (SS2) on all edges AB,
BC, CD and AD, except at points A, B, C, D
(Fig. 4) where it is just supported (SS1), was analysed
for various skew angles under uniformly distributed
as well as central concentrated load. Maximum cen-
tral deflection, principal bending moments at centre
as well as shear forces at points 1 and 2 (Fig. 4) are
presented in Tables 9 and 10.

For uniformly loaded plate, good agreement is
achieved up to § = 45°, but beyond this skew angle

solution seems to be overstiff. For f =60° the
calculated central deflection is 79.56% of
Morley’s [22] analytical value. To improve the results
the 8 x 8 skew mesh may be refined further but a
better option would be to redefine the mesh pattern
as a ‘special mesh’ as shown in Fig. 5b and ¢. A
detailed comparison is carried out in Example 8.
Deflection profiles along section ‘de’ are shown in
Fig. 20.

Even for central concentrated load, the above
discussion holds true qualitatively. In fact, beyond a
skew angle of 30°, results are in large error. Deflection
profiles along section ‘de’ are shown in Fig. 21.

Example 8

Morley’s acute skew plate problem: the 60° skew
Morley’s rhombic plate poses a stringent test for all
plate bending elements. The parameters adopted for
analysis are shown in Fig. 22. Only one quadrant
‘ocf” is analysed under uniformly distributed load for
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60°) under uniformly distributed loading

Table 11. Morley’s acute skew plate (8

CAS 34/1—D

Mpplmin =03 qaz ’ 10—2

Mppimer = % - qa® - 1072

+10-2

gqa*
D

Winax

Boundary conditions
employed

Degrees of
freedom
per

Mesh
per

]
3.7225
4.3710
4.6883
3.7968
4.3028
4.4355
4.2193
4.3100
4.5510
4.3200

a
5.9155
7.6623
7.8035
5.8333
7.5773
7.7400
7.6305
7.3128
7.8288

7.6400

o)
0.5779

At obtuse corner
0.6475

On sides

quadrant

quadrant
4 x 4 non-refined
8 x 12 non-refined
8 x 12 non-refined
4 x 4 non-refined

4 x 7 refined

Element
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0.6510
0.5893
0.6487
0.6545
0.6580
0.6481
0.6788
0.6528

=)
olcococoococ
IS ST O [ 1
2l 2222222
kS

SS1
$S2
SS1
SS1
SSt
SS1
SS1
SS1
SS1

227
1179
1179

227

37
1179
1179
1275

351

8 x 12 non-refined
8 x 12 refined
8 x 12 refined
8 x 12 refined

H9
H9
H9
H9
H9
H9
H9
L9
L4

Morley [22]

various types of elements, namely four-node
Lagrange (L4), nine-node Lagrange (L9) and nine-
node Heterosis (H9), for different types of special
mesh patterns and sizes. The boundary conditions
adopted are explicitly mentioned in Table 11, which
gives the values of central deflection and principal
bending moments at the centre of the plate. All the
results have been compared with Morley’s[22]
analytical solution. A special mesh pattern is adopted
which may or may not be refined as indicated in
Fig. 5b and c. It is observed that results are highly
sensitive to the boundary conditions adopted at the
obtuse corner. The comparison of skew and special
mesh results for this problem indicates the superiority
of the latter. The refined special mesh in fact gives the
best results. The best results for central deflection and
principal moments are achieved using the H9 element
with an 8 x 12 refined special mesh adopting the SS1
boundary conditions on the sides of the plate. The
adoption of SS1 or SS2 boundary conditions does not
affect the results considerably.

The moments M, and M, are strongly singular in
nature in the vicinity of the obtuse vertices but are of
opposite signs. The moments vary asymptotically as
(r)~*, where r is the distance from the obtuse
vertex [95]. This singularity problem has been
discussed in detail in the literature [22, 44, 52, 54, 60,
62, 69, 95], yet most finite element methods either fail
to converge or converge very slowly to this singular
behaviour. Thus, using the refined special mesh as
shown in Fig. 5c, moments M, and M, were plotted
along the shorter diagonal ‘oc’ for H9, L9 and L4
elements for various mesh sizes. Graphical results are
shown in Fig. 22. The L4 element with a total of 351
degrees of freedom behaved the best, while the L9
element with a total of 1275 degrees of freedom could
not model the singularity adequately and the
Heterosis (H9) element, even with a total of 1179
degrees of freedom, behaved the worst. The
oscillations near the obtuse vertex for H9 element in
fact increased as total degrees of freedom were
increased from 377 to 1179. Such an erratic behaviour
of the Heterosis element is quite surprising.

However, from the above discussion it is evident
that, using the H9 element, as the mesh size is
reduced, central deflection as well as principal
bending moments at the centre converge rapidly but
obtuse corner modelling rather deteriorates. In
comparison the L4 element behaves much better for
obtuse corner modelling even at one-third the total
degrees of freedom of that for H9.

CONCLUSIONS

The performance of the nine-node Heterosis
element has been evaluated on rhombic skew plates
in bending. All generally occurring boundary and
loading conditions .have been included. Good
agreement has been achieved between the present
results and those reported in literature, even up to
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reasonably large skew angles. However, obtuse
corner modelling with the Heterosis element is guite
poor.
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