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Abstract-A critical analysis of parallelogram-shaped plates under bending using a Mindlin nine-node 
Heterosis element is carried out. The performance of this quadratic quadrilateral element is evaluated on 
isotropic rhombic skew plates up to large skew angles with different support conditions and under 
uniformly distributed as well as point loads. The suitability and limitations of the element for each case 
are clearly brought out. The numerical results of the present formulation are compared with the available 
data in the literature. Morley’s acute skew plate involving singularity is studied in detail. Oblique boundary 
transformation required for all the sides simply supported boundary condition is discussed. In addition, 
numerical results for transverse shear forces are presented for the first time in the literature, for future 
reference. 

INTRODUCTION 

Skew plates are often used in modern structures in 
spite of the mathematical difficulties involved in their 
study. Swept wings of aeroplanes can be idealized by 
introducing substitute structures in the form of skew 
plates. Complex alignment problems in bridge design 
are often solved by use of skew plates due to 
functional, aesthetic or structural requirements. 
Various other applications of skew plates can be 
found in ship hulls, as well as parallelogram slabs in 
buildings. 

The rigorous formulation and solution of the 
governing differential equation is extremely tedious 
due to the use of a non-orthogonal coordinate 
system. Analytical solution procedure requires use of 
a series in one form or another [l-21]. Trignometric 
series [l, 21, power series [l, 10, 14-16, 181, poly- 
nomial series [3,4,9, 131, complex series [5], 
biharmonic eigen-functions [6,7] and Fourier 
series [8, 11, 12, 17, 19,201 have been employed in the 
past for the analysis of skew plates. Recently, 
GangaRao and Chaudhary [21] presented a plate 
bending solution for skew plates using a combination 
of trignometric and polynomial functions with un- 
determined coefficients. In spite of extensive research 
done in the area of skew plate bending, researchers 
are still looking for a suitable choice for trial solution 
functions that could lead to more accurate and 
economical solutions [21]. Morley [22] presents a 
good overview of the analytical series solution. 

Finite difference techniques have also been 
favourably employed [22-291 for the analysis of skew 
plates but have limited accuracy even for reasonably 
small skew angles. 

The Finite Element Method has been extensively 
employed for small deflection analysis of thin paral- 
lelogram-shaped plates. The displacement based 

Kirchhoff plate bending elements [30-46], which 
neglect the transverse shear deformation effects, have 
been used for the analysis of skew plates. These thin 
plate elements reqire C’ continuity of the displace- 
ment field as the variational theorem for these con- 
tains derivatives of the kinematic variables up to the 
second order. Reissner [47] and Mindlin [48] were the 
first to provide first order shear deformable theories 
based on the thin plate assumptions for variation of 
stresses and displacements through the thickness of 
the plate. Both these theories give rise to a sixth order 
partial differential system of equilibrium equations 
and permit satisfaction of three boundary conditions 
on each edge. This Reissner-Mindlin theory requires 
only Co continuity on the approximations of 
kinematic variables in the variational statement. 
Moreover, low order interpolation functions can be 
employed while numerical simplifications may be 
introduced at the element level. This theory allows 
adequate modelling of classical thin plates as well as 
moderately thick, sandwich and composite plates. 
The displacement based Mindlin elements [49-65] 
have exhibited good results for the analysis of ske-w 
plates. Akay [66] employed first and second order 
mixed plate bending elements for analysis. The 
Hybrid Stress Model [67] based on Kirchhoff 
theory [29] as well as Discrete Kirchhoff theory [67] 
has been usefully employed for analysis. Hybrid 
Trefftz’s element [68.69] and Lyon’s modified 
element [70] also exhibit good results. Anisotropic 
skew plates [43,51,56] as well as skew laminated 
plates [49, SO] have also been studied. 

In addition, various other techniques have also 
been used for the analysis of skew plates. Variational 
solution [13, 15,22,71-741, electrical analogy [75,76], 
point matching [77,78], conformal mapping [79,80], 
equivalent grid method [8 11, finite strip method [82-851 
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and experimental investigations [ 18,24,25,32,86-891 
have been used. Large deflection analysis of skew 
plates [85,90--921 has also been carried out. 

The ‘Heterosis’ element is generally believed to be 
a safe and robust element [93,94] and possesses 
numerous advantages over other elements. Therefore, 
it was thought appropriate to employ this element for 
the analysis of skew plates. 

REISSNER/MINDLIN PLATE THEORY 

The main assumptions in the development of this 
theory are as follows. (a) Displacements are small 
compared to plate thickness. (b) The stress u, normal 
to the midsurface is negligible. (c) The strain 6z 
normal to the middle surface is zero. (d) Normals to 
the midsurface before deformation remain straight 
but not necessarily normal to the middle surface after 
deformation. 

The theory is based on the kinematic displacement 
model (Fig. lj, 

4% Y, 2) = z .4(X,Y) 

4% Y, 2) = z . @,(x9 Y) 

wkY,z)=wo(x,Y) (1) 

where u, u, and w define the displacement components 
in the directions x, y and z respectively. Both x and 
y coordinates lie in the reference plane of the plate 
which is assumed to be unstrained. The terms OX and 
0, are the usual average rotations of the normals to 
the reference plane along the x and y directions 
respectively, while w,, defines the lateral displacement 
at the reference surface. Thus, the displacement vec- 
tor of the reference plane is defined as 

8 = b,, 4, e,i’. (2) 

The strain-displacement relations are expressed as 
follows: 

au ae, 
t,=;j;;EZ.ax=Z’“” 

b au ae, 
Cy=;j;=ZZ’=ZZKy 

Fig. 1. Positive set of displacement components. 

If we define 

and 

4 = bx, by, Txyl 

0: = [z,,, 7J 

u’ = [ai, uf]. (5) 

then the 3D stress-strain relations can be written in 
a compact form as follows: 

t7b = & . Lb 

a, = Es . c, 

CT=E.c, 

where 

(6) 

0) 

For an isotropic material, the elastic constants are 

E 
E,, = E22=- 

(1 - v2) 

E,2 = v . E,, 

l-v E 
E33=2E,, =-= 

2(1 + v) 
G 

E,, = E, = G. (8) 

The total potential energy expression is written as 

where 

u’ = [a, u, w] is the vector of displacement compo- 
nents of a point in the plate space 
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b = vector of body forces 
u = domain of interest. 

Total strain energy U can be split into two compo- 
nents for bending (U,) and shear (U,) as follows: 

u = u, + US 

1 J 1 
=- 

2 ” 

c;.a,dv +- J 2 0 cf. s, dv 

uv . A4, + K, M,,] dA 

+; M;Qx+4;QyldA J ” 
in which 

M,= o;z.dz J I 
My= J by. z . dz 

I 

Mxy = 
s 

~~~ . z . dz 
P 

a = J .rxr. dz 
z 

Q,, = zy;dz. J I 
Thus we may define 

U =f Z1,.tibdA +; F:.$sdA, J A J A 
in which 

r; = [KX, KY, K*yl 

r: = kL &I 
E’ - - [i;, Z:] generalized strain vector; 

(10) 

(11) 

(12) 

al, = P-f,, My, Mxyl 

al = IQ,, Qyl 
I’ = [6;, ti:] generalized stress vector; (14) 

and 

& = Qb * Zb 

6, = ll, . r, 

tT=Q.C. (1% 

Thus the 3D deformation problem is reduced to a 
2D plate bending problem in which all the quantities 
are defined at the middle surface of the plate. 

The middle surface strains are 

alax i 0 
a/ay 0 i 

= + .J=&.J. 
[I --5 

(16) 

These can also be written separately as follows: 

r, = &,$ . F, (17) 

where 

b = 

[ 0 0 0 alax a/ay 0 afax wy 0 1 
and 

(18) 

The generalized elasticity matrices & and DS are 
expressed as 4, 

[ D,, 

4, 0 
Db= D,, 0 0 0 1 DB 

and 

(19) 

For an isotropic material, the various coefficients 
in eqn (19) are 

(13) D,2 = v . D,, 
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Ds, = D, =k.G.t, (20) 

where G = E/2( 1 + v) and the shear correction factor 
k = 5/b. i.e. 

Thus, the total potential energy in the generalized 
2D plate bending problem is a- T iVi.Si, 

I-I=u*+tJ,-w 
i-l 

1 
=- 

s 2 A 
Zb.d,.dA +; 

s 
Cl . ~3~. dA 

A 

s 

- w,.j&.dA 
A 

1 
=- 7 Ef,.&.i,*dA +; Z; ’ 0, . S, . dA 

where 

lyi= 

If we define 

and 

N;” 0 0 ; NT 0 0 i iNi"O 0 0 i 

iv= 0 NF 0 i 0 NY 0 i.*’ i 0 A+ 0 i 

0 0 Np i 0 0 Np i i 0 0 N;y; 

then 

- p.fi.dA, 
s 

(21) 
A 

. . 

(23) 

(24) 

N”o 

d 
0 

NF 0 . 
0 0 0 1 

(25) 

Np 

;Na 0 0' 

* i 0 N2N 0 

; 0 0 Nh. 

c?=ly.d. 

(26) 

(27) 

(28) 
The generalized strain vectors for bending and shear 

where are 

8’ = ho, ox, f-y 
)‘=v~,o,ol 

pz is the transverse distributed load. 

FINITE ELEMENT DISCRETIZATION = &,d 

The solution of the fundamental eqns (1x22) pre- 
sented earlier can conveniently be obtained using a 
finite element displacement formulation. The element 
properties are derived from the principle of minimum 
potential energy by assuming a displacement field 
which ensures completeness within the element and 
compatibility across the element boundaries. where 

We assume an ‘NN’ noded element having three 
degrees of freedom per node, namely wo, 6, and 0,. 
The generalized displacement vector 8 and the nodal 
displacement vector Fi are related with the help of 
shape functions as 

B -bi = 

F= ; N i) 4 B -d I 

alvp 

Oax O 

alvp 

O O ay 

o anr;.r anr;y 

ayax 

JN”O 
. (30) 

I 
ay 

0 Np 

(29) 
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Thus, points need to observed. (a) The isoparametric 
concept allows any arbitrary geometry to be closely 

I+ F&.&.8, 
approximated thereby reducing any error associated 

I-II-1 with modelling the geometry and without resorting to 
use of a flne mesh along the boundaries. (b) The rigid 

+;; ~z;.&j.z,-~z;.r; 
body displacement as well as constant strain criteria 

r-lj-1 i-1 are satisfied. (c) Numerical integration can be carried 
out conveniently as a standard procedure for 

=~‘.~b.d++l’.&*d-d’.P 2 2 * , (31) evaluating the integrals. 
The space coordinates are expressed as 

where the contributions to the submatrix of the 
element stiffness matrices linking nodes i and j are 
given by {;}=Z[? ;]{;}y (39) 

Kj = Wij + Kij9 (32) where xi and yi are the coordinates of the node i and 
Ni”O= NF = NF = Ni are shape functions in the local 

in which coordinate system (- 1 < < < 1, - 1 Q g < 1). 
The Jacobian matrix of the element is defined as 

!?I,, = BL.Db*Bbj.dA 

Kij = Ei*Qs*Bsj*dA, (33) 

and the consistent load vector for node i is given by 

c= CT x.b+dA. (34) 
J JA 

If total number of elements is NE, the total poten- 
tial energy is computed by summing the individual 
element’s contributions such that 

I-I- y IY. 
e-1 

(35) 

The minimization of II and II’ leads to the system 
and the element equations of equilibrium respec- 
tively, as follows: 

K.D=f (36) 

in which 

(38) 

and D defines the total system degrees of freedom. 

ISOPARAMETRIC REPRESENTATlON 

To evaluate the Cartesian shape function deriva- 
tives the chain rule of differentiation is followed, so 
that 

(42) 

dA=dx.dy=&dt.dr/. (43) 

Thus 

Kij = Bii ’ 0s . Bsj. 14 ’ d5 . dq (45) 

+1 +-I 
c= 

ss 
-&;.b.(&d{ *dt. (46) 

-1 -I 

THE HETEROSIS ELEMENT 

The nine-node Heterosis quadrilateral element 
exhibits improved characteristics in comparison with 
the eight-node serendipity and nine-node Lagrange 
elements [93,94]. In particular, the element stiffness 

In isopatametric representation, the geometry and matrix possesses correct rank and good accuracy is 
the displacement fields are interpolated using the achieved for thin plate situations. 
same shape functions. However, while using iso- The element as shown in Fig. 2 has three degrees 
parametric formulation the following interesting of freedom (w,, OX, 0,) per boundary node i = 1, 2, 



28 T. S. BUTALIA et al. 

o : wa,i3x AND 0y DEFINED 

o : 8~ AND 8y DEFINED 

DEGREES OF FREEDOM PER ELEMNT = 26 

Fig. 2. Nine-node Heterosis element. 

3-8 and only two degrees of freedom (OX, 0,) for the 
central node i = 9. The serendipity shape functions 
are employed for the transverse displacement iv,, 
and the Lagrange shape functions for the rotations 
OX and 6,. The selective reduced integration scheme, 
in which the shear energy is evaluated by a one order 
lower Gauss quadrature than the one required for 
exact integration of bending energy, has been re- 
sorted to throughout. 

However, for research purposes, it is useful to 
implement the eight-node serendipity (SS), nine-node 
Lagrange (L9) as well as the present nine-node 
Heterosis (H9) quadrilateral elements in one code and 
thus a hierarchical formulation has been adopted. 
Thus, for a typical element e the following shape 
functions are adopted (Fig. 2): 

for corner nodes i = 1, 3, 5, 7 

Ni = %l + r5i)(l + Wi)(5<i + )lVi - l), (47) 

for midside nodes i = 2, 4, 6, 8 

N<=;(l i-&)(1 -$)+$(l +q~,)(l -t*). 

(48) 

For central node i = 9, the bubble function used is 

N,=(l -e2)(1-$). (49) 

The hierarchical degrees of freedom at the central 
node i = 9 are viewed as the perturbations from the 
associated serendipity interpolants. To choose any 

out of 58, L9 and H9 we can proceed as follows. (a) 
To obtain the S8 element, all degrees of freedom at 
central node i = 9 are constrained to zero to obtain 
a 24 degrees of freedom quadrilaterial element. (b) To 
obtain L9, all degrees of freedom at central node 
i = 9 are permitted so as to obtain a 27 degrees of 
freedom quad~lateral element. (c) To obtain the 
Heterosis element H9, the lateral displacement degree 
of freedom at the central node i = 9 is restrained to 
zero to generate a 26 degrees of freedom quadrilateral 
element. 

OBLIQUE BOUNDARY TRANSFORMATION 

For skew plates simply supported on two adjacent 
edges and even for shells, the edges of the boundary 
elements may not be parallel to the global axes x and 
y. Thus, we cannot specify the boundary conditions 
in terms of the global displacements wO ,@, and f?,, . To 
specify the boundary conditions at the oblique edge, 
we must use the local edge displacements w,, 8, and 
6,. Bt and B, are the usual average rotations of the 
normals to the reference plane, tangentiai and normal 
to the oblique edge respectively. It is thus necessay to 
transform the element matrices corresponding to 
global axes (x, y, z) to local edge axes (1, n, z) along 
which the boundary conditions can be conveniently 
Specified. 

Considering f?,, O,, 8, and f?, as vectors (Fig. 3) 

e,=tI,.cosr-O;sinr 

e, = 8, - sin I f 8, - cos r. WI 
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t : Axis along oblique edge 

n: Axis normal to oblique edge 

x, y : Global coordinate system 

n,t : Lo&l edge coordinate system 

Fig. 3. Global and local edge coordinate system for oblique boundary transformation. 

SO, the displacement transformation for a node i on 
the oblique boundary is fixed as 

i.e. 

si=T-,.F;, (52) 

where si and 8: are the generalized displacement 
vectors in the global and local edge coordinate system 
respectively. The node transformation matrix for a 
node i on the boundary is 

Z”j i; +j;]. (53) 

The above matrix is valid only for three degrees of 
freedom (wO, OX and 0,) per node. For higher degrees 
of freedom per node, a similar node transformation 
matrix can be found out by treating each degree of 
freedom as a vector. For nodes which are not on the 
oblique boundary, the node transformation matrix 
consists of all elements being zero except the principal 
diagonal elements, which are equal to unity. Thus, for 
an ‘NN’-noded boundary element, the element trans- 
formation matrix is written as 

T - In 

T -zn 

z = ‘.. I I. Tin (54) 

**. 
T - NNn 

However, in the global system 

e.d=f=. (55) 

The vectors d and f undergo transformation using 
the same transformation matrix re as follows: 

d= 2;.d (56) 

f= c.t“. (57) 

So, eqn (55) becomes 

Thus, 

,,.,,=,,, (59 

where 

In effect, for the boundary elements the first two 
transformations carried out are 

(61) 
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c 
The displacements for the nodes on the boundary are 
then converted from the local edge coordinate system 
to the global system of coordinates as per eqn (52). 

NUMERICAL EXAMPLES 

A computer program has been developed for nu- 
/ merical computation of various types of examples. 

All computations have been performed on the CDC 
CYBER 180/84O system in single precision with 14 
significant digits of real rounded arithmetic accuracy 

2 (word length). 

+---2~ ----I - 
p : Skew angle 

a/b: Aspect ratio(=lfor rhombic plate) 

Fig. 4. Skew rhombic (a = b) plate. 

Except where specifically mentioned, the following 
values are adopted for analysis (Fig. 4): 

2a = 2b = 8 
t (thickness of plate) = 0.08 

ib) 
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\ 
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v Not to 
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scale. 
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\ 

i .-.-. 
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I 

Fig. 5. (a) Skew mesh (8 x 8). (b) Non-refined special mesh (8 x 12). (c) Refined special mesh (8 x 12). 



Bending of skew rhombic plates 31 

/ 
/ 

4’ 
Fig. 6. Positive set of bending moment and shear forces. 

E (Young’s modulus of elasticity) = 8.736 x 10’ 
v (Poisson’s ratio) - 0.3 
D (plate rigidity) = Et3/12(1 - v’) = 4096 
k (shear correction coefficient) = 5/6 
2a/t (side to thickness ratio) = 100 
q (uniformly distributed load) = 16 
Q (concentrated load) = 64. (62) 

In general an 8 x 8 skew mesh using a Heterosis 
element (H9) as shown in Fig. 5a is adopted except 
for convergence study and Morley’s acute skew plate 
problem. A selective reduced integration scheme based 
on Gauss Legendre product rules, viz. 3 x 3 and 
2 x 2, has been employed for flexural and shear 
contributions respectively. A bilinear extrapolation 
of Gauss point stresses is carried out to obtain nodal 
stresses. All results have been presented in non- 
dimensional form so that they may be applicable for 
a set of values other than those mentioned previously. 

The boundary conditions considered in the present 
study are 

clamped (CL): w0 = 6, = 6, = 0 
just supported (SSl): W, = 0 
simply supported (SS2): w,, = 0, = 0, (63) 

where 0, and 0, are the normal and tangential 
rotations of an edge respectively. The notations 
adopted for the stresses are shown in Fig. 6. 

Example 1 

Test for locking: a clamped (CL) skew plate with 
skew angle (B) of 45” subjected to uniformly 
distributed transverse load is considered. Central 
deflection results normalized with respect to 
Morley’s [22] analytical solution are presented in 

CAS 3411-c 

Fig. 7 for side to thickness ratio (2a/t) ranging from 
5 to 1000 using an 8 x 8 skew mesh. 

Example 2 

Convergence study: a clamped (CL) skew plate 
with large skew angle of 75” subjected to uniformly 
distributed transverse load is considered. Graphical 
results normalized with respect to Iyengar and 
Srinivasan [17] are presented in Fig. 8 using 2 x 2, 
4 x 4, 6 x 6, and 8 x 8 skew mesh. From the results 
of Examples 1 and 2, an 8 x 8 skew mesh with a side 
to thickness ratio (2a/t) equal to 100 is considered 
adequate for further analysis. 

Example 3 

Clamped skew plate: a skew plate having all edges 
AB, BC, CD and AD (see Fig. 4) as clamped (CL) for 
various skew angles (8) under uniformly distributed 
load as well as central concentrated load is analysed. 
The results in the form of maximum central 
deflection, maximum and minimum principal 
bending moment at centre as well as shear forces at 
points 1 and 2 (see Fig. 4) are presented in Tables 1 
and 2. 

For uniformly loaded plate good agreement of 
central deflection with that of Iyengar and 
Srinivasan [17] is achieved even up to a large skew 
angle of 75”. Maximum principal bending moment 
also agrees reasonably well. Deflection profiles for 
various skew angles along section ‘de’ are shown in 
Fig. 9. 

For central concentrated load, limited comparison 
for only central deflection is available up to 45” skew 
angle. Deflection profiles for various skew angles 
along section ‘de’ are shown in Fig. 10. 
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2.5 

L 

2.0- 

1.5- 

*;; 
p ; 45* 

0 a/b -1.0 

$ 
8X 6 MESH 

* MORLEY 1221 

I 250 I 500 , 550 1 1000 0 I 

2olt - 

Fig. 7. Locking test for 45” skew clamped plate under uniformly distributed load. 

0*50( 

0.62! 

OW 

I.001 

L 

I- 

5- 

3- 

5- 

D- 
O 

2alt =lOO 

f IVENGAR 1171 

, , ]\_ 
16 46 

NO. 0:‘ELEMENlS - 
64 

Fig. 8. Convergence of centre deflection with mesh refinement for a 75” skew clamped plate under uniformly distributed 
load. 
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Bending of skew rhombic plates 37 

(x/a) - 

1.6 - \ 

1.6 - p =30° 

+ 
2.0 - 

p .lV 

1 

Fig. 13. Deflection profile for cantilever skew plate under uniformly distributed load. 

Example 4 

Cantilever skew plate: a cantilever skew plate 
having side AB (see Fig. 4) as clamped (CL) for 
various skew angles is analysed under uniformly 
distributed load and concentrated load at the centre 
of free edge CD (see Fig. 4). Deflection at points 3 
and 4, principal bending moments as well as shear 
forces at the centre of the clamped edge are presented 
in Tables 3 and 4. 

For a uniformly loaded cantilever skew plate 
limited comparison for only 60” skew angle was 
found in the literature, which shows good agreement. 
Deflection profiles along sections ‘de’, ‘dh’ and ‘ef’ 
are shown in Figs 1 l-13 respectively. However, no 
results are reported in literature for concentrated load 
at the centre of free edge CD. Deflection profiles 
along sections ‘d’e” and ‘g’f” are shown in Figs 14 
and 15 respectively. 

Example 5 

Skew plate clamped on two opposite sides: a skew 

plate clamped (CL) on sides BC and AD (Fig. 4) was 
analysed for various skew angles under uniformly 
distributed as well as centrally concentrated load. 
Central deflection, principal bending moments at 
centre as well as shear forces at points 1 and 2 are 
presented in Tables 5 and 6. Deflection profiles along 
‘de’ for uniformly distributed and concentrated load 
are shown in Figs 16 and 17, respectively. However, 
no results are available in literature for comparison. 

Example 6 

Skew plate simply supported on two opposite sides: 
a skew plate simply supported (SSl as well as SS2) on 
sides BC and AD (Fig. 4) was analysed for various 
skew angles under uniformly distributed as well as 
central concentrated load. Central deflection, princi- 
pal bending moments at centre as well as shear forces 
at points 1 and 2 (Fig. 4) are presented in Tables 7 
and 8. 

For uniformly distributed load, reasonable 
accuracy is achieved for the limited results for central 
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- (x/a) - 
Fig. 18. Deflection profile for skew plate simply supported on two opposite edges under uniformly distributed load. 

deflection reported in the literature. Deflection 
profiles along sections ‘de’ and ‘fg’ are shown for the 
SS2 boundary condition in Fig. 18. For central 
concentrated load, agreement with other reported 
values is satisfactory. Deflection profiles along 
sections ‘de’ and ‘fg’ are shown for the SS2 boundary 
condition in Fig. 19. 

Example I 

Skew plate having all sides simply supported: a 
skew plate simply supported (SS2) on all edges AB, 
BC, CD and AD, except at points A, B, C, D 
(Fig. 4) where it is just supported (SSl), was analysed 
for various skew angles under uniformly distributed 
as well as central concentrated load. Maximum cen- 
tral deflection, principal bending moments at centre 
as well as shear forces at points 1 and 2 (Fig. 4) are 
presented in Tables 9 and 10. 

For uniformly loaded plate, good agreement is 
achieved up to /I = 45”, but beyond this skew angle 

solution seems to be overstiff. For /I = 60”, the 
calculated central deflection is 79.56% of 
Morley’s [22] analytical value. To improve the results 
the 8 x 8 skew mesh may be refined further but a 
better option would be to redefine the mesh pattern 
as a ‘special mesh’ as shown in Fig. Sb and c. A 
detailed comparison is carried out in Example 8. 
Deflection profiles along section ‘de’ are shown in 
Fig. 20. 

Even for central concentrated load, the above 
discussion holds true qualitatively. In fact, beyond a 
skew angle of 30”, results are in large error. Deflection 
profiles along section ‘de’ are shown in Fig. 21. 

Example 8 

Morley’s acute skew plate problem: the 60” skew 
Morley’s rhombic plate poses a stringent test for all 
plate bending elements. The parameters adopted for 
analysis are shown in Fig. 22. Only one quadrant 
‘ocf’ is analysed under uniformly distributed load for 
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various types of elements, namely four-node 
Lagrange (L4), nine-node Lagrange (L9) and nine- 
node Heterosis (H9), for different types of special 
mesh patterns and sizes, The boundary conditions 
adopted are explicitly mentioned in Table 11, which 
gives the values of central deflection and principal 
bending moments at the centre of the plate. All the 
results have been compared with Morley’s [22] 
analytical solution. A special mesh pattern is adopted 
which may or may not be refined as indicated in 
Fig. 5b and c. It is observed that results are highly 
sensitive to the boundary conditions adopted at the 
obtuse corner. The comparison of skew and special 
mesh results for this problem indicates the superiority 
of the latter. The refined special mesh in fact gives the 
best results. The best results for central deflection and 
principal moments are achieved using the H9 element 
with an 8 x 12 refined special mesh adopting the SSl 
boundary conditions on the sides of the plate. The 
adoption of SSl or SS2 boundary conditions does not 
affect the results considerably. 

The moments A4, and A4, are strongly singular in 
nature in the vicinity of the obtuse vertices but are of 
opposite signs. The moments vary asymptotically as 
(r)-4/5, where r is the distance from the obtuse 
vertex [95]. This singularity problem has been 
discussed in detail in the literature [22, 44, 52, 54, 60, 
62,69, 951, yet most finite element methods either fail 
to converge or converge very slowly to this singular 
behaviour. Thus, using the refined special mesh as 
shown in Fig. 5c, moments A4, and My were plotted 
along the shorter diagonal ‘oc’ for H9, L9 and L4 
elements for various mesh sizes. Graphical results are 
shown in Fig. 22. The L4 element with a total of 351 
degrees of freedom behaved the best, while the L9 
element with a total of 1275 degrees of freedom could 
not model the singularity adequately and the 
Heterosis (H9) element, even with a total of 1179 
degrees of freedom, behaved the worst. The 
oscillations near the obtuse vertex for H9 element in 
fact increased as total degrees of freedom were 
increased from 377 to 1179. Such an erratic behaviour 
of the Heterosis element is quite surprising. 

However, from the above discussion it is evident 
that, using the H9 element, as the mesh size is 
reduced, central deflection as well as principal 
bending moments at the centre converge rapidly but 
obtuse comer modelling rather deteriorates. In 
comparison the L4 element behaves much better for 
obtuse comer modelling even at one-third the total 
degrees of freedom of that for H9. 

CONCLUSIONS 

The performance of the nine-node Heterosis 
element has been evaluated on rhombic skew plates 
in bending. All generally occurring boundary and 
loading conditions .have been included. Good 
agreement has been achieved between the present 
results and those reported in literature, even up to 
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reasonably large skew angles. However, obtuse 25. 
comer ~odei~ng with the Heterosis element is quite 
poor. 
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