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Abstract-A unified approach is presented for the static and transient linear and geometrically non-linear 
analyses of two-dimensional problems (plane stress/strain and axisymmetric). A finite element idealization 
with four-, eight- and nine-noded isoparametric quadrilateral elements is used for space discretization. An 
explicit central difference time-marching scheme is employed for time integration of the resulting discrete 
ordinary differential equations. Results of several numerical examples are presented and compared with 
the available data. A comparative study of the performance of various elements with different damping 
factors is also presented. 

INTRODUCTION 

The importance of investigating the dynamic 
behaviour of structures exhibiting geometric non- 
linearity is increasingly being recognised. At the same 
time, static, linear and non-linear analyses are 
inevitable parts of a thorough analysis. In this paper 
a unified approach for static and dynamic, linear and 
geometric-non-linear analyses of two-dimensional 
structures, viz. plane stress/strain and axisymmetric 
problems, is presented. 

The origin of the approach presented herein dates 
back to 1965, when the method of dynamic relaxation 
was introduced by Day [l]. Since then many research 
workers have contributed to the development of this 
method by applying it to a variety of problems [2-4]. 
The method is essentially a step-by-step integration of 
critically damped vibration using inertia and viscous 
damping to ensure the attainment of a steady state 
solution. Even though the use of finite difference 
in space compares well with the finite element 
method, the difficulties encountered with complicated 
geometries makes its use unattractive. Thus, main- 
taining the generality of finite element method and 
the wide spectrum of software available thereon, it is 
necessary to develop the relaxation procedure with 
respect to space discretization by finite elements 
(pseudo-dynamic analysis). Only Mindlin plates have 
so far been analysed by this approach [S, 61. 

BASIC THEORY 

The static problem represented by the discrete 
equation 

P=Ku=f (la) 

can be solved in a variety of ways which generally 
require the direct or factorized solution of simulta- 
neous equations. An alternate solution procedure 
includes the transformation of eqn (la) into a 
dynamic equation 

P + Ci + Mfi =,f(r) (lb) 

by inclusion of fictitious mass and/or damping 
matrices and carrying out the dynamic analysis until 
the steady state is reached. In the above equation, M 
is the mass matrix; C is the damping matrix; P is the 
vector of internal resisting forces; f(t) is the vector of 
applied forces; u is the vector of nodal displacements; 
and a dot denotes differentiation with respect to time. 

The various terms are expressed in the standard 
finite element terminology [7-91 as follows: 

M= Nrp N d(vo1) (2) 
J WI 

c= c NrcN d(vo1) (3) 
J VOI 

f” = s Nrb” d(vo1) + 
vol s 

Nrz” dr (4) 
5 

P= B*u” d(vo1). (5) 
J VOI 

The parameters p, c, b and t are the mass density, 
velocity dependent damping coefficient, body forces 
per unit volume and boundary traction per unit area, 
respectively. B and e are the strain+Ssplacement 
matrix and the stress vector, respectively. 
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In the explicit time-marching scheme used here the 
velocities and accelerations are approximated using 
central difference formulae as 

i” = (un+’ - u”-I)/(2 AZ) (6) 

ij” = ($+I - 2u” + U”-l)/AP, (7) 

where n - I, n and n + 1 denote three successive time 
stations. Using the above approximation, eqn (1) can 
be written as 

M(u”+’ - 2u” + u”- ‘)/At 2 

+ C(p+’ - p-1 )/(2 At) + P - f” = 0. (8) 

It becomes clear that value of un+’ can be determined 
from two previous displacements, u” and u”-‘, by 
rewriting eqn (8) as 

\ I 

x 
[ 

At*(f” - P”) + 2Mu” +I-C$-11. (9) 

If the mass matrix M and the damping matrix C are 
diagonalized, the above set of equations uncouple to 
give new displacement values directly without requir- 
ing matrix factorization or sophisticated solution 
techniques. 

For the initial calculation the values of u_& and ~0 
are required in order to obtain the displacement u&. 
A starting algorithm is therefore necessary to obtain 
u_A, from the initial values of ti, and u,,. The central 
difference approximation gives 

upA, = -2 Art& + uA,. (10) 

On substituting eqn (IO) into eqn (9) we obtain 

At2 
uA, = uI =IM-.I(-P,+f,)+u,+BAm,, (II) 

in which 

B&CM-‘g. (12) 

Mass lumping 

The inertia force vector is found for given shape 
functions by the mass matrix M given by eqn (2). This 
matrix can be diagonalized in various ways to enable 
its use in explicit schemes. In this study a special 
mass lumping scheme is adopted which lumps the 
total mass in proportion to the diagonal terms of 
the original consistent mass matrix. The procedure 
involves calculation of diagonal elements rnZ of the 

elemental mass matrix and total mass M’ by the 
following formulae: 

mff = 
f 

NjpA’; d(vol) (13) 
val 

&f’= s p d(vol). (14) 
vol 

From these equations the lumped diagonal term m, 
is determined by 

In the absence of any other information on damping, 
Rayleigh damping, 

C=crM+BK, (16) 

is adopted here with /3 = 0. 

Critical time step 

The critical time step length for linear problems is 
limited by the highest frequency w,,, of the finite 
element mesh, such that 

At < 2/w,,, . (17) 

When Ar does not satisfy the above condition, a 
spurious increase in the computated displacements 
takes place and this leads to numerical instability. 
However, it is noted that the highest eigenvalue of the 
system must always be less than the highest eigen- 
value of an individual element. Thus eigenvalue 
analysis of the system can be avoided by a conserva- 
tive estimate of the elemental eigenvalue which leads 
to the following empirical formula for obtaining the 
critical time step length: 

At < rl[p(l + v)(l - 2v)/(E(l - v))]-I’*, (18) 

where I is the minimum distance between adjacent 
nodes of the finite element mesh and r is a coefficient 
dependent on the problem and the type of element 
employed. The parameters E, v and p are the usual 
material properties. In two-dimensional problems, 
the value of r is found to vary between 0.2 and 0.5. 

PSEUDO-DYNAMIC ANALYSIS 

In the pseudo-transient methods the static problem 
represented by eqn (1 a) is transformed to a first-order 
or second-order transient problem. In this study we 
use a second-order transient problem, represented by 

Mii f Ch + Ku = f(t). (19) 
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Fig. 1. Displacement-time response. 

The solution of eqn (19) involves a step-by-step 
integration of critically damped vibration using 
viscous damping to ensure rapid attainment of the 
steady-state solution, by a suitable choice of damping 
matrix C. In this way the oscillations associated with 
the dynamic problem rapidly converge to the static 
solution. From available studies the use of the ficti- 
tious mass matrix, M, is found to be less effective 
than that of the fictitious damping matrix, C [5,6]. 
A special lumped mass matrix adopted for dynamic 
analysis is used here along with the fictitious damping 
matrix. 

Damping factor 

As already discussed, the damping matrix C can be 
written as 

C=aM, (20) 

where a is the damping factor given as an input 
parameter in transient analysis. However, in the 
pseudo-transient analysis, a is automatically com- 
puted by the program as a critical damping factor 
given by 

tl, = 204 (21) 

where w is the dominant frequency of the system. 
Although the only way of evaluating o exactly is by 
eigenvalue analysis, this is generally avoided. In fact, 
it would be rather expensive and contrary to the main 
philosophy of the pseudo-transient method, in which 
the aims are easy implementation and small computer 
core storage. Several methods are used for estimating 
w: considering the motion of individual degree-of- 
freedom; the sum of squares of velocities; and the 
variation of the total kinetic energy during some 
‘non-productive’ iteration. In the present work, the 
last alternative was found to be most suitable as it 
gives the frequency of the structure as a whole rather 
than that of an individual degree-of-freedom. The 
time employed by the structure to reach the maxi- 

mum kinetic energy is estimated through the vari- 
ation of total kinetic energy and is assumed as a 
quarter of the time period T, from which 

w = 2n/T. (22) 

The dominant frequency, w, is used to find the critical 
damping factor given by eqn (21). The procedure 
discussed above is described by a typical displacement 
response, shown in Fig. 1. The dynamic analysis of a 
structure without damping is carried out from the 
time of application of step load until it achieves its 
kinetic energy peak, represented by point A. The 
critical damping factor is obtained and is applied in 
further analysis. 

Convergence 

After the pseudo-transient analysis starts the con- 
vergence check should be applied to detect conver- 
gence. In the present study it is found to be more 
efficient to carry out a convergence check only after 
first displacement is determined. To avoid incorrect 
convergence at this displacement peak (represented 
by point B) the check is started at 100 step (repre- 
sented by point C) onwards. This also avoids un- 
necessary computations. Two types of convergence 
checks are allowed: (i) convergence with respect to 
displacement, and (ii) convergence with respect to 
residual forces. The error percentages in two checks 
are given by 

and 

Ck-P:l 

R==$ x100, (24) 
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Fig. 2. Large deformation dynamic response of a cantilever beam under uniform load. 

respectively. The convergence is assumed when the 
chosen parameter, R or D, becomes less than a given 
tolerance, typically 0.01. 

COMPUTATION ALGORITHM 

The essential steps of the computer program are 
as follows. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

Read the input data-geometrical properties, 
material properties and time stepping par- 
ameters. 
Form diagonal mass and damping matrix and 
calculate load vector for each element to form 
force array f. 
Apply boundary conditions. 
Evaluate residual force vector f” - P”. 
Compute u”+ ’ from u” and u”-‘. 
Evaluate new internal force vector P”+’ 
from u”+‘. 
Output required values. 
Introduce iteration control. This is not activated 
during transient analysis and control is directly 
transferred back to Step 4. In the pseduo tran- 
sient analysis the following operations are carried 
out. 
. The critical damping factor is determined 

by detecting the kinetic energy peak and is 
applied thereafter. 

l The first displacement peak is determined and 
a convergence check is started at 100 step 
onwards. On detection of convergence control 
execution stops, otherwise the control goes 
back to Step 4. 

APPLICATION 

The theory developed in the previous sections is 
now applied to a number of problems which illustrate 
the versatility of the unified approach. The applica- 
tions also examine the suitability of various elements 
and the choice of parameters. 

Example 1 

A cantilever beam (two-dimensional plane stress) 
under a uniformly distributed step load, as shown in 
Figs 2-5, is analysed first. This problem is also 
attempted by Bathe et al. [IO]. Both four and eight- 
noded elements are tried for the space discretizations. 
The full dynamic analysis with eight-noded elements, 
as shown in Fig. 2 agrees with [lo]. Figure 3 shows 
the pseudo-transient analysis with the same eight- 
noded elements. With a damping factor of tl = 0.8cr,,, 
the solution is seen to converge to the true solution 
of 3.65 in. in 2270 time steps. A large deformation 
analysis was carried out with damping factors a = a,, 
and a = 0.8a,,. The results are shown in Fig. 4. The 
solution is seen to converge to a value of 3.25 in. in 
2139 time steps and 3.34in. in 2136 time steps with 
a = 0.8a,, and a = a,,, respectively. 

The same problem is also attempted with two 
layers of four-noded bilinear elements. Here the 
permissible time step length is obtained as 0.4 x 
10e5 set (r = 0.415), as against a step-size of 0.25 x 
10m5 set (r = 0.259) for the eight-noded elements. 
However, it is seen in Fig. 5 that the solution has 
converged to an incorrect solution of 2.26 in. as 
against 3.25 in. The possible reason for this type of 
behaviour is not yet apparent. 
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Fig. 3. Linear pseudo-dynamic analysis. 

Example 2 in Fig. 6. This is in agreement with the available 

A spherical cap (two-dimensional axisymmetric) results ~01. 
subjected to an external step pressure of 600 lb/in2 is 
considered. This example is also taken from Bathe 

CONCLUSIONS 

et al. [lo]. The critical time step is found to be 
0.4 x 10-6sec [r = 0.468 in eqn (18)] for an eight- 

The numerical tests presented in the previous sec- 
tion show a generally good agreement of the present 

noded element. The pseduo-transient analysis gives a formulation with those from other sources in both 
converged crown displacement of 0.325 in., as shown transient and pseduo-transient analysis. Thus this 
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u = 0.2 
p = 0.1024 x lo- Ibsec2/in4 
At = 0.25 x 1 O-6 set 
p = 2.85 lb/in. 
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Fig. 4. Non-linear pseudo-dynamic analysis. 
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Fig. 5. Non-linear pseudo-dynamic analysis. 

unified approach is capable of solving both static 
and dynamic, linear and non-linear two-dimensional 
problems. It is important to note that the program 
developed requires very small memory as compared 
to other programs which are for statics only. Another 
merit of the present unified approach is its easy 
implementation. It may be mentioned that the only 
computational effort involved is in the compu- 
tation of the internal force vector P, in which any 
non-linearity can easily be introduced. 

The test problems solved lead to the following 
important observations. 
(1) From the displacement response of a cantilever 

beam in pseudo-transient analysis (Fig. 4) it 
is clear that full critical damping should be 
avoided. The solution converged to a correct 
value of 3.25 in. when a = 0.8a,,, while it con- 
verged to a higher value of 3.36 in. with a = a,,. 
This shows that when full critical damping is 
used the vibrations die out so slowly that the 

tl = 26.67” 

GNLstaticsolution 

Linear static 
solution (Bathe eta/.) 

0.2 --- 

O’v 
200 400 600 800 1000 1200 1400 1600 1800 

Time (T/At) 

Fig. 6. Non-linear pseudo-dynamic analysis of a spherical cap under external pressure. 

10 8-noded elements 
for axisymmetric 
analysis of semi-cap 

Pseudo-dynamic 
analysis 
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convergence criteria is satisfied at displa~ments 
far from the steady state value. 

(2) Finite element discretizations using four-noded 
mesh do not give correct results in spite of using 
a double layer. Furthermore, the results give a 
lower-bound value on displacements, i.e. it shows 
a stiff behaviour, When a higher value of time 
step is used (At increased from 2.5 x 10-6sec), 
convergence is achieved in half the time steps 
(1190), thus increasing the economy of the 
solution; however the accuracy is unacceptable. 

(3) The present pseudo-transient analysis is found 
to be slower than the static-nonlinear analysis. 
However, it must be pointed out that this 
approach enables solution of very large linear 
and non-linear finite element problems on smaller 
computers. In the present work it is found that 
9600 degrees-of-freedom can be solved using a 
generally available 16-bit microcomputer with 
128 kbytes of core memory. 

REFERENCES 

1. A. S. Day, An introduction to dynamic relaxation. 
Engr, Lond. 219, 218-221 (1965). 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

K. R. Rushton, Dynamic relaxation solution of 
elastic plate problems. J. Strain Anaf. 3, 24-32 
(1968). 
K. R. Rushton, Dynamic relaxation solution for large 
deflection of plates with specified boundary stresses. 
J. Strain Anal. 4. 75-80 (1969). 
J. S. Brew and D. M. Brottdn, Nonlinear structural 
analysis by dynamic relaxation. ht. J. Numer. Meth. 
Engng 3,463-483 (1971). 
A. Pica and E. Hinton, Transient and pseudo-transient 
analysis of Mindlin plates. Int. J. Namer. Meth. Ertgng 
15, 189-208 (1980). 
A. Pica and E. Hinton, Further developments in 
transient and pseduo-transient analysis of Mindlin 
plates. Int. .I. Numer. Meth. Engng 17, 1749-1761 
(1981). 
0. C. Zienkiewicz, The Finite Element method, 3rd Edn. 
McGraw-Hill, London (1977). 
D. R. J. Owen and E. Hinton, Finite Elements in 
Plasticity: Theory and Practice. Pineridge Press, 
Swansea (1980). 
K. J. Bathe, Finite Element Procedures in Engineer- 
ing Analysis. Prentice-Hall, Englewood Cliffs, NJ 
(1982). 
K. J. Bathe, H. Ozdemir and E. L. Wilson, Static 
and dynamic geometric and material nonlinear ana- 
lysis. SESM Report No. 74-4, Department of Civil 
Engineering, University of California, Berkeley, CA 
(1974). 


