
Compurers & Swucrures Vol. 36, No. 3. pp. 401420, 1990 
Printed in Great Britain. 

co45-7949/90 $3.00 + 0.00 
0 1990 Pergamon Press plc 

FINITE ELEMENT TRANSIENT ANALYSIS OF 
COMPOSITE AND SANDWICH PLATES BASED 

ON A REFINED THEORY AND IMPLICIT 
TIME INTEGRATION SCHEMES 

T. KANT,? J. H. VARAIYA and C. P. ARORA 

Department of Civil Engineering, Indian Institute of Technology, Powai, 
Bombay 400 076, India 

(Received 22 June 1989) 

Abstract-An isoparametric finite element formulation based on a higher order displacement model for 
dynamic analysis of multilayer unsymmetric composite plates is presented. Newmark and Wilson-0 
schemes are used for time integration of the discrete coupled second-order ordinary differential equation 
system of dynamic equilibrium and results are compared. A special mass diagonalization scheme is used 
which conserves total mass of the element and also includes the effects of rotary inertia terms. Effects of 
consistent/diagonal mass matrix, time step, and finite element mesh are investigated. Several numerical 
examples are presented and results are compared with those available in the literature. 

1. INTRODUCHON 

In recent years, due to the increased use of composite 
materials in the aerospace and automotive industries 

because of their superior mechanical properties such 
as high stiffness per unit weight, high strength per 
unit weight, and potentially low unit cost, a need has 
arisen for a basic understanding of their response to 
dynamic loading. The present study places emphasis 
on establishing the credibility of a higher order 
shear deformable (HOSD) finite element for transient 
analysis. 

Laminated plate theories based on the Kirchhoff 
hypothesis were developed by Reissner and 
Stavsky [l] and Dong et al. [2]. The development of 
first-order shear deformable (FOSD) theory began 
with the work of Reissner [3] and Mindlin [4] for 
isotropic plates. For the analysis of thicker laminates, 
Mindlin’s theory was extended to laminated aniso- 
tropic plates by Yang et al. [S] and by Whitney 
and Pagan0 [6]. Reismann and his colleagues [7-91 
analysed a simply supported, rectangular, isotropic 
plate subjected to suddenly applied uniformly dis- 
tributed load over a square area of the plate. Exact 
solution was obtained using classical three-dimen- 
sional elasticity theory and classical and improved 
plate theories. Rock and Hinton [lo] presented tran- 
sient finite element analysis of thick and thin isotropic 
plates using Reissner-Mindlin thick plate theory. 
Excellent agreement of the finite element solutions 
with the analytical solutions of Reismann and Lee [8] 
was obtained. 

t To whom correspondence should be addressed. 

Chow [l I] employed the Laplace transform tech- 
nique to investigate the dynamic response of ortho- 
tropic laminated plates. Wang et al. [12] applied the 
method of characteristics to unsymmetrical ortho- 
tropic laminated plates. Moon [13, 141 investigated 
the response of infinite laminated plates subjected to 
transverse impact loads at the centre of the plate. Sun 
and his colleagues [15-l 71 employed the classical 
method of separation of variables combined with 
Mindlin-Goodman [ 181 procedure for treating time 
dependent boundary conditions and/or dynamic 
loadings. All of these papers were confined to plates 
under cylindrical bending. Reddy [19,20] presented 
closed form and finite element results for transient 
analysis of layered composite plates using Mindlin- 
Reissner thick plate theory. 

Theories based on displacement models which give 
rise to nonlinear distribution of inplane normal 
strains and transverse shear strains were developed by 
Lo et al. [21], Kant [22] and Phan and Reddy [23]. Lo 
et al. and Kant, in addition, included the effects of 
transverse normal strain and stress. Kant et al. [24] 
presented a Co finite element formulation of a higher 
order theory. Pandya and Kant [25-281 extended the 
above formulation for generally orthotropic plates. 
All of these papers were confined to static analysis. 

Recently, Mallikarjuna and Kan: [29] and Kant 
et al. [30] gave transient analysis of symmetrically/ 
unsymmetrically laminated composite plates based 
on a higher order displacement model using an 
explicit time integration scheme. The present paper 
specifically deals with the application of a higher 
order displacement model presented by one of the 
present authors [28] for investigating the transient 
response of isotropic and layered anisotropic plates. 
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The finite element idealization is adopted using 
a nine-noded Lagrangian element. Implicit time 
integration schemes using consistent/diagonal mass 
matrices have been used for computing the transient 
response. 

2. THEORETICAL FORMULATION 

2.1. Displacement model 

The present higher order shear deformation theory 
is based on the displacement model 

U(& y, z, t) = u,(x, Y, r) + ze,(x, y, 1) 

u(x, y, z, 2) = a,(.? Y, t) + z($(x, Y, 1) 

+ z’v,* (x, y, t) + z%,1 (x, y, t) 

w(x, y, z, t) = w&9 y, t), (1) 

where t is time, uO, v0 and w0 are the inplane and 
transverse displacements of a point (x,~) on the 
mid-plane, respectively, and 8, and 0, are the rota- 
tions of normal to the mid-plane about the y and x 
axes, respectively. The parameters u$, v,f , 0: and 0; 
are the corresponding higher order deformation 
terms in the Taylor series expansion and are also 
defined at the mid-plane. The parameters u, u and w 
are the displacement components in the x, y and z 
directions, respectively, of a generic point in the 
laminate space. 

The generalized displacement vector at the mid- 
plane can thus be defined as 

d=[U,,U,,w,,e,,e,.,U,*,Ud,e* o*’ xv y I. (2) 

2.2. Stress-strain relations in an orthotropic lamina 

In the present formulation, in conformity with the 
usual plate assumptions, the normal stress u3 can be 
assumed small enough to be neglected and the 
corresponding strain s3 is identically equal to zero. 
The generalized Hooke’s law for a homogeneous 
orthotropic material may be written in a contracted 
notation as follows: 

a; = c,e; i,j=1,2,3,4,5 (3) 

or 
6’ = Ce’, (4) 

in which IJ’ is the stress vector, C is the composite 
material stiffness matrix and 8’ is the engineering 
strain vector with reference to the principal material 
axes (1,2, 3). 

The stress-strain relation for the Lth layer of the 
laminate can be expressed as 

QI L 

a2 

712 = 

t23 

t13 

Cl, Cl2 0 0 0 

G2 c22 0 0 0 1 

0 

0 c33 0 0 

0 0 0 c, 0 

0 0 0 0 c,, 
I 

5 L 

E2 

x Yl2 ) 

Y23 

YI3 

W 

where 

c,, =4/u -v,2v21) 

Cl2 = V2,4/(1 - v12v21) 

c22 = Jf72/(1 - h2V21) 

C33 = G,2 

G = G23 

C,, = G,3 W) 

and Ei are the Young’s moduli of elasticity in the i 
direction, vii are the Poisson’s ratios that give strain 
in the j direction due to stress in the i direction and 
G, are the shear moduli. 

These relations are referred to the lamina principal 
axes (1,2,3). The principal material axes of a lamina 
may not coincide with the reference axes of the 
laminated plate (Fig. 1). It is, therefore, necessary to 
transform the constitutive relations (5a) from the 
lamina principal axes to the reference axes of the 
laminate (x, y, z). This is conveniently accomplished 
through a transformation as follows [31]: 

a’=Ta 

&is = ‘h, 

@a) 

(6b) 

where u’ and ai, are the vectors of stress and tensorial 
strain components, respectively, defined with refer- 
ence to the lamina axes (1,2,3), u and 8,x are the 
vectors of stress and tensorial strain components, 
respectively, defined with reference to laminate axes 
(x, y, z). The transformation vector T is given as 

c2 s2 -2sc 0 0 

s2 c2 2sc 0 0 

T= SC -SC c2-s2 0 0 , (7) 

0 0 0 c -s 

0 0 0 s c 
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TYPICAL LAWNA 

( 1 ,?, 3 a- LAHINA REFERENCE AXES 

__------- 

LAMINATE HID-PLANE 

f x. y ; z I- LAMNATE REFERENCE AXES 

Fig. 1. Laminate geometry with positive set of lamina/laminate reference axes, displacement components 
and fibre orientation. 

in which c = cos ~1 and s = sin u, and a is the angle The stress-strain constitutive relations with refer- 
which the 1 and 2 directions make with the x and y ence to the laminate axes are shown in the follow- 
axes, respectively. ing expression by making use of relations (4), (6) 

The relationship between engineering and tensorial and (9): 
strain vectors is given by 

cl = T-‘CRTR-Is. 
8’ = R8;, (8) 

and 

e = Rs, 

or 

a,$ = R- ‘a, 

in which the R matrix is defined as 

It can easily be proved that 

(9a) RTR-’ = T-1’. 

(9b) Thus, the reIation (11) can be rewritten as 

a=Qa, 

R= 

1 0 0 0 0 

0 1 0 0 0 

00200 

00020 

00002 

-I 
in which 

Q = T-‘a-‘T, (13’4 

(t0) The superscripts T and - 1 represent the transpose 
and inverse of a matrix, respectively, and the inverse 
of the transformation matrix is obtained by replacing 
ar by -a in eqn (7). After triple product of the T-‘, 

(11) 

(12) 

fW 

CAS 36/3-s 
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C and T-l’ matrices, the Q matrix coefficients are 
obtained and are defined as 

Q,, = C,,c4 + 2(C,* + 4C,,)s2c2 + C,,s’ 

Qn = C,,(c4 + s4) + (C,, + C,, + 4C,,)s*c* 

Q,, = (C,, - C,, - 2C,,)c3s + (C,, - C,, + 2C&‘c 

Q22=C,,s4+C22c4+(2C,,+4C33)s2c2 

Q23 = (Cl, - Cl2 - 2C33)S3C + (Cl2 - C22 + 2C3r)c3S 

Q,, = (C,, - 2C12 + 2C2, - 2C,,)c2s2 + C3,(c4 + s4) 

2 QM=C,c +C,,s 2 

Q45 = (CX - C&r 

Qss = C,s2 + C,,c’ 

Q, = Q,,, i,j=1,2,3,4,5. (14) 

Thus, the strain relations for an orthotropic lamina 
with reference to the laminate axes are defined as 

Q,, Q12 Q13 0 0 

Q22 Q23 0 0 

Q33 0 0 

Q44 Q45 

Symm. QSS 

-1 

2.3. Strain expressions 

The strains associated 
(1) are as follows: 

(15) 

with displacements in eqn 

E, = EA + ZK, + Z*&$, + Z3K: 

E,. = Eye + ZK,. + Z2E;$ + Z’K.; 

EL = 0 

UW 

where 

K* = [K:, $9 
ae* de* de* ae,* T ++-_+~ 
ax ay ay 1 

+* = [4:, ~,+IT= [3e,+, 3ey 

$ = w,, $,lT = IW, WT (16b) 

and T represents transpose of an array. 
The generalized strain vector 5 corresponding to 

the middle surface may be written as 

~=[~~~,&~o,E,~~,E~,E~,E:~,K,,K~,K,~,K,*, 

KY+, K,,s, 4x> dJy7 $x9 VQyr 4,*3 &,*I’. (17) 

2.4. Equations of motion 

The Hamilton variational principle is used here to 
derive the laminate equations of motion. The mathe- 
matical statement of the Hamilton principle in the 
absence of damping can be written as 

s 

12 
6(l-I--E)dt =O, (18) 

11 

where TI and E are the total potential energy and the 
kinetic energy, respectively. 

The potential energy fI of the plate with volume V 
and surface area A can be written as 

n=u-w 

or 

TI=l,2~,s%dV-lu’PdA, (19) 

where U is the strain energy of the plate; W represents 
the work done by externally applied forces; P is the 
vector of force intensities corresponding to laminate 
direction (x, y, z); and II = [u, v, w]’ is the displace- 
ment of any generic point (x, y, z) in space. The 
expressions for the strain components given by eqn 
(16) are substituted in the energy expression (19). An 
explicit integration through the laminate thickness is 
then carried out to obtain the following expression: 

l-I= 1,2//-‘t?dA +‘FdA, (20) 

in which F is the vector of load per unit area 
corresponding to the direction of generalized dis- 
placement vector d and the new vector 5 is defined in 
the following manner: 

6 = [N,, NY, N,,, N,*, N:, IV,,, M,, MY, Mx,, 

W’, Mf, MX*yr Q,, Q,, &, S,., Q:, Q.:l’. (21) 
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Equation (20) defines the two-dimensional form of 
the potential energy in which the relationship be- 
tween 5 and Z will now define the two-dimensional 
laminate constitutive relations. On integration of 
stresses over the laminate thickness, these relations 
are obtained. The following 18 stress resultants for 
the NL-layered laminate are thus derived: 

(224 

(22b) 

(224 

The stresses in eqns (22) are replaced with mid- 
plane strains and then the following relations between 
mid-plane stress resultants and strains are obtained: 

Ed 
X 

et II (234 
K 

K* 

Q ,vL Qm,K Qm,4 QmJ-4 

0 i 

s =I 
Q* 

L=l 

(23b) 

where i, j = 1,2,3 and I, m = 4, 5. 
The terms E,,, et, K, K *, 4, t$* and $ are defined 

in eqn (16) and 

M = W,, MY, M,,l’ 

M* = [M.:, M;r , M$]’ 

N = IN,, NY, NJ 

N* = [N: , NJ’, N.;J’ 

Q = KL Q,,lr 

Q* =[Q:,Q.Fl' 

s = [S,,S,.]T. (24) 

In all of the above relations NL is the number of 
layers and 

Hi = (hi+, - hi)/& i = 1,2, 3,4, 5,6,7. (25) 

The above relations can be concisely expressed as 

or 

Thus. 

N 

N* 
- 
M 

M+ 

5 

s 

Q* 

= 

J 

D, JA 0 I I 
-‘-‘_ 

D; D, 0 

I I 

0 0 D, 

e, 

El? - 
K 

K* 

Y- 
* 
f?* 

(26) 

. (27) 

with the assumed displacement model, the 
various rigidity matrices derived are 

D,: membrane; D,: membrane-flexure coupling 

Db : flexure; D, : shear. 

2.5. Interlaminar stresses 

The interlaminar transverse stresses (rrr , T,,~, a,) 
cannot be accurately estimated by eqn (15). This is 
mainly due to the fact that the constitutive laws are 
discontinuous across the laminae interfaces whereas 
interlaminar stresses have to maintain continuity 
across the interfaces. For these reasons, the interlam- 
inar stresses between the layers ‘L’ and ‘L + 1’ are 
obtained by integrating the following three equi- 
librium equations of three-dimensional elasticity for 
each layer over the lamina thickness and summing 
over layers 1 to ‘L’: 

aa, 37, k, 
jp-+aZ=O ay 
c%+da,+~=o 

ay 
~+%+$zo. 

ay (28) 

The above equilibrium equations without body forces 
are rewritten in the following form for computation: 
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2.6. Kinetic energy 

The kinetic energy of the body is given by 

E = l/2 ti’pti dv, (30a) 

where i is the velocity vector of any generic point 
(x, y, z) in space and p is the mass density of the 
material. The expression for it is substituted in eqn 
(30) using eqn (1) and, on carrying out explicit 
integration through the thickness of the laminate, this 
relation can be reduced into a two-dimensional form 
as 

E = l/2 
i 

d’-tird dA, 
A 

where the inertia matrix rir is given as 

IO 0 0 I, 0 I, 0 I, 0 

0 I, 0 0 Zl 0 12 0 13 

0 0 I, 0 0 0 0 0 0 

I, 0 0 I, 0 z, 0 z4 0 

0 I, 0 0 I* 0 I3 0 I4 

I, 0 0 13 0 14 0 z, 0 

0 12 0 0 I, 0 14 0 I, 

z, 0 0 14 0 I, 0 16 0 

0 z, 0 0 14 0 I, 0 I6 

in which 

s 

hL+I 
zipLdz, i = 0,6, 

L=l h,. 

W’b) 

(3Oc) 

(304 

and pL is the material density of the Lth layer. 
The substitution of eqns (20), (26) and (30) into the 

mathematical statement of the Hamilton principle 
gives 

- 

s A 
iFdA - 1,2~/%irddA,dt =O. (31) 

The application of this principle furnishes the equa- 
tions of motion of any given system. 

3. FINITE ELEMENT DISCRETIZATION 

3.1. Discretization in space 

In standard finite element technique, the total 
solution domain is discretized into ‘NE’ subdomains 
(elements), such that 

Wd) = f l-I,(d) 
e=l 

E(d) = f E,(d), 
==I 

(32) 

where lT and lI, are the total potential energies of 
the system and the element, respectively, and E 
and E, are the kinetic energies of the system 
and element, respectively. The basic discretization 
process is carried over an element only and then 
the resulting equations are summed over the entire 
domain. 

3.2. Displacement function 

The continuum displacement vector within the 
element is then discretized such that 

d(t) = y Ni(x, y)(W), 
i-1 

(33) 

where Ni is the interpolation function corresponding 
to node i, NN is the number of nodes in the element 
and d, is the vector of nodal degrees of freedom 
corresponding to node i, such that 

di= Laoit roi, woi, oxi, Byi, ut, rL, 62, e,‘,]r. (34) 

Equation (33) can be written as 

d(t) = Na,(t), (35) 

where N is the shape function matrix given by 

N=[N,,N,...N,l (36) 

and a, is the element displacement vector which is 
written as 

ae = [d:, d: . . . diNI’. (37) 

Knowing the generalized displacement vector d at all 
points within the element, the generalized strain at 
any point, given by eqn (16), can be expressed in 
matrix form as follows: 

d = f Bid,. 
i=l 

(38) 

Equation (38) is also written in an alternative form 
as 

in which 

C = Ba,, 

B=[B,,B1...BNN]. 

(3W 

(39b) 
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The non-zero elements of the strain-displacement The first variation of kinetic energy, SE, for an 
matrix B,, which has a dimension of (18 x 9), are element [ref. eqn (30)] can be written in matrix form 
given below. as 

B2.2 = 4, = 4, = B6.6 = 4s = $4 = b.9 (45) 

= B 12.8 = B,4,3 = 2 is the element consistent mass matrix, ii is the vector 
of element nodal acceleration, N is the shape function 

Brj.4 = gtd.5 = Ni matrix and 51 is the inertia matrix. 
When expressions for SU, 6 W and 6E from eqns 

B 15.6 = 46.7 = 24 
(43) (44) and (45) are substituted in eqn (18) or (31), 
we obtain 

4x, = 4s.9 = 3N,. WI 

s 

12 
sa,T[M,ii,+K,a,-f,(t)]dt =O. (46) 

3.3. Discrete equations of motion 0 

The potential energy for an element ‘e’ can be 8’ 
expressed in terms of the internal strain energy U, and 

mce this relation is valid for every virtual displace- 

the external work done W,, such that 
ment 6a,, one obtains 

l-4= u,- we (41) 

For an element, the internal strain energy [ref. eqns 
(20) and (31)] can be written as 

U, = 1/2afK,a, (42) 

and the first variation of internal strain energy can be 
written in matrix form as 

where 

XJ, = 6a,TK,a,, (43a) 

K,= BrDBdA 
s A 

(43b) 

is the element stiffness matrix. 
The first variation of work done on the laminate by 

the external loads, 6 W, for an element [ref. eqns (20) 
and (31)] can be written in matrix form as 

SW, = 6aTf,(t), W4 

Mji, + K,a, = f,(t), 

which is the finite element equation of motion of one 
element of the laminate. The element equations are 
then assembled as per eqn (32) to yield the global 
equations of motion for the entire laminate, i.e. 

MI + Ka = f(r), (48) 

in which P and a are the global vectors of unknown 
acceleration and displacement, respectively. The 
global stiffness matrix K, the global mass matrix M 
and the global nodal force vector f(r) are computed 
in the usual manner as follows: 

M=fM, 
e=, 

K=fK, 
e-1 

f(t) = f f,(t). 
e-l 

(4% 

in which the element equivalent nodal load vector 
3.4. Element stiffness matrix 

f,(t) = 
s 

NrF dA Wb) 
The computation of element stiffness matrix K’ 

A from eqn (43) is economized by explicit multiplication 

and of matrices Bi, D and Bj matrices instead of carrying 
out the full matrix multiplication of the triple 

F = LO, q, 0, 0, 0, 0, 0, Olr, (k) product. In addition, due to symmetry of the stiffness 
matrix, only the blocks K, laying on one side of the 

where q is the intensity of the applied transverse main diagonal are formed. The integral is evaluated 
load. by selective integration technique with 3 x 3 and 
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2 x 2 Gauss quadrature rules for membrane-flexure The integral of eqn (55) is evaluated numerically 
and shear parts, respectively, as follows: using the Gauss quadrature rule as follows: 

B’DB,]Jl d< drj (50) 

K, = i i W, W,]J]B,rDB,, (51) 
o=I b=l 

where W, and W, are the weighting coefficients, g is 
the number of numerical quadrature points in each of 
the two directions (x, y), and (JI is the determinant of 
the standard Jacobian matrix. The subscripts i and j 
vary from one node to a number of nodes per 
element. The matrices Bi and D are given by eqns (40) 
and (26), respectively. 

3.5. Element mass matrix 

The computation of the consistent mass matrix 
M from eqn (45) is evaluated using the 3 x 3 Gauss 
quadrature rule as follows: 

+I +I 

M’, = ss NTriiN,]J] dr drj (52) 
-I -1 

M; = f i W, W,IJjN’fiN,, 
II=, b=l 

(53) 

where the subscripts i and j vary from one node to 
number of nodes per element and Ni is the interpo- 
lation function corresponding to node i. 

Several alternatives for obtaining the diagonal 
mass matrix of isoparametric elements were investi- 
gated by Hinton et al. [32]. The most efficient scheme 
found to date and which is used herein can be 
summarized as follows [33]. 

4. 

Compute only the diagonal coefficients of the 
consistent mass matrix, M;. 
Compute the total mass of the element, 
M’ = j,, p dv. 
Compute a quantity S by adding only the 
coefficients MFi associated with translation 
degrees of freedom in one direction. 
Scale all the diagonal coefficients M; by multi- 
plying them with the ratio Me/S, thus preserving 
the total mass and rotary inertia of the element. 

3.6. Element load vector 

The consistent load vector f, due to body force 

q = q0 + P,, sin F sin 7 (54) 

is given by 

fi(t) = s NJF dA. (55) 
A 

fi= i i W, W,IJ[N:[O, 0, l,O, O,O, O,O, 017 
a=l b-l 

m7[x 
x 

my 
qO+ Pmsin- sin- 

b 
, (56) 

a 

where x and y are the Gauss point coordinates, and 
m and n are the usual harmonic numbers. 

To complete the discretization, we must now 
approximate the time derivatives appearing in eqn 
(48). Here we use the Newmark or Wilson-B direct 
integration methods [34,35]. 

3.1. Newmark direct time integration method 

In this scheme the vectors d and a at the end of a 
time step At are expressed in the form 

a”+’ = a” + AtB” + (At)‘[(1/2 - a)&” + aji”+‘], (57) 

where a and 6 are parameters that control the accu- 
racy and stability of the scheme and the superscript 
n indicates that the solution is evaluated at the nth 
time step. The choice of a = l/4 and 6 = l/2, which 
corresponds to a constant average-acceleration 
scheme, is known to give an unconditionally stable 
scheme in linear problems [35]. 

Rearranging eqns (48) and (57), we arrive at 

where 

Ran+’ = f 

K=K+a,,M 

f=f’+M(a,a”+a,V’+a,I”) 

a, = l/(aAt2) 

a, = a, At 

a, = 1/(2a) - 1. 

(58) 

(59) 

Once the solution a is known at t”+‘, the velocity a 
and acceleration ii at t”+ ’ can be computed by 
rearranging expressions in eqn (57). 

jjn+l = ao(an+’ _ a”) _ a,$ _ a,3 

where 

a3 = At(1 - 6) and a., = 6 At. (60) 
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3.8. Wilson-0 method 

Here eqn (48) is first written at time t”+’ = t + 0At. 
If T denotes increase in time, where 0 Q T 6 BAt, then 
acceleration at time t + z is expressed in the form 

. . 
ar+r = I, + r/(0 At)[ii,+Od, -&I. (61) 

where 0 is the parameter that controls the accuracy 
and stability of the scheme. 0 >, 1.37 is known to give 
an unconditionally stable scheme and usually a value 
of 8 = 1.4 is taken. 

On integrating twice, the above expression will give 

a,,, = a, + tit, + r*/(20At)[i,+,, - r,] 

a,+, = a, + TB, + r2/2ii, + z3/(60At)[ii,+,,, - i,]. 

(62) 

Rearranging eqns (48) and (62) will give 

(63) 

where 

R=R+u,M 

? I+OAI =r,+ e(r,+A,- f,) + M(u,a, + a, 9, + 2%) 

a, = 6/(6At)* 

a, = a,fIAt. (64) 

Once the solution a is known at t + BAt, the acceler- 
ation, velocity and displacement at time t + At can be 
determined from 

%+A, =a2(ar+OAr-al) +a3PI,+a4H! 

ai ,+Ar=g,+a~(ir+~Ar+ir) 

a r+Ar=a,fL\tB,+a,(ii,+,A,+211,), 

where 

a, = ao/e 

a3 = -a,/8 

a, = 1 - 310 

a5 = At/2 

a6 = At*/6. (65) 

All the operations indicated above, except eqns (60) 
and (65) can be carried out at the element level and 
the assembled form of eqns (58) and (63) can be 
obtained for the whole problem. The equations 
are then solved for the global solution vector after 
imposing the boundary conditions of the problem. 

4. NUMERICAL EXAMPLES AND DISCUSSION 

4.1. Preliminary remarks 

In the present study the nine-noded Lagrangian 
quadrilateral isoparametric element was employed. 

Selective integration scheme, based on Gauss quad- 
rature rules, viz. 3 x 3 for membrane, flexure and 
coupling between membrane and flexure terms, and 
2 x 2 for shear terms in the energy expression, was 
employed in the evaluation of the element stiffness 
property. All the computations were carried in single 
precision on a CDC Cyber 180/840 computer. Due to 
the biaxial symmetry of the problems discussed, only 
quarter plates were analysed using zero initial con- 
ditions, i.e. displacement, velocity and acceleration 
at initial time were considered as zero. All the stress 
values were reported at the Gauss points nearest to 
their maximum value locations. For symmetric lami- 
nates, the inplane displacements and their higher- 
order terms were not included in the analysis and 
only five d.o.f./node displacement model were used to 
economize on computation time. 

The following four sets of data were used in 
obtaining the numerical results. 

Data 1: Square isotropic plate: 

a=25cm, h=5cm 

E = 2.1 x lo6 N/cm2, q0 = 10 N/cm* 

p = 8 x 10M6 N-sec2/cm4, v = 0.25. 

Data 2: Square plate: 

a =25cm, h =5cm, E,/E2=25 

E2 = 2.1 x lo6 N/cm*, q0 = 10 N/cm*, 

v,* = 0.25 

G,, = G,, = G23 = 0.5E2, 

p = 8 x 10-6N-sec2/cm4. 

Data 3: Square plate: 

Data 4: 

a = 14Omm, h =4.29mm 

E, = 40 GPa, E, = 8.27 GPa, 

p = 1901.5 kg/m3 

G,, = G,, = 4.13 GPa, 

G,, = 0.03 GPa, v12 = 0.25. 

Square plate: 

a=25cm, h=5cm, q,,=lON/cm* 

Face sheets: 

E, = 1.308 x lo6 N/cm*, v,* = 0.28 

E2 = 1.06 x 1 O6 N/cm*, 

p = 1.58 x 10-j N-sec2/cm4 

G,* = G,, = 0.6 x lo6 N/cm*, 

G23 = 0.39 x IO6 N/cm* 

Core: p = 1.009 x 10-6N-sec2/cm4 

G,, = 5.206 x 104 N/cm*, 

G23 = 1.772 x 104 N/cm*. 



410 T. KANT et al. 

Table 1. Estimates of critical time steps (usec) 

Data 1 Data 2 Data 4 Data 3 

IX1 5.86 1.17 2.31 Mesh A 0.425 
2x2 3.42 0.68 1.65 Mesh B 0.120 

41.1. Boundary conditions. 

Simply supported: 

along X-axis u0 = w0 = OX = uo* = 0.: = 0 

along Y-axis o0 = w, = 0,. = vo* = 0; = 0. 

Clamped: 

all edges 

Along the centre line in the case of quarter plate 
symmetry: 

along X-axis v0 = e, = vo* = e: = 0 

along Y-axis U, = 8, = u; = e: = 0. 

In selecting the time step At, the following formula, 
due to Tsui and Tong, which gives the critical time 
step for the explicit scheme was used as a guide [36]: 

PU -VIZ 
1 

Ii2 

~,{2+n*/12(1-v~)[1+1.5(Ax/h)~1} 
Ax, 

where Ax is the minimum distance between the finite 
element node points. 

4.2. Examples and discussion 

4.2.1. Example 1. A square simply supported 
isotropic plate (Data 1) subjected to suddenly applied 
pulse loading is considered in order to investigate the 
numerical convergence, the accuracy of the Newmark 
and Wilson-8 schemes, the effect of mesh size and the 
consistent/diagonal mass matrices. 

Tables 2 and 3 present maximum centre deflection 
and maximum centre normal stress for different mesh 
and time step lengths. Figure 2 shows the con- 
vergence of the Newmark and Wilson-0 schemes; 
Fig. 3 shows the effect of consistent mass matrix and 
diagonal mass matrix on transverse deflection. 

It can be seen from these tables and plots that, as 
time step length increases, the Newmark scheme gives 
better results compared to the Wilson-0 scheme. It 
can also be seen that no appreciable different in 
results is obtained by considering different mass 
matrices. Figures 4 and 5 show comparison plots of 
the centre deflection and centre normal stress versus 
time for the Mindlin plate solution [20] and the 
HOSD theory solution [29]. 

4.2.2. Example 2. A two-layer orthotropic cross- 
ply [O/90’] simply supported square plate (Data 2) 
subjected to a suddenly applied sinusoidally dis- 
tributed pulse loading given by 

q = qO sin(nx/a)sin(ny/a) 

is considered. Table 4 presents the maximum centre 
deflection and maximum stresses for different mesh 
and time step lengths. Table 5 gives comparison of 
stresses at different time steps with closed form 
solution of Mindlin theory [19]. 

4.2.3. Example 3. A three-layer orthotropic 
[O/90/0’] clamped plate (Data 2) subjected to a 

Table 2. Convergence of maximum central values for Data 1, Newmark scheme? 

1 x 1 Mesh 2 x 2 Mesh 3 x 3 Mesh 

At oC=c) 40 10 5 40 10 5 5 
Diagonal mass 

w (x 1O’cm) 1 S833 1.6818 1.6919 1.5666 1.6721 1.6609 1.6605 
(160) (160) (140) (160) (160) (160) (160) 

o: (N/cm2) 147.90 158.01 158.86 146.68 161.91 158.83 158.91 
(160) (160) (140) (160) (160) (160) (160) 

Consistent mass 
w (x 1O’cm) I .5908 1.6751 1.6695 1.5660 1.6758 

(160) (160) (150) (160) (160) 
u: (N/cm2) 148.59 157.09 154.89 146.91 162.68 - 

(160) (140) (150) (160) (160) 

t Figures in parenthesis indicate time at which maxima occur. 

Table 3. Convergence of maximum central values for Data 1, Wilson-8 scheme, diagonal mass7 

Mesh 1x1 2x2 

At (/=c) 40 IO 5 40 10 5 
w (x 1O’cm) 1.5092 1.6180 I .6782 1.5782 1.6489 1.6760 

(200) (160) (140) (200) (160) (160) 
u ;. (N/cm2) 140.63 158.01 157.33 135.21 153.83 160.60 

(200) (160) (140) (200) (160) (160) 

t Figures in parenthesis indicate time at which maxima occur. 
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Fig. 2a, Stability of Newmark algorithm for a simply supported isotropic square plate subjected to 
suddenly applied pulse loading (Data 1, 2 x 2 me&, diagonal mass). 

Fig. 2b. 
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Stability of Wilson-8 algorithm for a simply supported isotropic square plate subjected to 
suddenly applied pulse loading (Data 1, 2 x 2 mesh, diagonal mass). 

suddenly applied pulse loading is considered. Figure tion and very low centre normal stress compared to 
6 shows a comparison plot with Mindlin solution 1201 the HOSD theory. 
and also with HOSD theory solution[29]. It can be 4.2.4. Example 4. A four-layer orthotropic 
seen that Mindlin solution predicts low centre deflec- [O/~/~/O01 simply supported plate (Data 2) subjected 
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Fig. 3a. Centre deflection versus time for isotropic simply supported square plate subjected to suddenly 
applied pulse loading (Data 1, 2 x 2 mesh). 
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Fig. 3b. Centre deflection versus time for isotropic simply supported square plate subjected to suddenly 
applied pulse loading (Data I, 1 x 1 mesh). 
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0.00 

TIME IN MICRO SECOND 

Fig. 4. Centre deflection versus time for isotropic simply supported square plate subjected to suddenly 
applied pulse loading (Data 1, 1 x 1 mesh). 

to suddenly applied pulse loading is considered. matrices. Figure 7 shows a comparison plot of centre 
Table 6 gives the maximum centre deflection and deflection and centre normal stress with the present 
maximum centre normal stress for different meshes, HOSD theory using explicit time integration 1291. The 
time step lengths, and consistent/diagonal mass effect of consistent and diagonal mass is also shown. 

Fig. 5. Centre normal stress versus time for isotropic simply supported square plate subjected to suddenly 
applied pulse loading (Data 1, 2 x 2 mesh). 
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Table 4. Convergence of maximum deflection and stresses for two-layer cross-ply (O/90’) plate (Data 2) under suddenly 
applied sinusoidal load; Newmark scheme, diagonal mass? 

I x 1 Mesh 2 x 2 Mesh 

At (rtsec) 
w (x 103cm) 

ut. (N/cm2) 

T,, (N/cm’) 

r,,. (N/cm2) 

40 20 5 2.5 40 
0.4211 0.454 1 0.4674 0.4670 0.4235 
(120) (Q.0) (100) (100) (120) 

320.04 345.06 352.90 355.35 321.45 
(120) (120) (100) (100) (120) 
17.804 19.083 19.845 19.960 19.608 
(120) (120) (110) (100) (120) 

26.465 28.054 29.133 26.472 
1120) (120) - (100) (120) 

20 5 
0.4516 0.4685 
(120) (100) 

343.24 355.26 
(120) (100) 

21.117 21.720 
(120) (100) 

28.175 29.280 
(120) (100) 

t Figures in parenthesis indicate time at which maxima occur. 

Table 5. Comparision of stresses obtained in the present study with those by Reissner-Mindiin plate theory for two-layer 
(0/9~) simply-supports plate (Data 2) under suddenly applied sinusoidal load? 

i or (N/cm*) r,, (N/cm’) r,, (N/cm2 ) 
(fi set) Present CFS [19] Present CFS [19] Present CFS [19] 

20 30.03 28.48 1.937 1.611 
40 111.68 113.60 9.228 8.506 
60 224.4 I 227.20 18.190 16.470 
80 316.78 319.10 26.050 23.850 

100 355.26 357.80 29.280 26.270 
120 326.87 323.10 26.646 24.120 
140 237.08 233.00 19.710 17.050 
160 130.17 119.60 10.128 8.848 
180 35.39 30.40 2.976 2.029 
200 3.94 0.742 0.304 0.248 

2.547 
6.991 

14.067 
19.450 
21.720 
20.295 
14.408 
8.583 
2.222 

- 1.027 

2.252 
5.891 

12.340 
16.340 
18.940 
15.960 
12.580 
6.533 
2.233 
0.564 

$ Newmark scheme; diagonat mass; 2 x 2 mesh; At = 5 psec. 

0.40 - ND, At&&-se 
--- Explidt IMJ 

0.36 
------ R&y Wl 

-o.oI~,,,,,I’,I”,II’I”‘I”‘I”‘I”‘I 
0 20 40 60 80 loo 120 140 160 

TIME IN MICRO SECOND 

Fig. 6a. Centre deilection versus time for three-layered (O/90/O”) simply supported square plate subjected 
to suddenly applied pulse loading (Data 2, 2 x 2 mesh). 
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Fig. 6b. Centre normal stress versus time for three-layered (O/90/0’) clamped square plate subjected to 

suddenly applied pulse loading (Data 2, 2 x 2 mesh). 
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4.25. Example 5. A three-layer graphite/epoxy travelled by the impactor, w is the displacement of the 
[O/90/0”] clamped plate (Data 3) subjected to central centre of the plate; and p is an exponent which 
impact loading is of a small cylindrically shaped depends upon the geometry of the impactor and is set 
blunt-ended projectile is considered. The blunt-ended equal to 1.5 [38]. Figure 8 shows the finite element 
impactor has the following characteristics: mesh considered for the analysis. 

diameter = 9.525 mm; mass = 0.01417 kg. 

The interaction force between the impactor and the 
laminate is assumed to be uniformly distributed over 
the contact area and is calculated by the Hertz law of 
contact, which is written as [37] 

F=H(r -w)“, 

Figure 9a shows a comparison of centre transverse 
deflection with experimental results as well as finite 
element results [38] using the theory of Yang et al. [5]. 
Figures 9b and c give centre normal stress a:“” and 
applied distributed load as a function of time. The 
advantage of the Newmark scheme is quite evident 
in this problem. From Fig. 9b it can be seen that 
the Newmark scheme gives accurate results for 
At = 25 psec, which is approximately 200 times At,, 
of the explicit scheme. 

where F is the impactor-plate interaction force, H is 
a constant which depends upon the plate material and 
is chosen to be equal to lo* N/m’,5, r is the distance 

4.2.6. Example 6. A [0/9O/core/90/0”] simply sup- 
ported sandwich plate (Data 4) subjected to suddenly 
applied pulse loading is analysed to consider the effect 

Table 6. Convergence of maximum central values for Data 2, Newmark scheme, O/90/90/0’ plate? 

1 x 1 Mesh 2 x 2 Mesh 

At (J set) 40 10 5 40 10 5 
Diagonal mass 

w(x103cm) 0.4369 0.4793 0.4806 0.4312 0.4806 0.4773 
(120) (80) (80) (120) (80) (80) 

0: (N/cm’) 413.41 454.76 458.75 397.46 433.18 426.74 
(120) (80) (80) (120) (80) (80) 

Consistent mass 
w (x 103cm) 0.4404 0.4806 0.4907 0.4321 0.4770 0.4756 

(120) (80) (80) (120) (80) (80) 
0: (N/cm*) 415.44 454.92 468.61 398.76 429.35 422.20 

(120) (80) (80) (120) (80) (80) 

t Figures in parenthesis indicate time at which maxima occur. 
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deflection versus time for four-layered (O/90/90/0”) simply supported square plate 
subjected to suddenly applied pulse loading (Data 2, 2 x 2 mesh). 

-50J 
TIME IN MICRO SECOND 

Centre normal stress versus time for four-layered (O/90/90/0’) simply supported square plate 
subjected to suddenly applied pulse loading (Data 2, 2 x 2 mesh). 
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Fig. 8. Finite element mesh for projectile problem. 
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Fig. 9a. Centre deflection versus time for three-layered (O/90/0’) clamped square plate (Data 3). 
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Fig. 9b. Centre normal stress versus time for three-layered (O/90/0”) clamped square plate (Data 3). 
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Fig. 9c. Applied force as a function of time for a three-layered laminate (O/90/0*) (/I = 4.29 mm, 
u = 22.6 m/set, a = 140 mm, Data 3). 
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Fig. 10a. Centre deflection versus time for a simply supported square sandwich (0/9O/core/9O/P) plate 
under suddenly applied pulse loading (Data 4, 2 x 2 mesh, Newmark scheme, diagonal mass, t = 10 psec). 
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TlME IN MICRO SECOND 

Fig. lob. Centre normal stress versus time for a simply supported square sandwich (O/!30/core/90/O”) plate 
under suddenly applied pulse loading (Data 4, 2 x 2 mesh, Newmark scheme, diagonal mass, I = 10 psec). 

of shear rigidities of the stiff layers on the dynamic 
response. 

Figure 10 shows maximum centre deflection and 
maximum centre normal stress a:. It can be seen that 
the effect of neglecting shear rigidities of stiff layers 
is to overestimate the maximum centre deflection by 
approximately 25-30%, whereas there is no appreci- 
able difference in the centre normal stress. 

5. CONCLUSIONS 

A higher order shear deformable theory with Co 
plate element is employed for the transient dynamic 
analysis of composite plates. Through the compara- 
tive study done here, we clearly see the importance of 
this theory for highly anisotropic plates. In contrast 
to the classical shear deformation theory, the present 
theory does not require a shear correction coefficient 
due to the more realistic representation of cross- 
sectional deformation. 

The advantages in the use of the higher order 
theory presented here over the Reissner/Mindlin 
theory is not quite evident for isotropic plates, but 
such usage is shown to be very effective in the analysis 
of nonhomogeneous, anisotropic, composite or sand- 
wich systems, as the mathematical model on which 
this theory is based is far superior to the Mindlin 
theory. 

Also, it has been shown that consistent and diag- 
onal mass matrices give identical results. For larger 
time step lengths the Newmark scheme is found to be 

more accurate than the Wilson-0 scheme. The advan- 
tage of using an implicit scheme is shown by taking 
a time step of the order of l&200 times the critical 
time step length of the explicit scheme, depending 
upon the problem, and by obtaining quite accurate 
results, having an error of f 10%. 
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