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Abstract-Discrete methods for practical coupled three-dimensional fluid-structure interaction problems 
are developed. A Co explicitly integrated two-dimensional degenerate shell element and a three-dimen- 
sional fluid element are coupled to study shell dynamics, fluid transient and coupled shell-fluid interaction 
problems. The method of partitioning is used to integrate the fluid and shell meshes in a staggered fashion 
in an optimum manner. Effective explicit-implicit partitioning is shown to achieve high computational 
efficiency for this type of problem. 

1. INTRODUCTION 

Fluid-structure interaction problems have attracted a 
great deal of attention from the nuclear, space and 
offshore industries. The important areas of appli- 
cations are the analysis of liquid containers subjected 
to earthquake ground motion, resulting in impulsive 
and sloshing motion of the contained liquid, analysis 
of submerged structures and components subjected to 
pressure pulses generated due to accidents or other- 
wise, and analysis of fluid reservoirs supposed to 
contain accident-induced high-pressure fluid. Most of 
the attempts for the transient analysis of such prob- 
lems have been limited to simplified two-dimenbional 
studies. The three-dimensional transient analysis 
poses problems in terms of size of the problem and 
large storage and CPU time required by the com- 
puter. The analysis is prone to further difficulties in 
terms of storage space/CPU time if the structure 
shows nonlinear behaviour and/or if the fluid under- 
goes large motions or if the fluid behaviour is gov- 
erned by some additional field variables such as 
temperature, phase, etc. Fluid-structure interaction 
studies are characterized by the oscillations induced 
in fluid and its effect on the surrounding struc- 
tures. Moreover, the structure displacements also 
alter the fluid response. Thus this phenomenon has 
to be studied in a coupled manner. Some simplified 
approaches are also available in which the fluid- 
structure interaction problem is studied in a decou- 
pled manner. The fluid response is first obtained 
assuming the structure to be rigid and the resulting 
pressure field is imposed on the structure to obtain 
the structural response. This approach overestimates 
the structural response in many cases. Moreover, if 
coupled modes are excited, this approach gives un- 
conservative results [ 141. Another simplified method 
of design has been to use the added mass approach, 

treating the fluid as incompressible. This approach 
will be suitable for a case when fluid oscillation 
frequencies are sufficiently separated from a struc- 
ture’s predominant frequencies. Thus there is a need 
to study the fluid-structure interaction problems in a 
coupled manner. 

Earlier studies on fluid-structure interaction prob- 
lems were made by Bathe and Hahn [l], Liu [4], 
Akkas et al. [5], Wilson and Khalvati [6], Shantaram 
et al. [7] and Deshpande et al. [8]. The basic method- 
ology in these studies was to modify an existing 
structure dynamics code to account for the effect of 
fluid motion. In this method the shear modulus is 
set to zero in the fluid domain. The fluid-structure 
interface is constrained to have normal displacement 
continuity. The eigenvalue analysis indicates the pres- 
ence of zero energy modes as described by Akkas 
et al. [5]. Wilson and Khalvati [6] have suggested a 
method to select an optimum penalty parameter so 
that these spurious modes can be suppressed. In this 
approach an irrotational flow condition is enforced. 
Deshpande et al. [8] have also come up with an 
optimum penalty parameter to couple the structure 
and fluid meshes which is a function of the density of 
fluid and the acoustic speed in the fluid medium. 
Au-Yang and Galford [9] define this method as struc- 
ture mechanics priority or continuum mechanics 
approach. This approach is advantageous only for a 
limited class of problems, such as the linear behaviour 
of a fluid. Moreover, it does not prove to be economi- 
cal for a three-dimensional transient analysis, even in 
the case of a linear problem, due to the large size of 
the fluid domain; the number of discrete equations 
becomes very large. 

Another approach with which to tackle such a 
coupled problem is to couple a structure dynamics 
code with a fluid transient code as described in [g-14]. 
Historically, this second approach is older than the 

515 



516 R. K. SINGH et al. 

first approach. However it has not gained popularity 
until recently. The major limitation of this method is 
that the resulting coupled equations from the two 
fields make the system of equations unsymmetric. 
The bandwidth becomes very large due to fluid- 
structure coupling. However, the recent development 
of a partitioning method with a staggered solution 
approach as suggested by Park and Felippa [lo], 
Paul [ 1 l] and Felippa and Geers [12] makes this 
approach very attractive. The major advantage of 
this method is that the coupled field problems can 
be tackled in a sequential manner. The analysis is 
carried out for each field and interaction effect is 
accounted for by updating the field variables of both 
the fields in the respective coupling terms. Though the 
method is iterative the number of variables in the 
fluid is one at each node for a linear fluid behaviour. 
For three-dimensional fluid-structure interaction 
studies this is quite beneficial. Another advantage of 
this approach is that it is modular in nature. Various 
fluid transient codes can be coupled to a structure 
dynamics code to study the interaction effects. Fur- 
ther, the modular adaptation makes this approach 
very attractive in a parallel processing environment. 

The present paper demonstrates the capability to 
analyse three-dimensional fluid-structure interaction 
problems in an optimum manner by the method of 
partitioning. The structure response is obtained 
through the use of Co degenerate shell elements. This 
element, with associated through the thickness nu- 
merical integration, was introduced by Ahmad et 
al. [15] for linear static analysis. A number of defi- 
ciencies have been found in this element in the last 
decade. Studies with regard to locking behaviour and 
zero energy modes have helped to improve the per- 
formance of this element. Further, this element has 
not been used extensively to tackle problems of shell 
dynamics and coupled problems due to its cumber- 
some formulation requiring large computational 
time. Efficient two-dimensional degenerate shell 
elements based on explicit through thickness inte- 
gration due to Belytschko [16] and Milford and 
Schnobrich [ 171 have recently been developed. The 
present paper demonstrates the capability of its effec- 
tive implementation for coupled dynamic problems. 
The fluid transient behaviour is studied with three- 
dimensional brick elements. The presence variable is 
the only unknown at nodal points, to keep the 
number of degrees of freedom to a minimum in the 
fluid domain. The shell and fluid meshes are coupled 
in an optimum manner by assigning a separate 
equation numbering system for coupling terms to 
overcome the bandwidth problem described earlier. 
In the present work the nine-noded degenerate shell 
element has been used for shell dynamics, which gives 
the best combination of economy and accuracy as 
demonstrated by Pugh et al. [18] after comparing the 
performance of four-, eight-, nine-, 12- and 16-noded 
quadrilateral elements. The fluid transient behaviour 
is studied by an eight-noded trilinear brick element. 

This element is sufficient to obtain dynamic loading 
on the shell surface in an accurate and economical 
way. 

Another important aspect of transient analysis is 
the selection of an optimum integrator for second- 
order ordinary differential equations resulting from 
semidiscretization. There are two well known 
methods reported in the literature [l 1, 13, 19-241, 
implicit method and explicit method. Implicit 
methods are unconditionally stable and larger time 
steps can be used based on the order of accuracy 
required. However, the computational effort required 
is more in this case as the resulting simultaneous 
equations have to be solved at each time step. On the 
other hand, explicit methods are conditionally stable, 
thus time step size is limited by the minimum period 
of the mesh (or more simply by the period of the 
smallest element). However, in this method the CPU 
time and storage space required are small as it does 
not call for solution of a system of simultaneous 
equations. As described by Belytschko [ 131, transient 
problems are of two categories, wave propagation 
problems and inertial problems. For wave propa- 
gation problems the wave front has to be traced 
accurately, thus the number of modes which have to 
be integrated properly is very large. In the case of 
inertial problems, the response lies in a few lower 
modes and only these modes have to be integrated 
properly. Another important requirement of the inte- 
grator is that higher modes which are not important 
and which are associated with large errors must be 
filtered out. In the case of fluid-structure interaction 
problems, all the pressure modes in the fluid domain 
must be traced with accuracy if it is likely to affect the 
prominant structure modes. In the present work a 
mixed implicit-explicit scheme due to Hughes [19] has 
been used. Some aspects of mesh partitioning and 
selection of a proper integrator for fluid and shell 
domains are discussed. 

The organization of the paper is as follows. In 
Sec. 2, we describe the formulation of the coupled 
shell fluid dynamics problem where shell dynamics 
and the fluid transient problem are discussed in detail. 
Section 3 describes the coupled equation solution 
strategy for the present problem and some guidelines 
are given to achieve efficient partitioning. In Sec. 4 a 
number of fluid-structure interaction problems are 
solved to demonstrate the capability of the present 
approach. The paper ends with conclusions for the 
effective use of the partitioning method for coupled 
problems. 

2. COUPLED SHELL-FLUID DYNAMICS 

In the present work coupled shell-fluid-dynamics 
problems have been analysed by solution of the shell 
dynamics equation and acoustic wave equation by 
finite element discretization. The resulting coupled 
second-order ordinary differential equations for two 
fields are numerically integrated by Newmark’s 
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method. The fluid-structure interaction effect is stud- 
ied by transferring the shell normal acceleration to 
the three-dimensional fluid domain and the fluid 
pressure to the shell surface at the shell-fluid interface 
for each time step in an iterative manner. Using this 
approach, single-field problems of shell dynamics or 
fluid transients (fluid with rigid boundaries) along 
with coupled shell-fluid dynamic problems can be 
analysed. The coupling at the shell-fluid interface is 
accounted for in a special manner by assigning a 
different equation numbering system to coupling 
matrices in order to achieve optimum computer 
storage space. 

2.1. Shell dynamics with two -dimensional degenerate 
shell elements 

Figure 1 shows a three-dimensional brick element 
with a quadratic displacement field description. This 
element can be degenerated to form a quadratic shell 
element. The shell geometry is either defined by top 
and bottom surface nodes of the shell element or by 
the middle surface nodes along with the thickness at 
each node point. Here a first-order shear deformation 

shell theory is used, in which it is assumed that the 
normal to the shell middle surface remains straight 
during deformation and strain energy corresponding 
to the shell normal stress is neglected. 

In order to develop a two-dimensional degenerate 
shell element eight strains are defined at any point 
on the shell middle surface, viz. cxo, Q, y,@, K,, K,,, 
K*,,, yXro and Y,,~. Here an explicit integration in the 
thickness direction is used [ 16, 171 in the strain energy 
expression to obtain mid-surface stress resultants 
corresponding to these strains. This is called a two-di- 
mensional model of a three-dimensional degenerate 
shell element. This method is different from the 
conventional approach [15,20,25] of considering five 
strains L,, cy, yXv, yXz and yvr at any point in the 
shell body and then either carrying out two-point 
Gaussian integration of element matrices (stiffness, 
mass or load) by taking linear variation of strain 
across the thickness or by a layered approach where 
a one-point Gaussian integration is applied for each 
layer. The present approach of a two-dimensional 
degenerate shell element with exact representation of 
inplane stress/strain across the thickness and explicit 

3-D Element 

Degenerate shell element 
midsurface nodes 

tkgenerote shell element 
with nodes on top and 
bottom surface 

with 
2-D Model of degenerate 
shell element 
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(Xa,Yo ,Z,) Lacal -x0 
Coordinate systems 

“” m 

Displacements 

Fig. 1. Development of two-dimensional degenerate shell element. 

as 3*,5,6--c 
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integration results in computational ease and better 
accuracy than the conventional approach. This 
method is particularly suitable for coupled shell-fluid 
interaction problems, as shown in the latter part of 
the paper. 

2.1.1. Coordinate systems for two-dimensional de- 
generate shell element. As shown in Fig. 1, three sets 
of coordinate systems, global (X, Y, Z), nodal 
(x,, y,,, z,) and local (x,, y,, z,), are defined. The 
global coordinate defines the shell geometry. The 
nodal coordinate defines the nodal displacements and 
global stiffness, mass and load matrices. The local 
coordinate system is used for numerical integration of 
element matrices. Nodal and local coordinates are 
defined by a shell normal vector V, at a node n and 
any point c( within the element by 

v,=v<xv,, (1) 

where V: and V, are vectors along 5 and q natural 
coordinates of the shell element. Once the unit nor- 
mal vector along V,(k, at node n and k, at point a 
within the element) is known, i, or i, for nodal or local 
coordinates is along V, and j, or j, is thus finally 
defined by 

i,,,, = k,,% x i,, (2) 

2.1.2. Degenerate shell element matrices. The two- 
dimensional degenerate shell element matrices are 
evaluated in the usual manner. Five generalized 
displacements at any point GI in the element are 
defined as u,, v,, w,, 8,, and 0,,,, consisting of three 
displacements and two rotations, respectively. The 
stresses and strains are defined in the local coordinate 
system, which is a very convenient way of represent- 
ing the stress resultants. The displacements and 
strains in the element can be obtained by shape 
function N, and strain displacement B matrices. At a 
node i in nodal coordinate system 

fini= [hir um9 wG, exnir e~njlT3 (3) 

where aUi contains all the degrees of freedom at any 
node i. 

Again 

node 
uc = 1 N,iL, (4) 

i= I 

where uE is the displacement field in the element. 
Strain at a point c( in the element is defined in the local 
coordinate system as 

and 

(5) 

&i = R,J,, , (6) 

where Rai is the transformation matrix relating local 
displacement to nodal displacement and Bi is the 
strain-displacement matrix at any node i. Thus we 
have 

node 

c,= 1 Bi+6,,, (7) 
,=I 

where 

B: = B,R,,. (8) 

For the element the B* matrix can be defined by 
augmenting contribution from all the nodes of the 
element as 

B* = [B:, B: . . . B: . B;]. 

Thus, the element stiffness matrix is 

(9) 

(K:)ij = 
s 

B$= Dmk B$ t dA,, (10) 
As 

where D is the elasticity matrix relating the mid- 
surface stress resultants and strains and t is the 
thickness of the shell. The element mass matrix with 
density p is 

(M:)ij = 
s 

p,N;N,t d/Is. (11) 
As 

The consistent mass matrix can be converted 
into the lumped mass matrix as shown by Hinton 
et al. [26] and Surana [27]. For shells the lumping for 
rotational degrees of freedom terms is done by nor- 
malizing the diagonals by mi t: /4 [27], where m, and t, 
represent mass and thickness, respectively, at node i. 

The above two-dimensional version of the degener- 
ate shell element is very powerful for shell dynamics. 
A selective integration scheme [19,25] is used for 
optimum behaviour of this element. The following 
semidiscrete equation of motion is formed which can 
be solved by any implicit, explicit or mixed time 
integration method. 

M,ii + C,it + K,u = f, - M,ii,, (12) 

where MS, C, and K, are global mass, damping and 
stiffness matrices respectively, u is the global displace- 
ment and f, is the external load. A superposed dot 
represents time derivative and ii8 is the specified 
ground acceleration. The structural damping matrix 
is constructed by 

C,=aM,+bK,. (13) 

The constants a and b may be choosen to control 
damping proportionately. 
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2.2. Fluid transients with three-dimensional fluid The above boundaries define the fluid boundary r, 
elements completely. 

In order to study the effect of shell-fluid inter- 
action, three-dimensional modelling of the fluid 
domain is required. A number of finite element 
formulations are available, namely pressure formu- 
lation, displacement formulation, displacement 
potential and velocity potential formulation. These 
methods have been reviewed in the work of Paul [ 111. 
The pressure formulation was chosen for the pres- 
ent work. The advantage of this method is that there 
is only one variable at each node (pressure). This 
results in significant computational economy in 
terms of computer time and storage space compared 
to other formulations, particularly for three-dimen- 
sional problems. Another advantage of this approach 
is that the pressure field obtained from the analysis of 
the fluid field can be directly transferred to the shell 
structure at the shell-fluid interface, unlike other 
methods where pressure has to be calculated from 
velocity or displacement or its potential. In the 
present work an eight-noded trilinear brick element 
has been developed to study the fluid transient 
behaviour. Since the shell response is of prime con- 
cern in most of the problems the trilinear fluid 
element is considered to be adequate for an optimum 
combination of economy and accuracy. 

r,=r,+rR+rF+rp. (19) 

The governing equation (14) along with bound- 
ary conditions (15)-(18) can be shown to 
result in an equation of the following form after 
semidiscretization. 

M,# + C/P + K/P = p,Q,@ + fig> + r,, (20) 

where Mf, C, and K, are the global fluid mass, 
damping and stiffness matrices, respectively. Q, 
couples the fluid equations to structure and ground 
acceleration vectors il and iig, respectively, and fj is 
the fluid force vector. 

The above global matrices can be assembled from 
the fluid element matrices, which can be described as 
follows. Pressure in the element is given by the fluid 
element shape function N, and nodal pressure p as 

P = N/P. (21) 

The fluid element mass matrix is obtained by 
impulsive and free surface sloshing terms as 

The governing acoustic wave equation in terms of 
dynamic pressure variable p for an inviscid, com- 
pressible fluid with small displacement is 

(M;)i, = l/c2 
s 

N;NJdhl/ 
01 

V2p = --$jj in fluid domain Sz,, (14) 

where c is the acoustic speed. The three types of 
pressure gradients at the fluid boundary with outward 
normal nf are as follows. 

+ l/g 
s 

N;NB dr,. (22) 
r,= 

The fluid element radiation damping matrix is 
considered for a nonreflecting boundary rR as 

(qij = 1 /c N;Nfi drR. (23) 
(i) Interaction boundary r, with 

p, n = -&. 

(ii) Free boundary rF with 

(15) 
Finally, the fluid element stiffness matrix is 

P, n = -@lg. 

(iii) Radiation boundary rR with 

(16) + N,G, ~$9 z) da,. (24) 

The coupling matrix Q, for the fluid domain is 
given by 

p, n = -p/c. (17) 

p,, ii, and g are the fluid density, shell normal 
acceleration at the shell-fluid interface and accelera- 
tion due to gravity, respectively. It may be noted that 
eqn (15) becomes homogeneous for a fluid interacting 
with a rigid boundary. Another type of boundary is 
for prescribed pressure p” 

where n, gives the unit normal component at the shell 
surface on the shell-fluid interface. 

p =p” on r,. (18) 

2.3. Coupled shell--uid systems 

The semidiscrete shell dynamics equations (12) 
for a shell coupled with an acoustic medium of 
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the above description is modified with coupling term 

Q, as 

M,iI + C,I + K,u = f, - MdiIg + QSp. (26) 

It may be easily recognised that the coupling matrices 
hold the relation Q, = -QT. The system of equations 
(20) and (26) are coupled second-order ordinary 
differential equations which define the coupled 
shell-fluid system completely. These sets of coupled 
equations are solved on two different meshes of fluid 
and shell in a staggered fashion-a scheme proposed 
by Park and Felippa [lo], Paul [l l] and Felippa and 
Geers [12]. The advantage of the two-dimensional 
degenerate shell element presented in Sect. 2.1 may be 
noted here. The nodal coordinate system in the shell 
formulation gives the normal shell acceleration, 
which can be directly used with the coupling matrix 
Qf in eqn (20). Similarly, the fluid pressure at the 
shell-fluid interface can be directly introduced with 
the coupling matrix Q, of eqn (26). The pressure at 
midside nodes of shell element edges and at the 
element centre (r = 0.0 and q = 0.0) are linearly 
interpolated from the corner node values of a three- 
dimensional fluid element at the shell-fluid interface. 
A separate equation numbering system is evolved at 
the shell-fluid interface in the skyline solution pro- 
cedure by keeping only active degrees of freedom 
(one at each node) at the interface. Finally, the 
coupling terms in the load vectors are transferred to 
the original equations of shell and fluid domains. This 
scheme requires minimum computer storage space for 
coupling matrices and is very powerful for three- 
dimensional shell-fluid interaction problems, particu- 
larly on small computers with inherent limitations on 
storage space. 

3. TIME INTEGRATION OF COUPLED FIELD 

EQUATIONS 

The set of coupled second-order ordinary differen- 
tial equations (20) and (26) are solved by method of 
partitioning. The coupling terms make the set of 
equations unsymmetric, so the equations of each field 
should be solved in sequence. The interaction effect 
between the two fields is studied by transferring field 
variables from one field to another field at each time 
step in a staggered manner. This approach requires 
minimum storage space, as bandedness of equations 
is maintained. Another advantage of this approach is 
that the same time integrator can be applied to both 
the fields. In the present work Newmark’s predic- 
tor-multi-corrector algorithm due to Hughes [19] has 
been used, which has been proven to be very power- 
ful for such coupled problems [ll]. This method 
recognises each element of either field as explicit or 
implicit. Thus a purely explicit or implicit integration 
method along with mixed explicit-implicit method 
can be used for one or both of the fields. The critical 
time steps for the fluid and shell elements are of 

verying magnitude, thus this integration scheme 
allows significant flexibility in selecting an optimum 
integration scheme from a stability, accuracy and 
convergence point of view. 

As a general guideline, in most of the practical 
cases the fluid field integrator may be fully explicit, 
since the critical time period for the fluid domain is 
normally orders of magnitude larger than the critical 
time period of the shell domain for the same mesh 
size. The shell equations could be treated by implicit 
method as the critical time period in this case is 
normally so low that an explicit integration method 
will require very large computational time, over- 
shadowing the advantage of the lesser computational 
effort and time required at each time step. The explicit 
integration for the fluid field is particularly advan- 
tageous in the present case compared to the implicit 
integration. The latter will require large computer 
storage space. In addition, it results in the burden 
of solving a huge system of simultaneous equa- 
tions, obtained from three-dimensional discretiza- 
tion, at each time step. The present formulation with 
quadratic displacement field description for the shell 
domain and linear pressure field description for the 
fluid domain is very powerful. Here the nodal spacing 
in the fluid domain is twice that of the shell domain, 
which allows the above type of explicit-implicit par- 
titioning for fluid and shell meshes more con- 
veniently. In the next paragraph we present the 
predictor-multi-corrector algorithm [ 11, 13, 191 for 
the semidiscrete coupled second-order equations (20) 
and (26) used in the present work. 

The governing second-order equation at time step 
n + 1 is given by 

Mii,,+,+Ci,+,+Ku,+, =F,+,. (27) 

Here the subscript has been dropped as it may be 
used for any field. The force term augments applied 
force, specified boundary conditions and interaction 
terms from the other field. In the predictor phase the 
field variables are expressed as 

_ 
&+,=“,+I 

Ii’ n+,= 3”,, 

iib+ I =o, 

where i is the iteration count and 

(28) 

(29) 

(30) 

T u,+, = 8, + Ar(1 - y)ii, (31) 

_ II,, , = u, + At L, + l/2 At2(1 - Zj)iI,,. (32) 

Here y and fl are Newmark’s parameters and At is the 
time step. 
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In the solution phase the following equation is 
formed and solved. 

where 

K*Au’=~:,, (33) 

and 

K* = M/p At’ + yC/~ At f K (34) 

~~,=F;+,-M~~~+,-CI$+,--KU;+,. (35) 

Once the increment in the field variable is obtained, 
field variables are updated as follows: 

i+1_ i 
“n+I -II,,+, +Au’ (36) 

**r+f _ 
Q”,l - (II$~, - ti, + 1 )/‘@ At2 (37) 

bit.1 =ci 
ntl II+1 + y ArW;;‘, . (38) 

Finally, a convergence check is made on the norm of 
the increment in the field variable compared to the 
norm of the total field variable as follows. 

Is I/Au’II/IIu’+ ‘I/ 6 e (the specified tolerance)? (39) 

If NO, i-G + I, and go to eqn (33) for next 
iteration. 

If YES, n +n + 1, and go to eqn (27) for next time 
step. 

Element-wise mesh ~rtitioning is done by 
recognizing elements as explicit or as implicit, 

M=M’$ME (40) 

C=C’+CE (41) 

K=K’+KE (42) 

F=F’+FE, (43) 

and modifying the governing equation (27) as 

M’ii,+,+MEii,+, +C’ti,+,+K’u,+, 

=F:+,+F:+,. (44) 

PC??- 
t 

The stability criterion of Newmark’s integrator for 
a single field with a single pass is well estab- 
lished 113, 19,211. y 3 l/2 and /? = (7 + l/2)z/4 leads 
to unconditional stability. In the case of coupled 
problems the stability criterion is a function of mesh 
integrator, predictor formula and computational 
path [lO-121. Analytical evaluation of the critical time 
step is difficult in the present case as the order of 
the characteristic polynomial for stability analysis is 
large. However, in the present formulation the inter- 
action term appears as a force term, which may be 
regarded as similar to the pseudo force term of a 
nonlinear dynamics problem. Therefore, a small 
reduction in the time step (approx. lO-20% of the 
critical time step) is desirable, as suggested by 
Belytschko [3] for nonlinear problems, in order to 
achieve rapid convergence. 

4. NUMERICAL EXAMPLES 

A computer code FLUSHEL [ZS] has been devel- 
oped by the present authors to study the performance 
of the present formulation. This code can be used to 
solve single-field problems of shell dynamics or fluid 
transients along with the coupled shell-fluid inter- 
action problems. A number of problems have been 
solved with Newmark’s parameter /l = 0.25 and 
y = 0.5 and a tolerence e = 1 .O E - 05 for conver- 
gence criteria by explicit and implicit methods. The 
results reported here have been obtained on a 
NORSK DATA machine ND 560 in double pre- 
cision. The problems presented here have been taken 
from the paper of Akkas et al. [S], where the results 
were reported for a continuum mechanics approach. 

4. I. Pressure wave propagation problem 

Figure 2a shows the problem of pressure wave 
propagation in a rigid pipe. A 20-in.-long pipe with 
a cross-section of 4 x 4 in. containing fluid has been 
analysed for a pressure pulse of 1 psi applied at one 
end. The other end of the pipe is closed with a steel 
cap. The fluid domain has been modelled with 
20 eight-noded brick elements. Solution has been 
obtained for the fluid domain with a homogeneous 
boundary, i.e. the fluid boundary is assumed to be 
surrounded by a rigid pipe. A time step of 0.028 msec 
has been used, which is the critical time step for this 

K = 120,000 psi 

pt = 0.935 x iO~4ib-secVin~ 

Pressure 
pulse 

Fig. 2a. Pressure wave propagation in a pipe. 
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0 - Exact 

I ----- Ref r51 

2 -.-.-’ Jmplicit consistent 

3 ---- Explicit 

4 --- Implicit lumped 

At = 0.028msec I 
0 

I 

I I I I 
0.3 0.6 09 1.2 

Time (msec) 

Fig. 2b. Pressure history in element 1. 

I 
I 5 

mesh obtained from eigenvalue analysis. This is 
of same order as h/c, where h is the mesh size 
along the axis of the fluid domain. Results are 
shown in Figs 2b-2e at the centre of elements 1, 5, 
15 and 20 for the case of implicit integration with 
a consistent mass matrix of fluid, explicit inte- 
gration with a lumped mass and implicit inte- 
gration with a lumped mass. In the same figures the 
exact results and results of [S] are also shown. The 
numerical results of Akkas et al. [5] and the pres- 
ent results show dispersion or oscillatory behaviour 
at the shock front due to discontinuity, and spatial 
and temporal discretization errors as discussed by 

2.50 - 

2.00 - 

= 
:: 

I50- 

i 
h I .oo - 

0.50 - 

Schreyer [29]. It may be inferred from the nature 
of the results that the matched method of time 
integration, i.e. explicit method with lumped mass 
and implicit method with consistent mass, rep- 
resents the stock wave more accurately. This has 
been discussed in detail by Hughes [19], where the 
theoretical argument given is that spatial and tem- 
poral discretization errors tend to cancel each other 
in matched method. It is realized from the pres- 
ent example that the explicit method with a lumped 
mass matrix can be used effectively to trace the shock 
wave in an economic way for three-dimensional 
problems. 
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Fig. 2c. Pressure history in element 5. 



Coupled 3D fluidstructure interaction 523 

250 

200 

'51 :: 150 

e 

i 

lf 1.00 

0.50 

0 

0 - Exact 

I -- Ref C51 

2 -.--- Implicit consistent 

3 --- Explicit 

4 -- Implicit lumped 

At = 0.028 m set 

L I I I I 
03 06 0.9 12 15 

4.2. Plate-Juid interaction problem 

In Fig. 3a the problem of a fluid reservoir 
(150 cm x 100 cm x 50 cm) supported by a steel plate 
(5 cm x 100 cm x 50 cm) at one end is shown. At 
the other end of the reservoir a pressure pulse of 
100 kg/cm* is applied. The pressure history is traced 
at point A (x = 142.5 cm, y = 75 cm) in the fluid 
domain. The analysis has been carried with a 
15 x 10 x 1 mesh of the fluid domain with eight- 
noded brick elements. The steel plate is modelled with 
10 nine-noded shell elements. The critical time steps 
for fluid and shell meshes are 0.035 and 0.0039 msec, 
respectively. Here an explicit-implicit (E-I) partition- 
ing for fluid and shell meshes can be used, since the 

2 50 r 

Time fm set) 

Fig. 2d. Pressure history in element 15. 

200 

I 50 

time step for the shell is more critical. Transient 
analysis has been carried with a time step of 
0.032msec. Figure 3b shows the results, and the 
results due to Akkas et al. [5] are also shown for the 
rigid plate case and the flexible plate case. Again the 
pressure history shows oscillation near the shock 
front for the rigid plate case compared to the exact 
solution. However, it is less than that reported in [5] 
due to proper selection of the integrating scheme 
and mass matrix. In the case where the solution is 
obtained by taking into account the flexibility of the 
steel plate, the pressure history is lower than that 
reported in [5]. The results of [5] are based on bilinear 
two-dimensional plane strain elements, where only 
one element has been taken across the thickness of 

0 - Exact 

2 I ----- ----- Implicit Ref [51 consistent 

3 ----- Explicit 

4 --- Implicit lumped 

At = 0.028msec 

0.3 06 09 1.2 

Time (msecl 

Fig. 2e. Pressure history in element 20. 
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Fig. 3a. Plate-fluid interaction problem. 

the plate. This element is known to be very stiff in 
bending, so the reported pressure is high. In order 
to check this, the results have been compared with 
the two-dimensional results of Singh et al. [30] with 
code FLUSOL, which is a two-dimensional code for 
fluid-structure interaction. In two-dimensional anla- 
ysis the fluid has been modelled with 5 x 5 nine- 
noded plane fluid elements and the plate has been 
modelled with a 5 x 1 mesh of nine-noded plane 
stress elements. As shown in Fig. 3b, the two- 
dimensional results match well with the present 
three-dimensional fluid and shell element results. 

4.3, Reservoir with base motion 

Problems of water reservoirs and fluid tanks 
subjected to base excitation are one of the import- 
ant areas where considerable attention has been 

created[4,31-361. We now present the problem 
of a water reservoir of 300 ft x 300 ft size which is 
subjected to a constant acceleration of 1.0 g at the 
base. If the fluid boundary is assumed to be sur- 
rounded by a rigid wall, comparison can be made 
with the exact pressure history available due to 
Chopra et al. [31] and two-dimensional finite element 
results due to Akkas et al. [S]. Figure 4 shows the 
impulsive pressure history at x = 30 ft and y = 30 ft 
from the base for a three-dimensional fluid model 
with 6 x 5 x 1 mesh by implicit and explicit inte- 
gration methods, with a time step of 2.5 msec. In 
the same figure, the two-dimensional finite element 
results of Akkas et al. [5] are also shown by direct 
integration (DI) and mode superposition (M-S) 
methods. It may be noted here that the present 
results trace the impulsive pressure response more 
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Fig. 3b. Plate4luid interaction. 
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Fig. 4. Reservoir under base motion (three-dimensional result). 

accurately than that given in [5]. The phase shift 
and amplitude change are a minimum for the pres- 

ent case. This is due to the fact that pressure is 
obtained directly in the present case, while in the 
continuum mechanics approach the pressure is 
obtained from the gradient of the displacement 
field. Some spurious modes are also present in these 
results due to circulation and presence of pseudo 
frequency, which is typical of continuum mechanics- 
based fluid elements, unless these are suppressed 
numerically. 

4.4. Exterior shell-fluid interaction problem 

One of the classical problems of shell-fluid inter- 
action is that of a spherical shell submerged in an 

L=05in. (Exact) 

L i 9.5 in. (Exact 1 
0751 i r 

in. (Exact) 

infinite acoustic medium. A spherical shell with 
inside radius of 75 in. and thickness of 1 in. has been 
taken for analysis. The shell is subjected to an 
impulsive internal pressure of 1.0186 psi and the 
pressure wave is traced at distances of 0.5, 9.5, 19.5 
and 29.5 in. from the shell outer surface. Due to 
symmetry 2” sectors in CircumferentiaLand longitudi- 
nal directions have been taken on the shell surface, 
which is modelled with a 2 x 2 element mesh. The 
surrounding fluid domain has been modelled with 
a 2 x 2 x 15 mesh of brick elements in the present 
case. The fluid mesh is taken up to a radial distance 
of 29.5 in. from the shell outer surface. A radi- 
ation boundary condition is applied at this end. 
The critical time steps for the fluid and shell meshes 

I --. L = 0.5 in. 
2---L = 9.5 in. 
3---L*l9.5in. 

J’ 4 -- L = -. 29.5 in. 

At = 0.0225 msec 
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0 P PFi 
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R * 75 in. 
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0 a4 0.6 1.2 1.6 2.0 
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Fig. 5a. Pressure wave propagation from submerged sphere. 
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Fig. Sb. Pressure wave pro~gation from submerged sphere. 

are 0.0233 and 0.00286 msec, respectively. Figure 5a 
shows the pressure wave propagation obtained 
by implicit-implicit (I-I) partitioning for fluid and 
shell meshes, respectively, with a time step of 
0.0225 msec. Figure 5b shows the results with 
explicit-implicit (E-I) partitioning with same time 
step. In this case the fluid radiation damping 
matrix C, is lumped in the same manner as M, 
by a special lumping technique 1261. The radial 
deflection of the shell is shown in Fig. 5c and 
both types of partitionings give responses which 
overlap each other. The present results in all 
these cases match very well with the exact 
results [S]. 

4.5. Interior shell-fluid interaction problem 

Another shell-fluid interaction problem of interest 
is that of a spherical shell containing fluid inside it. 
This problem has been solved by Akkas et al. [5] and 
Shugar and Katona [37]. The shell is subjected to an 
impact pressure of 100 kg/cm* applied at the shell top 
pole, as shown in Fig. 6. A sector of 30” in the 
circumferential direction and 180” in the longitudinal 
direction of the shell is modelled with proper sym- 
metry conditions. The fluid mesh is made consistent 
with the outer shell cover. The analysis has been 
carried out for E-I and I-I partitionings of fluid and 
shell meshes for time steps of 1.25 E - 03 msec and 
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At 8 0.0225 msec 

Thickness = I in. E= 29x IO6 psi 

Y f 0.3 

pr = 7.345 x ld41b- secz/in” 
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Fig. 5c. Radial deflection of submerged sphere. 
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Fig. 6. Interior shell-fluid interaction. 

2.5 E - 03 msec, respectively. The top pole pressure 
(at a radius of 6.5 cm and an angle of 5” from the 
vertical axis) in the fluid is compared with the results 
of [5] and [37]. The present results with the shell 
element show a higher peak pressure. Moreover, in 
the latter portion of the curve (approx. 0.2msec) 
pressure again rises. This behaviour is not shown in 
the results of [5] or [37]. The second pressure peak is 
due to the superposition of the pressure wave 
reflected from the lower pole after 0.2 msec, which is 
the time required for the wave to reach the top pole 
after reflection from the lower pole. In order to check 
this again comparison has been made with results due 
to Singh et al. [30], where the analysis is carried out 
with two-dimensional axisymmetric elements avail- 
able in code FLUSOL. The two-dimensional result 
with I-I partitioning with a time step of 2.5 E - 
03 msec is also shown in Fig. 6. This result also shows 
the effect of the reflected wave after 0.2 msec. 

5. CONCLUSIONS 

Transient analysis of three-dimensional fluid- 
structure interaction problems has been demon- 
strated through an effective partitioning scheme. The 
present approach is economical in terms of the 
storage space and CPU time required for such prob- 
lems. The economical implementation has been 
achieved through a displacement-based two-dimen- 
sional degenerate Co shell element and a three-dimen- 
sional fluid element with only pressure variables as 
unknowns at nodal points. An explicit integration 
scheme for the fluid domain (which is normally of 
large size) and an implicit scheme for the shell 
structure makes this approach very attractive. By 

assigning separate equation numbering to the coup- 
ling matrices and using a nodal coordinate system for 

the shell structure the storage requirement for the 
coupling matrices reduces to a minimum. A number 

of case studies presented in the present paper indicate 
that this formulation has potential for nonlinear 
fiuid-structure interaction problems as an extension 
to the present approach. 
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