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Abstract-The C’ continuous element based on the Euler-Bernoulli theory of bending and the Co 
continuous element based on Timoshenko’s theory of bending are compared for their computational 
efficiency and economy for the analysis of inelastic frames subjected to transient dynamic loads. Moreover, 
the size of a Co mesh (with only linear elements) is evaluated, which is computationally equivalent to C’ 
Hermitian element. Also the ranges of slenderness ratio, in which both these elements are effective and 
the limits of aspect ratio below which they fail are also determined through the numerical studies. 

1. INTRODUCTION 

The well-known classic Euler-Bernoulli theory of 
bending, assumes the transverse plane section is 
normal to the reference middle plane before bending 
to remain so even during bending and neglects the 
transverse shear deformation totally. When this 
theory is formulated using the displacement based 
finite elements, the slope continuity between adjacent 
elements, becomes a must, known as C’ continuity, 
as the bending rotation becomes equal to the first 
derivative of the transverse displacement. This theory 
thus requires the transverse displacement field to 
be C’ continuous. This formulation has widely been 
in use [l-3] for the transient dynamic analysis of 
inelastic frames. 

As the aspect ratio (length/depth) of the frame 
element becomes smaller, the transverse shear defor- 
mation becomes so predominant that it renders any 
analysis inaccurate unless and until it is accounted for 
in the basic formulation. The correction for trans- 
verse shear was first incorporated by Timoshenko [4] 
for the vibration problems. When finite elements were 
used to analyse deeper sections, using Timoshenko’s 
theory, independent interpolation functions for 
slopes and displacements were used, making the 
displacements Co continuous. Many such elements 
have been reported [5-81 in the past. 

Inspite of ease of formulation and development of 
computer code [5], the Co elements, however, have 
not been in use, particularly for the analysis of 
inelastic frames under transient loadings. An attempt 
is made here on the following lines: 

(4 

(b) 

to use Co elements for transient dynamic analysis 
of inelastic and elastic frames and compare their 
computational efficiency and economy with C’ 
elements, 
to find the size of Co mesh, consisting of linear 
elements, which must be comparable in perform- 

(c) 

ante to C’ elements based on Hermitian cubic 
polynomial, and 
to ascertain the ranges of slenderness ratio in 
which Co and C’ elements are effective in predict- 
ing the response and also the limits of these 
ratios, below which they fail. 

2. SOLUTION OF DYNAMIC EQUILIBRIUM EQUATION 

The governing equation of dynamic equilibrium, in 
the incremental form 

where [M] and [C] are the mass and damping 
matrices; {AJJ}, + , and {AJ}” + , are the incremental 
internal and external force vectors, respectively at 

t = 41+1, is solved using the modified central differ- 
ence predictor method [9], to obtain the displace- 
ments, velocities, and accelerations at every time step. 

3. EULER-BERNOULLI THEORY WITH C’ 
FORMULATION 

3.1. Displacement jeld and strain displacement 
relationship 

The displacement field U(x, y), V(x, y) of a frame 
member can be expressed in terms of middle plane 
axial displacement u(x), transverse displacement v(x) 
and the rotation of the normal about z axis B,(x) as 

U(x, Y) = u(x) -Y&(X), (2) 

Ux, Y) = r+), (3) 
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The strain at any point (x, y) is given by 

aw, Y) 
&Y)=dx (5) 

which becomes after the substitution of eqn (2) 

au(x) 
E(X,YY)=,x- 

se,(x) 
y ax 

- = t’ +8(x, y). (6) 

Using the standard finite element represen- 
tation [lo], the axial strain can be expressed as 

where ui and uj are the axial displacements of nodes 
i and j of a frame element and {d:} is the axial 
displacement vector of the element. 

Similarly the bending component of axial strain 
can be expressed with the use of cubic Hermitian 
polynomial as 

cb(C,4)=$ 7 
[ 

-65 (l-3<) 65 (1+35) 
- --~ 

L L2 L 1 
Vi 4 

X 

H 
VI 

= {Bb(t> rl)jr{&)> (8) 

ej 

where d is the depth of the cross-section and {db} is 
the vector of bending displacements of the element. 

The strain at any generic point (5, q) at t = t, + , can 
be expressed as 

~(5~~)“+,=~::+,+~b(r~11),+I (9) 

and the incremental strain due to the incremental 
displacement vector {Ad’}” + , as 

A452 ~)n+l ={B,)r{A~}n+,+{Bb(S,~))r{Adi)n+l 

=Ac;+, +Acb(L~)n+r. (10) 

3.2. Plastification of cross-section 

The stresses are evaluated at the Gauss points 
across the depth of the cross-section. Whenever a 
Gauss point reaches the yield stress, that point alone 
is considered to have become plastic, while other 
points continue to remain in their respective states of 
stress. As the strain increases, due to the increased 
displacements, the extreme Gauss points attain the 
yield stress first and with the further increase in the 
strain, the interior Gauss points also reach the yield 
stress. When all the Gauss points reach the yield 
stress, the cross section can be said to have become 
completely plastic. 

3.3. Stress-strain relationship 

The incremental elastic stress corresponding to the 
incremental strain can be given by 

Ae(5, rl)e,l+, =EA~(5,tl),+,, (11) 

where E is the Young’s modulus of the material. 
When the material becomes plastic, the total stress at 

t = &+I> evaluated based on elastic incremental stress 
is given as 

45, ?)F!+, = A453 s):‘, I+ 45, rlln, (12) 

where ~(5, Y)), is the known stress at that point at 
t = t, and the superscript el in a(& II):‘+, denotes 
that, this total stress is based on an assumed elastic 
behaviour of the material between t = t, and t = t, + 1. 

But during the same time interval, the material 
could either have remained elastic or gone plastic or 
become elastic again during unloading or reloading 
phases. So (~(5, q)f+ 1 is to be corrected so as to make 
it represent the actual state of stress of the material 
at that time interval, using the stress-strain diagram 
of the material [l 11. 

If the corrected stress can be represented as 

4r,sXi+,, where the superscript c stands for the 
corrected quantity, then the incremental corrected 
stress at t = tn+,, can be expressed as 

Aa(L v):+, = 45, ?);+I - 45, v),. (13) 

3.4. Internal resisting force vector 

The incremental axial internal resisting force vector 
can be given as 

{APP,I,+, = {WAaK rlX+ I do, (14) 
v, 

which on expansion becomes 

where b is the breadth and L is the length of the 
member. 

The incremental bending internal resisting force 
vector can be given by 

which can be expanded as 

x MT, II):+, drl G (17) 1 
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Fig. 1. Three storey frame, subjected to concentrated tran- 
sient loads [ 171. 

When the vectors {App.},,+, and {Ap*},,+, are 
appropriately assembled, the incremental internal 
resisting force vector {AP’}~+] is obtained. While 
employing Gaussian quadrature, to carry out the 
numerical integration to evaluate {Ape} at all time 
steps, three span wise Gauss points and three depth 
wise Gauss stations are employed. 

3.5. Mass and damping matrices 

The mass is assumed to be lumped at nodal 
coordinates, where the translational degrees of free- 
dom are defined and the inertial effect associated 
with the rotational degree of freedom is evaluated 
by calculating the mass moment of inertia of the 
fraction of the frame segment about the nodal points. 
The lumped mass matrix for a frame member can be 
given by 

For axial displacement, the product of stiffness and 
inverse of mass matrix is given by 

The highest frequency of the element, for axial 
displacements is given from eqn (22) as 

WI = 
FlL 

2 
AL 

2 
rf2L’ 

where fi is the mass per unit length of the frame 
member. When Rayleigh’s damping is adopted along 
with the central difference operators, the damping 
matrix can be given [12] as 

(loa) 

where a is a constant given by 

u =2&u, (19b) 

where <, and o, are the damping factor and circular 
frequency for the rth mode. 

3.6. Critical time step 

The stability analysis of central difference schemes 
restricts the time step length [13] to 

(20) 

where w,, is the highest circular frequency of the 
finite element mesh. As the highest system eigenvalue 
is always less than the highest element eigenvalue [14], 
using the highest element eigenvalue in eqn (20) will 
be an error on the safer side. Moreover, the free 
vibration analysis of the system need not be carried 
out, only to evaluate (At),,. 

Belytschko [ 151 evaluated the element frequency 
from the product of stiffness and inverse of mass 
matrices as the natural frequency of a freely vibrating 
system is given as 

k 
(jJ*=-. 

m 
(21) 

(23) 

where cz = E/p, where c is the wave speed in the 
element and p is the mass density. 

Similarly the diagonal elements of [&][MJ ’ is 
given as 

24EI 

riiL4 

96EI 

XP 

24EI 

?FiL4 

96EI 
1 

(18) L FflL’ 

24 

(24) 
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Table 1. Comoarison of disolacements of the frame with flexible girders 

Maximum displacement of 
Response by C’ 
elements (inches) 

Response by 
Biggs [ 171 (inches) 

First storey 
Second storey 
Third storey 

0.799 0.776 
I.193 1.145 
1.348 1.300 

and the highest frequency corresponding to flexural 
displacements is given from the matrix given by eqn 

(24) as 

192EI 
&Z-.-C 

192c2r2 

riiL4 [ 1 B 

L4 

where the radius of gyration of the 
rg = I/A and c2 = E/p. 

(25) 

cross-section 

The higher value of the two, given by the eqns (23) 
and (25) is used in eqn. (20) to evaluate (At),., for C’ 
continuous elements. 

4. TIMOSHENKO’S THEORY WITH Co EOR.MULATION 

4.1. Layered concept and plastifcalion of cross- 
section 

In this formulation, the cross-section is split into a 
number of layers and the layer midpoint stress is 
assumed to represent the state of stress of the entire 
layer itself. Whenever the midpoint stress of a layer 
reaches the yield value, that layer alone is assumed to 
have become plastic, while the rest of the layers 
continue to remain in their respective states of stress. 
With the increase in strain, the stresses at the mid- 
points of outer most layers reach the value of yield 
stress first and gradually the stresses at the midpoints 
of interior layers also attain the yield value. When all 
the layers reach the yield stress, the section is said to 
have become plastic. The gradual plastification of the 
cross-section is modelled more realistically by this 
concept and with the increase in the number of layers, 
modelling of plastification becomes very close to the 

reality. 

4.2. Displacement field and strain displacement 
relationship 

The axial and transverse displacements are ex- 
pressed as given by eqns (2) and (3). and the rotation 
of the cross-section inclusive of that due to transverse 
shear deformation can be expressed as 

e,(x) = F + c#J, 

where 4 is the rotation due to transverse shear 
deformation. 

Using the two noded, linear [5-71 element, the 
displacements can be expressed as 

2 

u = 1 N,u,, 
,=I 

(274 

(27b) 

0 = i N,B,, (27~) 

where 

N 
I 

=(I -0 

2 ’ 

and 

N =(I+<) 
2 -. 

2 

(28a) 

(28b) 

The axial component of axial strain is given as 

t, = [$ z]{::}= {B,}r{d:J. (29) 

Any generic point in the frame can be denoted by 
(<,I), where 5 is a Gauss point along the length of 
the member and ,’ is the distance between the mid- 
point of a layer and the neutral axis of the cross- 
section. The bending component of axial strain at 

(5, j) is given by 

(30) 

which when expressed in matrix notation becomes as 

Table 2. Comparison of displacements of the frame with rigid girders 

Maximum displacement of 

First storey 
Second storey 
Third storey _ 

Response by C’ 
elements (inches) 

0.691 
0.981 

Response by 
Biggs [ 171 (inches) 

0.697 
0.988 

1.087 I.130 
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Fig. 2. Co discretization of three storey frame [17]. 

The shear strain can he expressed as 

and expressed in matrix form as 

(32) 

4 

[ 

alv, aN2 4 
-- 

Yts = dx - Nl ax N2 Iii v2 = {&(wv:I. 

02 

(33) 

The incremental axial and shear strains at t = tn+ , 
can be expressed as 

MCtY),., = MJTW%+~ 

+ {4,<<, Y))‘{W)n+ I (34) 

and 

&(t]n+, = {&<&]YW%.~. (35) 

4.3. Stress-strain relationship 

The incremental elastic stress of a layer is given by 

(36) 

BY C’ ELEMENTS 

---- BY TRILINEAR MESH 

-.- BY BILINEAR MESH 

TIME (SEC) 

Fig. 3. Comparison of solutions by C’ and Co elements through the variation of third floor displacements 
with time [17]. 
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Table 3. Comparison of computational costs of C’ and Co meshes (example 1) 

Range of 
Mesh (Al) adopted integration Number of CPU time 
tYPe (se@ (=c) steps (s=) 

C’ O.IE-3 2.0 2E4 286 
Linear O.lE - 3 2.0 2E4 380 

Bilinear O.SE - 4 2.0 4E4 1512 
Trilinear 0.25E - 4 2.0 8E4 5922 

where E, is the Young’s modulus of the layer. When 
materially nonlinear analysis is to be carried out, the 
total elastic stress at t = I, + , is given by 

a(&.X+, = Ae(5, jX’+ , + d5, L’)n, (37) 

where a(& j), is the corrected layer stress at t = 1,. 
The stress a(<, #+ , is to be corrected according to 
the material stress strain curve to make it represent 
the actual material stress. The corrected incremental 
stress is then given as 

Ac(5. I):,, , = et. I):, + I - a(59 );I”. (38) 

The incremental shear stress is evaluated as 

Ar(5):+ I =G,4(5),,,, (39) 

where At(t): + , is the shear stress of a layer and G, 
is the layer shear modulus. 

4.4. Internal resisting force vector 

The incremental axial force vector can be expressed 
as 

{ApP,).+, = L d2 
SI I 

{&Jr 
0 -dZ b 

x W&1): + I dz dy dx (40) 

and by applying the layer concept it becomes 

{APP,A+ I = 
s 

’ {Bo}’ 
-I 

[ 

ThL 

x c b,r,WC, 1X, , I4 dt. (41) 
I-I 1 

where TNL stands for total number of layers in the 
cross-section, and IJI for the determinant of the 
Jacobian. 

The incremental bending force vector is given by 

L d’Z iAPt,},+,= 
55 s 

{&(t, y)}’ 
0 -62 b 

x A45tYX+, dz dy dx (42) 

and after applying the layer concept 

{APP,)n+, = ’ {B,(t)}’ 
-I 

where 

{Bb(t)}T= - Mb) 

Incremental shear force is given by 

x A~(t36+, dz dy dx (44) 

O.ZSFdn(wt) 

Frin(wt) -r 

z 
Y 

F . 4000 Ibr 

w . 1.257 rod/w 

6y = 36,OOOpsi (for lrtt column and beam) 

6y = 10.000 psi ( for right column ) 

A x 6.49 in2 

I = 193.32 in4 

& fil. L.7466E-3 lb-srcZ/ in* 

I/ 6, -.- 
E, * (0.1 x10’ psi ) 

STRESS- STRAIN DIAGRAM OF 

STRAIN HARDENING MATERIAL 

Fig. 4. Frame subjected to sinusoidal load [18]. 
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t 

Fig. 5. Time history of elastic horizontal displacement of top right node of the frame. 

{AA).+ I = s I, 14W}T 

W,Ad5)1,+ I 1 I4 dt. (45) 

While evaluating the shear forces, the shear rigidity 
GA is replaced by GA, where the area A’ is given by 
A/V. The parameter v is a correction factor to allow 
for cross-sectional warping, which is taken to be 1.2 
for rectangular sections. Moreover, { Ap,} is evaluated 
using reduced integration to cure the shear locking, 
when slender members are analysed. When the vectors 

I&,1, {&+,I and &,I are appropriately assembled, 
the internal resisting force vector is obtained. 

4.5. Specially lumped mass matrix 

The simultaneous use of central difference oper- 
ators and the Co formulation, requires the consistent 
mass matrix to be converted into a diagonal one. The 
procedure to achieve this objective, known as ‘special 
lumping’ outlined by Hinton et al. [ 16) is adopted here 
for the linear element. 

The consistent mass matrix can be expressed as 

in which 

Im7= 

pbd 
pbd 

pbd’ 

12 1 WW 

and [Nq is the matrix of shape functions of an 
element. The consistent mass matrix for the element 
is given by 

WI = 

AL - 
3 

AL 

3 

AM’ 

36 

PFIL - 
6 

ML 

6 

ALd2 

72 

6lL 

6 

CiL 

6 

ALdZ 

72 

+iL 

3 

tiL - 
3 

niLd2 

36 

A scaling factor, defined as the ratio of the 
total mass of the element to the sum of the 
masses (in the diagonal elements) corresponding 
to any one translational degree of freedom, is 
calculated as 

scaling factor = (&!,) (48) 

When all the diagonal elements are scaled by this 
factor and the offdiagonal elements are made equal 
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to zero, the specially lumped mass matrix is obtained 
as 

WI = 

AL 

2 
AL 

2 
rX.d’ 

24 

AL - 
2 

AL - 
2 

AM2 

24 

- . 

(49) 

and the damping matrix is expressed as in CL formu- 
lation as 

[Cq = r[M’]. 

4.6. Critical time step 

(50) 

Expressions for evaluating (At),, for Co elements, 
following Belytschko’s expressions for C’ elements 
are derived. For axial displacements, the frequency 
for Co elements is the same as that of C’ elements [as 
given by eqn (23)]. 

The stiffness matrix for the linear element using 
reduced integration for shear terms is given by 

[&I= 

L 

GA -- 
2 

GA 

2 

and the diagonal elements of [&][MJ - ’ are given by 

and the frequency corresponding to flexural displace- 
ment is given by 

+&[;+~]=~~+!S$]. (53) 

The higher one of the two given by eqns (23) and (53) 
is to be used in the condition (20) to evaluate the 
critical time step. 

5. NUMERICAL EXAMPLES 

The examples are chosen such that both Co and C’ 
elements are used for frames with slender members in 
both elastic and inelastic conditions and in deep 
beams under going elastic and plastic deformations. 
All the computations were carried out on CYBER 
I 80/840 computer in SINGLE PRECLSIOK with 16 signifi- 
cant digits as word-length. 

5.1. Co mesh formation 

Every frame element, discretized by a C’ element 
is also discretized by THREE Co elements, denoted as 
TRILINEAR MESH, by TWO Co elements represented as 
BILINEAR MESH and a Co element known as LINEAR 
MESH. The objective of such a discretization is to 
obtain meshes equivalent to quadratic and cubic 
elements with simple linear elements, as more number 
of lower order elements are computationally econ- 
omical than few higher order elements. These dis- 
cretizations form the basic ground for comparison of 
results of one mesh with another, with C’ results and 
with those available in the literature. 

5.2. Examples 
Example 1. Biggs [ 171 has analysed a three storeyed 

frame with nodal dynamic loads as shown in Fig. 1 
using modal superposition method. The same frame 
is analyzed using C’ elements, first with rigid girders 
and then with flexible girders. 

Table 1 gives the displacements of flexible girders 
while Table 2 displays the maximum displacements of 
rigid girders. In both the cases, the close agreement 
between the results by C’ elements and Biggs can be 
observed. 

G - 
A 

;A 2 -- 
L PiiL 

GA 2 -- 
L rilL 

(52) 
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Fig. 6. Time history of elastopiastic strain hardening horizontal displacement of top right node of the 
frame. 
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Fig. 7. Co discrctization of a sinusoidally loaded frame [IS]. 
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J 
Fig. 8. Comparison of Co and C’ elements through the horizontal (strain hardening) displacements of top right node of 

the frame. 

Table 4. Comparison of computational costs of C’ and Co meshes (example 2) 

Mesh (AI) adopted 
type (=I 

C’ O.lE-2 
Linear O.IE-4 
Bilinear O.IE-4 

Trilinear O.IE-4 

Range of 
integration 

(=I 

4.0 
4.0 
4.0 
4.0 

Number of CPU time 

steps (=c) 

4E3 32 
4E5 3200 
4ES 6000 
4E5 8800 

F(t) 

Tim8 

STRESS STRAIN DIAGRAM OF STRAIN HARDENING 

MATERIAL (6~ s 0.66 E5 psi 1 

Fig. 9. Rectangular frame with lateral load and strain 
hardening material model [I]. 

While using Co elements, all the cross-sections are 
split into six layers and all the three types of meshes 
are adopted as shown in Fig. 2. The response history 
by trilinear and bilinear meshes along with that 
produced by C’ are shown in Fig. 3. 

The response by linear mesh was too small to be 
plotted in the same graph, as the first order poly- 
nomial shape functions are not adequate enough to 
predict the actual response. The trilinear mesh pro- 
duces results very close to that of C’ and bilinear 
results are slightly stiffer. 

The computational costs are presented in Table 3 
and it can be observed that Co meshes are compara- 
tively time consuming. 

Example 2. Hilmy and Abel [ 181 had considered a 
single storey portal frame as shown in Fig. 4 and is 
discretized by four C’ elements. The elastic and 
elastoplastic responses are obtained and the displace- 
ment histories are plotted in Figs 5 and 6 which depict 
the agreement of C’ results with the reference outputs. 

While adopting Co meshes as shown in Fig. 7, the 
cross-section is split into six layers. The nonlinear 
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Fig. 10. Time history of elastic deflection of point of application of load. 
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Fig. 11. Co discretization of a frame with suddenly applied load [Il. 
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Legend 

111 
TRILINEAR MESH 
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LINEAR MESH 

0 1.0 20 3.0 
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Fig. 12. Comparison of solutions by Co and C’ elements through the variation of horizontal displace- 
ments with time. 

response histories are given in Fig. 8 and the compu- 
tational costs are shown in Table 4. The results by 
trilinear mesh are closer to C’ but slightly stiffer. 
Bilinear mesh results are still stiffer while those by 
linear mesh are very small to be plotted. Computa- 
tionally C’ elements are economical. 

Example 3. Toridis and Khozeimeh [1] had studied 
a single storeyed frame with the masses lumped at 
eight points as shown in Fig. 9. The actual lumped 
masses are multiplied by a factor of 625 to make the 
fundamental frequency of the frame very close to that 
of actual buildings. The frame has been discretized 
with nine C’ elements, keeping the lumped mass 
positions of the reference frame as the nodes, for the 
elements. The elastic response is shown in Fig. 10 
along with reference response. 

The use of Co meshes with the layered cross-section 
are shown in Fig. 11 while the response history is in 
Fig. 12 along with the computational costs in Table 5. 

In this particular example, as the number of ele- 
ments are comparatively very high, (nine for linear 
mesh, eighteen for bilinear mesh and twenty seven for 
trilinear mesh) all the meshes produce results, which 

closely follow the displacement pattern of the refer- 
ence output. Of all the three, trilinear mesh is very 
close to the reference curve while other two meshes 
yield slightly stiffer response histories. Here also the 
Co meshes were computationally time consuming. 

Example 4. The frames of the previous examples 
contained slender members where the transverse 
shear deformation is negligible. The shear deformable 
Co meshes are adopted here to study the dynamic 
behaviour of deeper beams with predominant trans- 
verse shear strain. 

A simply supported beam analysed by Bathe 
et al. [19] and later on by Liu and Lin [20] is con- 
sidered here for studying the efficiency of C’ and Co 
meshes. The length to depth ratio of the beam is 15 
and is subjected to a uniformly distributed load of 
0.75po, where p. is the static collapse load and 
perfectly plastic model with a yield stress of 
0.5E05 psi is adopted as shown in Fig. 13. 

The beam has been discretized by six C’ elements 
and four trilinear meshes. The elastic and elastoplas- 
tic response histories are plotted in Fig. 14. Bathe et 
al. had made use of a eight-noded plane stress 

Table 5. Comparison of computational costs of C’ and Co meshes (example 3) 

Range of 
Mesh (At) adopted integration Number of CPU time 
type W) (.W steps (set) 
C’ O.lE-2 3.0 3E3 70 

Linear O.lE-3 3.0 3E4 628 
Bilinear 0.5E - 4 3.0 6E4 2509 
Trilinear 0.5E - 4 3.0 6E4 3711 
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Fig. 14. Elastic and clastoplastic midspan deflections of a simply supported beam, for L/D = 15. 
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Fig. 15. Elastic midspan displacements of a simply supported beam for L/D = IS. 

two-dimensional element and von Mises yield 
criterion to analyse the beam. It can be observed that 
though both C’ and Co elements yield results closer 
to that of Bathe et al.‘s for elastic conditions, for 
elastoplastic conditions C’ predictions have higher 
peaks and periods, while Co is very close to that of 
Bathe et af.‘s. 

For another loading of 0.5po, the elastic displace- 
ment history is given in Fig. 15. Here both Co and C’ 
elements agree very closely with the reference values. 
For the same loading, but for elastoplastic analysis, 
as shown in Fig. 16, the deviation of C’ results is 
quite high in comparison with Co output, which is 
very close that of Liu and Lin. 

For yet another loading of 0.625~~. the variation 
of C’ results in the elastoplastic analysis with 
respect to Co and the reference results is shown in 
Fig. 17. 

The strain hardening has been incorporated in 
the material model for the same loading, and the 
response history is plotted in Fig. lg. For the 
value of /I equal to 0.25, the deviation of C’ predic- 
tions are more compared to the reference output or 
Co results. 

Example 5. Another simply supported beam 
with a suddenly applied concentrated load at the 

centre of its span is discretized with four trilinear 
meshes and six C’ elements. Making use of the 
symmetry of the geometry and loading, one fourth of 
the same beam is also analysed as a plane stress 
problem by using six numbers of eight-noded 
serendipity element, for comparing the results of both 
Co and C’ elements. 

The details of the beam and loading are 
shown in Fig. 17. The transient response of the 
beam, for different L/D ratios are plotted in 
Figs 2&24. 

It can be observed that for slenderness ratio less 
than or equal to two, neither Co nor C’ element 
predicts the response closer to that of serendipity 
element. 

When L/D ratio lies in the range of three to 
eight, trilinear mesh yields results very closer to 
the two-dimensional elements than the C’ elements. 
As shear deformation would be predominant, in this 
region of L/D ratio, Co elements perform better (as 
this deformation has been taken into account in the 
formulation) than C’ elements. 

As the aspect ratio reaches the value of nine 
and above, both the elements can be seen to yield 
results closer to those obtained from the plane stress 
solution. 
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Fig. 18. Elastoplastic midspan displacements of a simply supported beam with strain hardening effect for 
LID = 15. 

6. CONCLUSIONS 

Based on the results from the numerical analysis in 
the preceding sections, the following conclusions have 
been arrived at: 

1. Three, Co two-noded linear elements. denoted 
as trilinear mesh can be considered computationally 
equivalent to a C’ element. 

2. The bilinear and linear Co meshes always yield 
stiffer results compared to the trilinear mesh. thus 
rendering themselves practically not so much useful 
as the trilinear one. 

3. For any frame member with slenderness ratio 
more than IS, both the C’ elements and Co trilinear 
mesh would yield accurate results in both elastic and 
inelastic conditions. 

4. When the aspect ratio is between 9-15, 
the C’ elements would correctly predict the 
response of frames, only if they are elastic. When 
the material displays elastoplastic behaviour, C’ 

elements fail to yield the correct response, in 
this range of slenderness ratio. But the trilinear 
mesh, on the contrary, gives precisely, the time 
history of frames, both in elastic and inelastic 
conditions. 

5. In the case of deep members with L/D ratios 
between 3-8, Co mesh predicts the response much 
closer to the reality and better than C’ elements, thus 

rendering the latter ones unsuitable for the analysis of 
such members. 

6. When the ratio of length to depth falls 
below two, both the elements fail to predict the 
response. 

7. The only factor weighing against the Co mesh 
is its high computational cost. In this aspect, C’ 
elements score better than their counterparts. 

8. Though the Co elements are expensive, they 
are indeed indispensable for the transient analysis of 
deep beams/frames, particularly, in the nonlinear 
range. 
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