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Abstract-A refined shell theory has been developed for the analysis of isotropic, orthotropic and 
anisotropic fibre-reinforced laminated composite and sandwich shells. This theory is based on a 
higher-order displacement model and the three-dimensional Hooke’s laws for shell material, giving rise 
to a more realistic representation of the cross-sectional deformation. The superparametric shell element 
with four-noded linear eight/nine-noded quadratic and twelve/sixteen-noded cubic, serendipity/ 
Lagrangian shape functions can be employed. In addition to the present higher-order shear deformation 
shell theory (HOST), a first-order shear deformation shell theory (FOST), following Reissner-Mindlin 
plate’s formulation, is developed and the results are compared with the closed-form solutions (CFS). The 
parametric effects of the finite element mesh, radius-to-arc length ratio, arc length-to-thickness ratio, 
lamination scheme, Gaussian integration rule, and material anisotropy on the response of the laminated 
composite shells are investigated. Results are tabulated to provide an easy means for future comparisons 
by other investigators. 

INTRODUCTION 

The evolution of the technology of structural mat- 
erials has been governed by the search for higher 
strength-to-weight ratios, lower costs, ease of fabrica- 
tion and better durability. The development of the 
aeroplane with its peculiar requirement of structures 
which needed to be strong but light and flexible but 
tough brought into being a new breed of hybrid 
structural materials called fibre-reinforced com- 
posites. The increased use of composites for high 
performance design applications necessitates the need 
for a more realistic prediction of the response charac- 
teristics of composite material structures. Due to low 
shear modulus relative to in-plane Young’s modulus, 
transverse shear deformation effects are more pro- 
nounced in composite laminates. Thus, reliable pre- 
diction of the response characteristics of high 
modulus composites requires the use of shear deform- 
able theories. 

Several theories to analyse shells have been put 
forward in which the effects of shear deformation 
have been taken into account [l-7]. An exposition of 
various shell theories is available in [8]. Although the 
above mentioned shear deformation theories yield 
acceptable solutions, they are found to be inadequate 
to predict the accurate response characteristics 
of anisotropic composite-sandwich shells. The 
analysis of such problems requires the use of 
refined theories [9-l 51. More recently, the present 
authors [l&20] have established the higher-order 
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theories for composite-sandwich plates in conjunc- 
tion with simple Co isoparametric finite element 
formulation. In the present investigation a refined 
higher-order displacement model is used with the 
superparametric shell element for analysis of general 
anisotropic shell structures. A detailed description of 
the element following Ahmad et al. [21], Belytschko 
et al. [22], Milford and Schnobrich [23], and Kant and 
Datye [24] is presented. 

FINITE ELEMENT DISCRETIZATION 

The following sections present the development of 
a refined theory with the general shell element. 

Geometric definition of the element 

Elements with a higher degree of interpolation on 
the coordinates than on the displacements are called, 
in general, superparametric elements. In the present 
formulation, three types of coordinates are employed: 
nodal coordinates (V, , V2, V3), local coordinates 
(x’, y’, I’) and global coordinates (x, y, z). A typical 
quadrilateral shell element is considered. The external 
faces of the element are curved, while the sections 
across the thickness are generated by straight lines. 
The boundaries of the element are defined by non- 
dimensional coordinates 5, q = f 1 and z’ = f t/2. 
The coordinates of any point (<, q, z’) can be 
expressed as 

NN + 1 Njz'V,j (1) 
i=l 
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with J* = J-i, the following relations are used sub- 
sequently 

in which NN denotes the number of nodes in an 
element, N, is the shape function of ith node of the 
four-noded bi-linear or eight-noded serendipity/nine- 
noded Langrangian quadrilateral element, (xi, yi, zi) 
are the midsurface global coordinates of the ith nodal 
point which is computed by taking the average of top 
and bottom coordinates. Vector Vgi is defined by 
input data, and is presumed to span the thickness and 
be normal to the midsurface. Vector V,i is of arbitary 
length and might also be defined by input data so that 
is coincides with a principal direction of an 
orthotropic material. Or, V,i could be defined by the 
program itself as the cross product V,, = V3i x f or 
V,, = V,i x i, where 1 and i are unit vectors in x- and 
y-directions. The vector Vzi is perpendicular to the 
plane defined by V,i and Vii. 

WI 

HIGHER-ORDER DISPLACEMENT MODEL 

The local coordinate set (x’, y’, z’) is a Cartesian 
coordinate system defined at the sampling points 
wherein stresses and strains are to be calculated. At 
any point (5, n) on the midsurface, an orthogonal set 
of local coordinate axes (x’, y’, z’) are constructed. 2’ 
is the normal unit vector and 2’ and 9’ are tangent to 
the midsurface. If Ve and 8, be unit vectors along {- 
and q-directions, respectively, then 

The element displacements are completely defined 
by the midsurface nodal degrees of freedom uir ui and 
wi in the x, y and z global coordinate directions, and 
by rotations /Ii, xi and yi about Vu, Vzi and Vji axes, 
respectively; /I:, a f’ and y: are the corresponding 
higher-order degrees of freedom. Vectors Vii, V2i, V3i 
are mutually perpendicular. The displacements at any 
point (5, q, z’) can be expressed in terms of the nodal 
displacements as 

where The element coordinate definition given by the re- 
lation (1) has more degrees of freedom than the 
definition of the displacements. The element is there- 
fore of the superparametric kind. The displacements 
(ui, vi, w,), (ai, Pi, yi), (a:, fir, Y:) and (u’, u’, w’), 

W) (OX., f?,., 0,) (t?,*., Or, 0;) in the nodal and local 
coordinate systems, respectively, can be expressed in 
terms of global coordinate system by using ex- 
pressions (3a) and (3b), respectively. In order to define the material directions for 

anisotropic structures in relation to the local system 
of axes in a consistent manner, a definition similar to 
that of the V,,-direction is adopted here. 

The direction cosine matrices pi and c’, which 
relate the transformations between the nodal and 
global, and local and global coordinate system, 
respectively, are given by, 

where 1, m, n represent direction cosines. These indi- 
vidual transformation matrices are orthogonal. 

In the present model, the Jacobian relates the area 
integral in the x’, y’-coordinates to that in the 5, q- 
coordinates, which is given by 

Since the strain-displacement matrix B and the 
rigidity matrix D are being obtained in local coordi- 
nates, the same matrices are used for the computation 
of element stiffness matrix. Here the transformation 
is derived based on the concept that during any 
virtual displacement, the resulting increment in strain 
energy density must be the same regardless of the 
coordinate system in which it is computed. The 
relationship between the strains at any point within 
a laminate and the corresponding deformations are 
the functions of the assumed displacement field. In Co 
finite element, the continuum displacement vector 
within the element is discretized such that 

&=FN& (6) 

;:::: T::F]=[z: zj (da) 
i=l 

in which 6, is the generalized displacement vector 

ELEMENT STIFFNESS MATRIX 
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corresponding to the ith node of an element. The 
generalized strain vector E’ at any point within an 
element in the local coordinate system can be ex- 
pressed by the following relationships 

E’ = “c” B,si (7a) 
i=l 

where 

tJo 3 Y &ibYYrb 3 Yy’v.rb 9 4x,, d+, rf,+ YL,I Ub) 

sr = [Ui, Oi9 wi, 4, Dip Yj9 aiv 8:* YTI’. (7c) 

B is the strain-displacement matrix defined in 
terms of the displacement derivatives with respect to 
the local Cartesian coordinates and non-zero terms of 
this matrix are given below: 

(i) Membrane, coupling between inplane and 
bending and flexure terms 

B,, = (aNJax’)r,) B,, = (aNJax’)A,) 

B,, = (aNJax’)A,) B,, = (aNJaY’)&, 

B,, = (aN,/aYw,, By, = (aNiiaY71i2, 

B,,= -NiE,2i, B,,= -N,E,,,, B,6= -NiE,3i, 

B.,, = @N,/ax’)& + (aN,ldy’)i,, 

~~~ = (aNijaxpii, + (aN,~ayyi,, 

~~~ = (aNi/axyri, + (aN,/ay yff,, 

4, = WilW&,, & = (aNJax’V&, 

4, = W,ldx%ir BH = -(aNilV)4zi> 

45 = -(aNilay’)E,,i, & = -(~N,lay’)E,,i, 

B,, = -2NiE,,i, B,, = -2NiE3,ir 

B,9 = -2NiE,3i, 

Bg4 = (aNilaY’)E22i - (aN&‘)& 

BBS = (aNJaY’)E,,, - (aNi/ax’)E,,i, 

BM = (aNilaY’)E23i - (aNJax’)E,s, 

B9, = (aNi/dx’)E22i, Bg8 = (aNJdx’)E,,,, 

B9,, = (aNilax’)E~,i, B,,,, = -(aNilaY’)&i, 

B IO,8 = -@N,IW)&i, ha9 = -(aN,lW)E,,i 

B ,,,T = (aNilaY’)&2i - @Nilax’)&, 

CAS 42,3--G 

B I,, 8 = Wj/W>&i- WWx'W,li 

B ,,.9 = (aNilaY’)Ez3i - (aNJax’)E,,i. (74 

(ii) Shear terms 

B ,*, , = W,lWh, 4,. 2 = (aN/Wfi,, 

B ,2,3 = @Nilax’)&, B,,,, = NiEzir 

B ,2,5 = NiG.lit 812.6 = NiExsi, 

B ,3.1 = wwwYL B,,,, = WWy?fi,~ 

B ,,,, = WilW)ri,, B,,,, = -NiElli, 

B 13.5 = -NiE,,iv B13.6 = -NiE,xi 

B ,4,4 = -(aNj/ax’)E3zi, B,,, 5 = -(aNJax’)% 

B 14,6= -W~/ax')& B,4,, =2NiEni, 

B 14,8=2NiE21i, B14~9=2Ni&i9 

B w = -(aNi/aY’)4ziT BW = -(aNilaY%,i, 

B 15.6 = -(aN/aY’)Ej,tv B,s,T = -21VIE,2<, 

B I.5,8= -2NiElli, B15,9= -2NiElji 

B ,6,7 = -(aNildx’)E32i, 816.8 = -@Nilax’)&,, 

B 16.9 = -(aNJax’PL B,,, 7 = - (aNJaY’)E,,i, 

B,,8 = -@~/W)E31i~ B,,,, = -(aNh%3,, 

(W 

where 
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If the reference system of orthogonal axes inplane and bending, and flexure rigidities, and D, is 
(x’, y’, z’) is parallel to the principal material axes the shear rigidity matrix 
(1,2,3), then the stress-strain relationships can be 

If the principal axes of anisotropy 1,2 do not coincide 
with the reference axes x’y’, but are rotated by a i=l,2,3,4; j=l,2,3,4; p=l,2,3,4; 4=1,2,4; 
certain angle 0, the new elasticity matrix Q is deter- r=l,2,4;s=l,2,4; 
mined from the following transformation 

Q = T-]CT-“, @b) 

Qmr H, Qmr 4 Q,nr H, 
Ds = Qm, ff, Qm, ff3 Qnt, 4 1 3 @j) 

where the superscript T denotes the matrix transpose, 
T‘is the transformation matrix and C and Q are used 
here to denote the reduced stiffness matrix and m = 6,5; I = 6,s. 

transformed reduced stiffness matrix, and all the 
above matrices are given in [lb]. The stress-strain In the above relations, L defines the Lth layer, n is 
relations in x’y’coordinates can be written as the number of layers in a laminate, and 

(8~) H,=$(h:-h:,,), k=l,2,3,4,5. (8k) 

The constitutive relations involving inplane forces, 
bending moments and shear forces are defined as By knowing the B matrix and D matrix, the 
follows: element stiffness matrix K is calculated by using the 

1 
(8d) 

I 

After integration, these relations are written in a following 
matrix form which defines the stress-resultant/strain 
relations of the laminate fl +1 

K= 
SI 

BrDB]J] d{ dq. (9) 
-1 -1 

d’=DC’ (8f) 
As the rigidity matrix specifies the properties of the 

in which cross-section, the integration for the stiffness matrix 
is over the midsurface of the shell. The coordinate 

6’ = [N.Ys NV, Nz. NX.Y My, M,, Mxp,,. N:. Jacobian J is evaluated at the Gauss points lying on 
the shell midsurface. 

N.; N:.v,Qx, Qy, sx, sy, Q i! Q; IT (W 

and Z’ is a vector of midsurface strains and is defined 
in eqn (7b). The rigidity matrix D can be written as 

NUMERICAL RESULTS AND DISCUSSION 

In order to test the accuracy and the efficiency of 

Drnb 0 
c 1 

the developed algorithm, and to investigate the effects 
D= 

0 D, ’ @h) of cross-sectional warping, the following geometric 

and material properties were used. The values of the 

principle radii of curvature of the midsurface are 

where D,, denotes the membrane, coupling between denoted by R, and R,. 
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Data 2. 
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Arc length, a = b = 32.0 cm, RI = R, = R = varying. 
Intensity of UDL, q = 1 N/cm’. 
Face sheets (Graphite/epoxy prepreg system) 
E, = 1.308 x 10’ N/cm2, E, = 1.06 x lo6 N/cm2 
G12 = G13 = 6.0 x lo5 N/cm*, G2) = 3.9 x 10’ N/crn2, 

“12 = “I3 - - 0.28, v23 = 0.34. 
Core (U.S. commercial aluminium honey-comb, i in. cell size, 0.003 in. foil). 
Gz3 = 1.772 x lo4 N/cm2, G,, = 5.206 x lo4 N/cm2. 

Arc length, a = b = 32.0, q = 1.0, R, = R, = R = varying. 
E, /E, = E, /E3 = 25, G,, = G13 = OSE,, G2) = 0.2E2, 
v,~ = v23 = v,~ = 0.25, E2 = E3 = assumed unity. 

The load is applied on shell midsurface. It should 
be noted that unixial and biaxial symmetry exist only 
in isotropic and cross-ply composite shells, hence 
quarter of the shell is discretized for cross-ply lami- 
nates and full structure is invariably discretized for 
angle-ply and combination of cross-ply and angle-ply 
laminated shells. The following boundary conditions 
were used: simply supported: 

ri=wi=fli=~,=/7:=Yt=0 at x=O,a 

ui=w,=tli=yi=tl~=y~=O at y=O,b 

clamped supported: 

at x =O,a and y =O,b 

symmetric condition: 

~.=~~=a,*=0 at .~=a/2 

~~‘=/3~=/?f=O at y=b/2. 

In order to investigate the numerical convergence 
and accuracy of the behaviour of the composite-sand- 
wich shell, a simply supported spherical shell of 
quarter size is analysed with a uniformly distributed 
load (UDL) using Data 1. The stacking sequence is 
0°/90”/0”/90”/core/900/Oo/900/Oo, and the thickness of 
each stiff layer is 0.05h and core is 0.6h. Ratios of 
radius-to-arc length and arc length-to-thickness are 
varied. The different Gauss point integration rules are 
listed in Table 1. Table 2 presents the centre deflection 
(w x 10m5) in centimetres of thick and thin shells 
with four-, eight- and nine-node quadrilateral shell 

elements, for different meshes 1 x 1, 2 x 2 and 3 x 3, 
using the reduced integration for eight- and nine- 
node elements and selective integration for four-node 
elements. Table 3 shows the centre transverse deflec- 
tion (w x 10m5) in centimetres for different Gaussian 
integration rules, namely reduced, selective and full, 
with the discretisation of quarter shell by 2 x 2 mesh. 
From these results it follows that the centre deflection 
varies rapidly, with the ratio R/a, for deep shells (i.e. 
for large ratios of a/h) than for shallow shells (i.e. for 
small ratios of a/h). The behaviour of eight-node 
serendipity and nine-node Lagrangian elements are 
almost same. Since the convergence is achieved in 
2 x 2 mesh only, the nine-node element with reduced 
integration and 2 x 2 mesh are employed in the 
following examples. It should be noted that, if the 
radius of the curvature is more, i.e. for R/a < 1.0, 
further refinement of mesh size is required. Due to 
limitation of space those results are not presented. 

In order to validate the present theory and element, 
a problem for which the analytical solution exists is 
solved. The problem consists of a simply supported 
composite spherical shell (with Data 2) subjected to 
a UDL. Table 4 contains the centre transverse deflec- 
tion (w x 102) for various ratios of radius-to-arc 
length and for two values of side-to-thickness. A 
comparison of the present HOST and FOST results 
with the CFS [7] is made. The results of the present 
finite element FOST with the CFS are in good 
agreement with each other but results of the present 
HOST differ slightly particularly for thick shells. This 
is due to warping of the cross-section, which is 
accounted for in HOST. 

To show the effectiveness of the present HOST, a 
clamped composite-sandwich spherical shell with 

Table 1. Various Gaussian integration rules employed in evaluation of element properties 

Type of Membrane terms, and coupling Flexure Shear 
element Rule between inplane and bending terms terms terms 

Load 
vector 

Eight- and RI 2X2 2x2 2x2 2x2 
nine-noded SI 3x3 3x3 2x2 3x3 
elements FI 3x3 3x3 3x3 3x3 

Four-noded RI IX1 1X1 1X1 1x1 
element SI 2x2 2x2 1x1 2x2 

FI 2x2 2x2 2x2 2x2 

RI, reduced integration: SI, selective integration, FI, full integration. 
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Table 2. Centre deflection (in x IO-‘cm) of a simply supported composite-sandwich 
spherical shell (O”/900/Oo/900/core/~/On/900/~) under a uniformly distributed load and 

with material Data 1 

Mesh 

1x1 

2x2 

3x3 

alh 
W 

1 
3 
5 

10 
1030 

1 
3 
5 

10 
10M 

1 
3 
5 

10 
10’0 

Nine-node (RI) Eight-node (RI) Four-node (SI) 

10 100 10 100 10 100 

24.43 500.4 23.55 411.1 17.70 234.3 
51.99 04781 48.80 04659 44.34 02255 
56.66 11467 52.98 10032 49.46 05649 
58.88 26898 54.96 19207 51.96 15145 
59.65 48326 55.66 27554 52.84 34234 

23.53 459.7 24.17 459.4 22.16 425.8 
50.22 04487 50.53 04478 49.91 04195 
54.66 11079 54.86 11049 54.46 10118 
56.76 26239 56.89 26135 56.60 24189 
57.49 46745 57.60 46491 57.25 44773 

23.33 447.8 23.69 459.3 23.23 396.4 
50.84 04494 50.69 04489 50.21 04300 
55.12 11079 55.05 11071 54.68 10602 
57.14 26217 57.09 26200 56.81 25309 
57.84 46662 57.80 4663 1 57.56 45884 

RI, reduced integration; SI, selective integration. 

Table 3. Centre deflection (in x 1O-5 cm) of a simply supported nine-layered symmetric composite- 
sandwich spherical shell under uniformly distributed load, material Data 1 and 2 x 2 mesh in a quarter 

shell 

0 Rla RI SI FI RI SI FI RI SI FI 

1 23.53 23.81 23.73 24.17 23.15 23.68 23.82 22.16 21.28 
3 50.22 50.69 50.61 50.53 50.78 50.48 51.94 49.91 43.18 

10 5 54.66 55.07 54.98 54.86 54.97 54.84 56.69 54.46 46.65 
10 56.76 57.14 57.03 56.89 57.00 56.89 58.94 56.60 48.27 
IO’O 57.49 57.86 51.75 57.60 57.71 57.61 59.64 57.25 48.83 

1 459.7 452.2 460.5 459.4 453.0 460.0 413.1 425.8 351.72 
3 04487 04463 04548 04478 04453 04534 04390 04195 01478 

100 5 11079 10993 11019 11049 10962 10956 10659 10118 01876 
10 26239 26101 25616 26135 25995 25395 25523 24189 02112 
10M 46745 46123 45156 4649 1 46470 44375 47129 44773 02204 

Nine-node Eight-node Four-node 

RI, reduced integration; SI, selective integration; FI, full integration. 

Data 1 and stacking sequence as 0”/45”/core/60”/90” 

centre transverse deflection (w x 10m4) in 
for different ratios 

table, it is seen that, maximum difference between 

shells (a/h = 100). This is due to a realistic 
representation of the cross-sectional deformation and 
consideration of the complete stress-strain law in the 
present HOST. 

CONCLUSIONS 

The evaluations using the present higher-order 
shear deformable shell theory (HOST) show con- 
siderable warping of the transverse cross-section for 

composite-sandwich shells. This true behaviour is not 
possible to model with a first-order shear defor- 
mation theory (FOST). The refined theory with a Co 
continuous finite element model presented here is 
essential for reliable analyses of fibre-reinforced 
orthotropic and anisotropic composite and sandwich 
shell structures. In contrast to the classical shear 
deformation theories, the present HOST does not 
require a shear correction coefficient, owing to more 
realistic representation of the cross-sectional defor- 
mation and consideration of the complete three- 
dimensional Hooke’s law. Further, the finite element 
formulation presented here has enhanced the practi- 
cal applicability of such a theoretical development. 
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Table 4. Centre deflection of a simply supported composite 
spherical shell with Data 2 

0”/90 ~/90”/90”/0° 

Ria alh 10 100 10 100 

10’0 

10 

5 

4 

3 

2 

HOST 8.1297 
FOST 6.2426 
CFS 6.2300 

HOST 7.8232 
FOST 6.0817 
CFS 6.1008 

HOST 7.1138 
FOST 5.6439 
CFS 6.3820 

HOST 6.6687 
FOST 5.3536 
CFS 5.4988 

HOST 5.8782 
FOST 4.8147 
CFS 5.0364 

HOST 4.3869 
FOST 3.7211 
CFS 4.0537 

5452.3 3.1215 2189.2 
5445.5 3.2864 2191.0 
5433.6 3.2803 2186.59 

1767.4 3.0749 1188.0 
1770.9 3.2375 1188.4 
1773.6 3.2451 1190.6 

555.46 2.9356 488.58 
558.59 3.0986 488.60 
561.12 3.1439 491.45 

360.11 2.8189 335.35 
362.84 3.0015 335.34 
365.18 3.0719 337.88 

201.74 2.8298 197.82 
204.02 2.8098 197.80 
206.11 2.9268 199.87 

87.806 2.3181 89.462 
89.784 2.3678 89.445 
91.360 2.5765 91.008 
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