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A Comparison of 9 and 16 Node
Quadrilateral Elements Based on
Higher-Order Laminate Theories for
Estimation of Transverse Stresses

B. S. MANJUNATHA AND T. KANT*
Department of Civil Engineering
Indian Institute of Technology
Powai, Bombay 400 076
India

ABSTRACT: C- finite elements based on a set of higher-order theories are projected to
provide reliable predictions for interlaminar stresses in layered composite and sandwich
laminates. These theoretical-cum-computational models incorporate laminate deforma-
tions which account for the effects of transverse shear deformation, transverse normal
strain/stress and a nonlinear variation of inplane displacements with respect to the thick-
ness coordinate, thus eliminating the need for shear correction coefficients. The inplane
stresses are evaluated via constitutive relations, while the interlaminar stresses are evalu-
ated by using the equilibrium equations. 16 and 9 noded Lagrangian selectively integrated
isoparametric elements are used in this study. The present results, when compared with
available elasticity and closed-form laminate solutions, show good agreement. New results
for sandwich laminates are also presented which may serve as a benchmark for future
investigations.

1. INTRODUCTION

IN RECENT YEARS composite materials have been widely used, largely because
of their high specific stiffness and strength, excellent damage tolerance and
superior fatigue response characteristics. Laminated composites are in increasing
demand, because they can be tailored to suit almost any particular application.
These laminates are fabricated by stacking up plies or laminae of unidirectional
fibrous composites with each lamina oriented in different directions to achieve
the required stiffness and strength.

Refined analytical tools are needed for the prediction of the laminate beha-
viour. Classical lamination theory {1] based on Kirchhoff hypothesis and first-
order shear deformation theories due to Reissner [2] and Mindlin [3] have been
used to predict laminate response. The classical theory assumes linear variation
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of inplane displacements through the thickness, neglects shear deformation im-
plied by Kirchhoff hypothesis and assumes state of plane stress in the constitutive
relations which eliminates the possibility of rigorous calculation of interlaminar
stresses. The first-order shear deformabie theory based on assumed stress [2] and
displacement [3] fields remove some of the defects of the classical theory. How-
ever, this theory too neglects the effect of transverse normal strain/stress and is
based on a constant transverse shear strain/stress through the laminate thickness.
Thus a shear correction coefficient(s) which is somewhat arbitrary is introduced
to correct the transverse shear strain energy of deformation. These discrepancies
have been rectified in recent years by introducing higher-order functions in the
displacement models, thus leading to the development of higher-order laminate
theories.

Reissner [4] has given an exact approach to this problem which reproduced the
earlier equations of two-dimensional laminate theory and provided new supple-
mentary information concerning certain three-dimensional aspects of the prob-
lem. Lo et al. [5] presented closed form solutions for isotropic and laminated
plates with a higher-order displacement model. These theories incorporate the
effect of transverse normal stress/strain and lead to the realistic variation of trans-
verse shear stress/strain, but fail to eliminate the latter on the bounding planes of
the plate. Kant [6] and Kant et al. [7] are the first to present a C° finite element
formulation of a higher-order theory. This theory considers three-dimensional
Hooke’s law, incorporates the quadratic variation of the transverse shear strain
and linear variation of transverse normal strain through the plate thickness and
thus eliminates the need for shear correction coefficient(s).

Murthy [8] and Reddy {9] have adopted a displacement model that neglects the
strain energy due to transverse normal stress. Later, Reddy and his co-workers
presented closed form solution, C' displacement finite element [10] and mixed
finite element [11] models of the earlier formulation [9]. But this formulation is
computationally inefficient because of C' continuity and is not amenable to the
popular and widely used isoparametric formulation in present day finite element
technology.

In spite of the efforts of these research workers, simple and accurate evaluation
of interlaminar shear and normal stresses, an important aspect in the prediction
of failure modes under a given set of loading, has not been clearly reported. Kant
and his co-workers have given a set of higher-order theories [12-19] which may
be used to evaluate interlaminar shear stresses by using 9 noded Lagrangian ele-
ment. For estimating interlaminar normal stress one has to use the third equilib-
rium equation which requires the use of third derivative of displacements. Hence,
in this present work 16 noded cubic element is developed and used to evaluate in-
terlaminar stresses. These are then compared with the available closed form solu-
tions [20-24].

2. THEORY AND FORMULATION

A number of refined higher-order shear deformable theories for the analysis of
anisotropic composite and sandwich laminates are summarized below separately
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for symmetric and unsymmetric laminates in the increasing order of their
degrees-of-freedom (dof).

2.1 Symmetric Laminates
1. Higher-order shear deformation theory (HOSTSA), 5 dof/node
u(x,y,7) = 20.(x,y) + 2°05(x,y)
v(x,y,2) = 20,(x,y) + 2°0}(x,) (1)
wx,,2) = w.(x,y)
2. Higher-order shear deformation theory (HOST6A), 6 dof/node
u(x,y,z) = z6.(x,y) + 2°0¥(x,y)
v(x,y,2) = 20,(x,y) + 2°6)(x,) )
w(x,y,2) = w,(x,y) + 2?wi(x,y)
2.2 Unsymmetric Laminates
1. Higher-order shear deformation theory (HOST7A), 7 dof/node
u(x,y,2) = u,(x,y) + z0.(x,y) + z°0¥(x,y)
v, y,z) = v,y + 20,(xy) + 2°0(x,y) 3)
wx,y,2) = w,(x,))
2. Higher-order shear deformation theory (HOST9), 9 dof/node
u(x,3,2) = u,(x,y) + z0.(x,y) + z2u¥(x,y) + 220,y
v,y 2) = ve(x,y) + z0,(x,y) + 2vIy) + 2°05(x,y) 4)
WX, 3,2) = Wo(x,y)
3. Higher-order shear deformation theory (HOSTI1), 11 dof/node
u(x,y,2) = u,(x,y) + z20.(x,y) + 22uX(x,y) + z30¥(x,y)
v(x,y,2) = vo(x,y) + 20,(y) + 2 y) + 2°05(x,y) ®)

wx,y,2) = wo(x,y) + z6.(x,y) + 2*wX(x,y)
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4. Higher-order shear deformation theory (HOSTI2), 12 dof/node
u@,y,2) = u,(x,y) + z0.(x,y) + 2’uf(x,y) + 2°0¥x,y)

Volx,y) + 28,(x,y) + 22X, y) + %0} (x,y) 6)

vix,y,2)

wo(x,y) + z60.(x,y) + 22w¥(x,y) + 7230F(x,y)

w(x,y,2)

where u, v and w are the displacements of a general point (x, y, z) in the laminate
in x, y and z directions, respectively. The parameters u,, v,, w,, 8., 6, and 6, are
the appropriate two-dimensional terms in the Taylor series and are defined in x-y
plane at z = 0 (Figure 1). The parameters u’, v¥, w¥*, 6} and 67 are higher-
order terms in the Taylor’s series expansion and their physical interpretation is
difficult indeed, except that they represent higher-order transverse cross-sectional
deformation modes.

The strain displacement relations for a point at a distance z from the middle
surface of the laminate are given by,

_ Ou _ o _ ow
“ = o &= By =5
du av ou ow
‘yxy=@+a vu—a—z+§ D
av aw

"sz—a_z'*'“a“y_

Each lamina in the laminate is assumed to be in a three-dimensional stress state
so that the constitutive relation for a typical lamina L with reference to the fiber-
matrix coordinate axes (1-2-3) can be written as,

Oy Cy, |C|Cis |0 €1
02 C, |Cyis |0 €2
= = |— === = ®
03 sym G |0 €3
T12 Cas T1z2
T C 0 Y23
Z = 1= = )
Tia 0 Cos Y13
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Figure 1. Laminate geometry with positive set of laminaflaminate reference axes, displace-
ment components and fibre orientation.

972

Downloaded from http://jrp.sagepub.com at INDIAN INSTITUTE OF TECHNOLOGY BOMBAY on June 26, 2007
© 1992 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.


http://jrp.sagepub.com

A Comparison of 9 and 16 Node Quadrilateral Elements 973
where (01, 02,035,712, 723,713) are the stress and (e, €2, €3,912,723,713) are the linear
strain components referred to the lamina coordinates (1-2-3) and C/’s are the elas-
tic constants of the L™ lamina.

In the laminate coordinates (x, v, z) the stress-strain relations for the L™ lamina
can be written as
g = Qe (10a)

where

g = [0:,0,,0.,74, Ty T}

(10b)
€ = [6,6, 6.7, Y0 V]’
are stress and strain vectors with respect to the laminate axes and
Q=TI"CI™ an

is the three-dimensional elastic constants matrix in the laminate axes of the L*
lamina and T is the coordinate transformation matrix (see Figure 1). The expres-
sions of elastic constants are defined in Reference [13].

The total potential energy I1 of the laminate after an explicit integration is car-
ried out through the thickness is obtained in the following two-dimensional form,

1
II=5§
A

= (Nx’NyanyyNj:’N;k’N;tnNz;N:k,anMy’MXy9M:'k’M;k’Mj;’MZ’QxaQJ/’
500888585y

E@M—s@w@4 (12)

in which,

Q)

_ * %k _x * * ok ok *
e (6x076y076xyo’ Exaveyoaexyos 6201 6203 }{xv }{y7 )(xy9 %x9xy9)(xy9 %z7¢x’¢ys¢xs
* * *
By Hoax s Hyey Kz s Xy )

il

d = vector of displacement variables per node defined at the mid-plane of the
laminate
p. = load vector corresponding to displacement variables d
The two-dimensional laminate constitutive relation is obtained as,

g = Dt (13)

For the sake of brevity, further details are omitted here and the reader should
consult References [12-19].
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The theories based on the higher-order displacement models [Equations (1-6)]
lead to nonvanishing transverse shear stresses on the top or bottom free bounding
planes of the plate. The approach used so far [8,9] to satisfy the zero transverse
shear conditions, i.e., v,, and ~,. equal to zero at z = = h/2, is to modify the dis-
placement model by incorporating these conditions and thus eliminate 6 * and 6 ¥
[valid only for models given by Equations (1), (3) and (4)]. The resulting modi-
fied displacement model contains only the physical displacement components and
their derivatives. But this leads to C* continuity in the finite element formulation.
A different approach, which retains the C° continuity, is adopted here to incor-
porate the zero shear conditions. The shear rigidity matrix given by Equation (13)
as against the displacement model is modified here as follows.

The conditions (v.. and v,.) .. equal to zero are substituted in Equation (7)
and relations between 6, and 6 from ~,. and between 0, and 6 * from +,. are ob-
tained. These relations are substituted in the shear rigidity matrix D,, such that
the symmetric nature of D, is retained. This procedure is used for models with
five, six and seven degrees of freedom given by Equations (1), (2) and (3) and
these are designated as HOSTSB, HOST6B and HOST7B, respectively [12,18].

The foregoing theories are used in conjunction with isoparametric finite ele-
ments in x-y plane. Lagrangian quadrilateral elements with 9 and 16 nodes are
used. Selective numerical integration is employed for evaluating stiffness proper-
ties. The details are available elsewhere [19].

The evaluation of the interlaminar stresses (7..,7,.,0,) from the stress-strain
constitutive relations given in Equation (12) leads to discontinuity at the interface
of two adjacent layers of a laminate and thus violates the equilibrium conditions.
The three-dimensional analysis becomes very complex due to the thickness varia-
tion of constitutive laws and continuity requirements across the interface. For this
reason, the following equilibrium equations of elasticity for each layer are used
to derive expressions for the interlaminar stresses in the L* lamina of a multi-
layered laminate.

6(7, aTxy asz

ax T 3y + % = 0 14)
a7, % 0T 0

ax T ey Y T (13)
7. | 07 X

__T_ 7, do (16)

6x+6y+az

After substituting the lamina stresses in Equations (14) and (15), an integration
is carried out to obtain the interlaminar shear stresses as,

hiay
" [ do, ar,,
A ) s (a‘; + ay)a’z + G a7
h,

i=1
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L pha
_ —E da, ar, 4 c 18
2=hp,, = ~ 3y + Ep z + (18)

hy

L
Tyz

A second order differential equation is obtained for interlaminar normal stress
in terms of inplane stresses after eliminating the interlaminar shear stresses from
Equation (16), i.e.,

320’, 620,, azoy aszy

a2 = o T oy T2 axay (9

The following equation is obtained for interlaminar normal stress after inte-
grating Equation (19) twice,

~ (" 9% d’a, %7,
L — * x
Y ion,,, = ; ;, o + ay? + 2 oxdy dzpdz + zCs + C,4

(20)

Thus, it is seen that interlaminar stresses can be obtained by using stress equi-
librium equations. But in Equations (17) and (18) for interlaminar shear stresses,
it is seen that the values obtained may not in general satisfy both boundary condi-
tions at z = =Ah/2, as only one constant of integration is present.

This problem does not arise in the case of ¢, as here two constants of integra-
tion obtained by integrating twice, can be determined by substituting two bound-
ary conditions at z = =+h/2. The Equation (20) is solved as a boundary value
problem instead of an initial value problem as in the case of Equations (17) and
(18).

3. NUMERICAL RESULTS AND DISCUSSIONS

Performance of the two elements is demonstrated by comparing results for
various laminate geometries with those obtained using elasticity, other laminate
theory and finite element formulations. All computations were performed on a
CYBER 180/840 computer in single precision with 16 significant digits as word-
length. Due to biaxial symmetry of the problems discussed, only one quadrant of
the laminate is analysed except for angle-ply and unsymmetric sandwich lami-
nates which are analysed as full. The selective integration scheme based on
Gauss-Legendre product rules, viz. 4 X 4 and 3 X 3 rule for flexure and shear
contributions respectively for sixteen noded element and 3 X 3and 2 X 2 rule
for nine noded element to compute the element stiffness matrix is employed.

The following sets of data were used in obtaining the numerical results.

Material 1 [21]
El/Ez = 10 Glz/Ez = 060 ng/Ez = 050 E2 = E3

G = G2 viz = pa3 = vy = 0.25
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Material 2 [23]

EJ/E, = 25 G, /E, = 0.50 Gy/E, = 0.20 E, = E;
Gis = G, Via = Va3 = v = 0.25

Material 3 [23]

STIFF LAYERS

E\J/E, =25 G,/E, = 0.50 Gw/E, = 0.20 E, = E; = 10° psi

G13 = G12 Viz = Vaz = Viz = 025 hs = 01 h
CORE LAYERS
E, = E, =04 x 10° psi E; = 0.50 x 10° psi

G|2 = Gl3 = 0.6 x 10® pSl

G,; = 0.16 x 10° psi v = 0.25

Material 4 [29]

E\J/E, = 40 G.,/E, = 0.50 G/E;, = 0.60 E, =E;
G = G Vi2 = Va3 = vy = 0.25

Material V [31]

FACE SHEETS

E, = 1.308 x 10" N/cm? E, = 1.06 x 10° N/cm?

Gz = Gz = 6 X 10° N/em?

G;; = 3.9 x 10° N/em? vy = v = 0.28 vas = 0.35

CORE

Gy = 1.772 x 10* N/cm? Gy; = 5.206 x 10* N/em?

(other properties are zero)

The deflection and interlaminar stresses are presented here in non-dimensional
form using the following multipliers.
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10E,h* h? h
m; = qa4 m;, = —~ m; = —

The superscripts e and ¢ used in various tables that follow represent values of
stresses obtained from equilibrium and constitutive relations, respectively.

Example 1. A simply supported orthotropic composite laminate under uni-
formly distributed load is considered. Material 1 set is used and the results for
displacement and stresses are given in Table 1. The results show that the inplane
and interlaminar stresses obtained from 16 noded element are close to the closed
form solution [21] when compared to the 9 noded element results. But, transverse
displacement results show that 9 noded element gives displacement which is bet-
ter than 16 noded element when compared with closed form solution. Figure 1
shows the variation of interlaminar normal stress through the plate thickness.
Since the closed form solution results are not available for comparison, these
have been compared with the Mindlin theory [32] which show good agreement.

Example 2. A simply supported three layered symmetric cross-ply (0/90/0)
square plate under sinusoidal transverse load is considered. Material 2 set is used
and the numerical results for a/h ratios of 4, 10 and 100 are given respectively in
Tables 2-4. The results show that the interlaminar shear stress 7,. obtained by 16
noded element is close to the elasticity solution {23] compared to 9 noded ele-
ment, but in the case of 7.., the vice-versa is seen for a/h = 4. For compara-
tively thin plates (¢/2 = 10) 16 noded element gives better results compared to
9 noded element. The displacement and inplane stress values show that 9 noded
element gives accurate results for all values of a/h ratio. The variation of inter-
laminar normal stress through the laminate thickness is shown in Figure 2. This
shows that the values obtained by present formulations match well with the elas-
ticity solution [23].

Example 3. A simply supported three layered square orthotropic sandwich
plate under sinusoidal transverse load is considered and Material 3 set is used.
The numerical results for displacement and stresses are given in Tables 5-7 for
a/h ratio 4, 10 and 100, respectively. The results show that the interlaminar shear
stress 7,, obtained by 16 noded element is close to elasticity solution [23], com-
pared to 9 noded element for a/h = 4. But in the case of inplane stresses and the
T, Vice-versa is seen. As the a/h ratio increases (a/h = 10) the stresses obtained
by 16 noded element are close to elasticity solution and for thin laminate (a/h =
100) both elements almost give the same results when compared with elasticity
solution. Since the elasticity solution results are not available for o, , these results
are compared with the Mindlin theory [32] which is shown in Figures 4 and 5 for
a/h = 4 and 10 respectively. This shows large difference in values for thick lami-
nate (a/h < 4) and both theories converge almost to the same value when the
laminate becomes thin (a/h = 10).

Example 4. A two layered unsymmetric cross-ply (0/90) square laminate sub-
jected to sinusoidal loading is considered next for comparison of displacement
and stresses. Material 2 set is used and numerical results are presented in Tables
9 and 10 for a/h ratios of 4 and 10 respectively. The results show that the 7,,
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Figure 2. Variation of transverse normal stress through the thickness (orthotropic laminate)
(th = 5).
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Figure 3. Variation of transverse normal stress through the thickness (0/90/0) (ith = 4).
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Figure 4. Variation of transverse normal stress through the thickness (sandwich laminate)
(th = 4).
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Figure 5. Variation of transverse normal stress through the thickness (sandwich laminate)
(th = 10).
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values obtained with 16 noded element is close to the elasticity solution [23] com-
pared to 9 noded element and for other stresses vice-versa is seen for a/h = 4.
But for a/h = 10 the 16 noded element gives better estimates for all the stresses.
The variation of interlaminar normal stress through the laminate thickness for
a/h = 4 is shown in Figure 5. The results show that the present theories follow
a different path compared to the elasticity solution [23] but converge to the same
value at the bottom and top where the load is applied.

Example 5. A two layered simply supported unsymmetric angle-ply (15/ — 15)
square plate subjected to sinusoidal loading is considered. Material 4 set is used
and the results are given in Table 10 for a/h = 10. The results show that the dis-
placement, inplane and interlaminar stresses obtained by 9 noded element match
well with the closed form solution [29] compared to the 16 noded element. Since
the closed form solution results were not available for interlaminar normal stress,
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Figure 6. Variation of transverse normal stress through the thickness (0/90) (I/h = 4).
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they have been compared with Mindlin theory [32] (Figure 7) which show good
agreement.

Example 6. A clamped unsymmetrical 8 layered sandwich plate (0/90/30/core/
30/ —45/45/0) under uniformly distributed load is considered and Material 5 set
is used. The results for displacement, inplane and interlaminar stresses for
a/h = 10 and 50 are presented in Tables 10 and 11 respectively and the variation
of interlaminar normal stress through the plate thickness is shown in Figures 8
and 9 for a/h = 10 and 50 respectively. The results show large difference in dis-
placement, inplane and interlaminar stresses for thick laminate (a/h < 10) com-
pared to the Mindlin theory. This is because of the simplifying assumptions made
in the Mindlin theory. But for the thin laminates (a/h = 50) both the theories
give almost the same results.
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Figure 8. Variation of transverse normal stress through the thickness (sandwich laminate)
(h = 10).
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Figure 9. Variation of transverse normal stress through the thickness (sandwich laminate)
(’h = 50).

4. CONCLUSIONS

In summary, a number of simple but accurate and efficient C° finite element
higher-order theories have been presented. These theories do not require the
usual shear correction coefficient(s) which is/are generally associated with the
first-order shear deformable theories of Mindlin and Reissner. Element tests have
been performed in the linear range for comparison with closed form elasticity
and other numerical solutions. Computed displacements and stresses are in ex-
cellent agreement with those obtained by elasticity for a variety of laminate
geometries and loading. Convergence has been demonstrated by considering
various a/h refinements. Interlaminar normal stress is presented and compared
with elasticity solution which shows good agreement for the symmetric case. For
the unsymmetric case it follows a different path, but converges to the same values
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at top and bottom of the plate. This may be due to the use of third derivative of
displacements which is reflected in the unsymmetric case. For the other probiems
also these results have been given which can be used for future reference. This
is possible only by taking cubic variation of displacement as the third derivatives
of displacements can be calculated. Thus 16 noded element has been used in
these formulations and this can be used when all the stresses are to be evaluated.
The results obtained by models when the zero shear conditions on top and bottom
surfaces are not satisfied are better compared to the models when this condition
is satisfied for thick laminates.

In the symmetric case, the results of HOST6 are most reliable and close to the
closed form and elasticity solutions compared to other models, as this model con-
siders the nonlinear variation of transverse displacements. Hence this model is
most suited to tackle symmetric composite and sandwich plates.

In the unsymmetric case, the results of HOST9 are reliable and close to the
closed form and elasticity solution compared to the other models for composites.
Thus, this model is recommended for the evaluation of stresses in composite
plates, but for sandwich plates and other highly anisotropic composite plates
HOSTI2 may be used, as this model takes care of the three-dimensional effects
and fairly realistic variation of displacements in thick laminates.
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