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Geometrically Non-Linear Analysis of
Doubly Curved Laminated and Sandwich
Fibre Reinforced Composite Shells with

a Higher Order Theory and C&deg;
Finite Elements

T. KANT AND J. R. KOMMINENI

Department of Civil Engineering
Indian Institute of Technology
Powai, Bombay-400 076

India

ABSTRACT: An isoparametric C&deg; finite element formulation based on a higher order
displacement model for linear and geometrically non-linear analysis (that accounts for
large displacements in the sense of von Karman) of doubly curved laminated composite
and sandwich shells under transverse loads is presented. The displacement model ac-
counts for cubic and constant variation of tangential and transverse displacement compo-
nents respectively through the shell thickness. The assumed displacement model elimi-
nates the use of shear correction coefficients. The discrete element chosen is a nine-noded

quadrilateral element with nine degrees of freedom per node. The accuracy of the for-
mulation is then established by comparing the present results with the available analytical
closed-form solutions, three-dimensional elasticity solutions and other finite element solu-
tions.

1. INTRODUCTION

S TRUCTURAL ELEMENTS MADE up of fibre reinforced composite materials arebeing extensively used in high and low technology areas in recent years. Their
industrial applications are multiplying rapidly because of their superior mechan-
ical properties. However, the engineering community is faced with many chal-
lenging problems associated with the use of these new materials. Of these, the
geometric non-linear response of laminated composite shells is one of the major
considerations in their design.
An accurate prediction of the behaviour of shell structures requires modeling

of actual geometry and kinematic description of the components. The partial dif-
ferential equations describing the large deflection behaviour of anisotropic
composite shells of arbitrary geometry are not amenable to classical analytical
methods. The finite element method has proved to be a very powerful tool for an-
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alyzing structural problems involving complex geometries, loadings, boundaries
and non-linearities.

Many of the classical theories were developed originally for thin elastic shells
and are based on Love-Kirchhoff assumptions and surveys of such classical shell
theories can be seen in the works of Naghdi (1956) and Bert (1980).
The first analysis that incorporated the bending and stretching coupling is due

to Ambartsumyan (1964). Ambartsumyan assumed that the individual orthotropic
layers were oriented such that the principal axes of material symmetry coincided
with that of the principal coordinates of the shell reference surface. The effects of
transverse shear deformation, transverse normal stress and transverse normal
strain on the behaviour of laminated shells can be incorporated on the basis of a
mathematical model through the inclusion of higher order terms in the power
series expansion of the assumed displacement field.

In the context of special orthotropic and homogeneous shells, Hildebrand,
Reissner and Thomas (1949) were the first to make significant contributions by
dispensing with all the Love’s assumptions and assuming a three-term Taylor’s
series expansion for the displacement vector. Naghdi (1957) has employed Reiss-
ner’s (1950) mixed variational principle to develop a complete shell formulation
similar to that of Hildebrand et al. retaining two and three terms in the Taylor’s
series for tangential and transverse displacement components, respectively. Dong
and Tso (1972) were perhaps the first to present a first order shear deformation
theory, retaining one and two terms in the Itylor’s series for transverse and
tangential displacement components respectively which includes the effects of
transverse shear deformation through the shell thickness, and then to construct a
laminated orthotropic shell theory.

Further attempts at refining the theories for laminated anisotropic cylindrical
shells have been made by Widera and Loagan (1980) and Whitney and Sun (1974)
based on a displacement model similar to one used by Naghdi. Reddy (1984) ex-
tended Sanders (1959) theory for simply supported cross-ply laminated shells
assuming five degrees of freedom per node. Kant (1976) developed complete
governing equations for a thick laminated composite shell. The theory is based
on a three-term Taylor’s series expansion of the displacement vector and general-
ized Hook’s law, and is applicable to orthotropic material laminas having planes
of symmetry coincident with shell coordinates. Kant and Ramesh (1976) have pre-
sented a general orthotropic shell theory in orthogonal curvilinear coordinates
based on a displacement model of Hildebrand et al. (1949). However, they con-
cluded that the inclusion of the third terms in the tangential surface displacements
would be of no practical significance for sufficiently thin shells. It was this result,
perhaps had prompted Naghdi (1957) to truncate the Taylor’s series expansion for
tangential displacements after linear terms in the thickness coordinate and later
many others followed him. This indeed was done without realizing that the flex-
ural behaviour could only be improved if one retains terms up to cubic in the
thickness coordinate in the expansion of the tangential displacements.
Kant (1981a,b) presented higher order theories for general orthotropic as well

as laminated shells, which are derived from the three-dimensional elasticity
equations by expanding the displacement vector in Taylor’s series in the thickness
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coordinate. The theories account for the effects of transverse shear deformation,
transverse normal stress and transverse normal strain with an implicit non-linear
cubic distribution of the tangential displacement components through the shell
thickness.

Reddy and Liu (1985) presented a higher order theory assuming constant and
cubic variation of transverse and tangential displacement components respec-
tively through the thickness of doubly curved shells and used Navier’s approach
for solution. Bhimaraddi (1986) and Murty and Reddy (1986), presented higher
order displacement based shear deformation theories based on C’ continuity.
Kant and Pandya (1988) and Pandya (1987) presented different higher order shear
deformation theories for static analysis of laminated composite plates using C 

°

continuity. Kant and Menon (1989) presented various higher order theories for
laminated composite cylindrical shells using C° finite elements. Kant (1988-1991)
along with co-workers after doing extensive numerical investigations on lami-
nated plates and shells, both static and dynamic analysis, using C ° nnite elements
and different higher order theories, proved that the imposition of shear free
boundary conditions at top and bottom bounding planes of the laminate gives
stiffer solutions when compared to three-dimensional (3-D) elasticity solutions
and also among various displacement models for flat laminates, the one having
nine degrees of freedom per node produces results very close to 3-D elasticity
solutions. As regards curved laminates the work is under progress and a definite
conclusion would emerge after some more investigation. All of these studies are
limited to small deformation theory.
Because of high modulus and high strength properties that composites have,

structural composites undergo large deformations before they become inelastic.
Therefore, an accurate prediction of displacements and stresses are possible only
when one accounts for the geometric non-linearity. Horrigmoe and Bergan (1976)
presented classical variational principles for non-linear problems by considering
incremental deformations of a continuum. Wunderlich (1977) and Stricklen et al.
(1973) have reviewed various principles of incremental analysis and solution pro-
cedures for geometrical non-linear problems respectively.
Noor and Hartley (1977) employed the shallow shell theory with transverse

shear strains and geometric non-linearities to develop triangular and quadri-
lateral finite elements. Chang and Sawamiphakdi (1981) presented a formulation
of the degenerate three-dimensional (3-D) shell element for geometrically non-
linear analysis of laminated composite shells. Their presentation does not include
any numerical results for laminated shells. Kim and Lee (1988) developed an
18-noded solid element to study the behaviour of laminated composite shells
undergoing large displacements.
Chao and Reddy (1983), Reddy and Chandrasekhara (1985a,b) have presented

a first order shear deformation theory based on kinematic and geometric assump-
tions of Sander’s thin shell theory for geometrically non-linear analysis of doubly
curved composite shells and Liu (1985) presented C based higher order shear
deformation theory for geometrically non-linear analysis of doubly curved aniso-
tropic shells. Use of such elements in the non-linear analysis of composite shells
inevitably leads to large storage requirements and computational costs and are
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not amenable to the popular and widely used isoparametric formulation in the
present day finite element technology. Recently, Kant and Mallikarjuna (1991)
presented a geometrically non-linear dynamic response of laminated plates with
a higher order theory with seven degrees of freedom per node and C° finite ele-
ments.

In the present paper, a new higher order (third order) theory is presented that
accounts for a parabolic distribution of the transverse shear strains and the von
Karman strains. The tangential displacements have cubic variation through the
thickness. Nine-node quadrilateral Lagrangian finite elements incorporating
selective numerical integration have been used. Numerical results of this for-
mulation have been compared with a parallel formulation of a first order shear
deformation theory based on Sander’s shell theory.

2. THEORY AND FORMULATION

Let (a, , a2, z) denote the orthogonal curvilinear coordinates (shell coordinates)
such that ai and a2 curves are lines of principal curvatures of middle surface
z = 0 and a curves are perpendicular to the z-axis. For cylindrical and spherical
shells the lines of principle curvatures coincide with the coordinates’ lines. The
values of principle radii are denoted by R, and R,.
The position vector of a point on the middle surface is denoted by r and posi-

tion of a point at a distance z from the middle surface is denoted by R. The dis-
tance ds between two points («,,a2,0) and (a, + dal,«2 + da2,0) is de-
noted by

where A, and A2 are Lame’s parameters.
The distance between two general points in shell space (cxl, «Z, z) and (ai +

d a, , a2 + d «2, z + dz) is given by

where h,, h2 and h3 are three-dimensional (3-D) Lame’s coefficients, such that

for a doubly curved shell.
A composite doubly curved shell consisting of thin homogeneous orthotropic

layers having a total thickness of h is considered. The x, y are the curvilinear
dimensional coordinates defining the doubly curved shell which coincides with
the mid-surface of the shell and z-axis is oriented in the thickness direction as
shown in Figure 1.

In the present theory displacement components of a generic point in the shell
are assumed to be of the form given by Kant and Menon (1991) and Reddy and
Liu (1985)
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Figure 1. Laminate geometry with positive set of laminallaminate reference axes, displace-
ment components and fibre orientation.

where uo, vo and w. are middle surface displacements of a generic point having
displacements u, v, w in x, y and z directions respectively. 0., and 0., are rotations
of the transverse normal in the xz and yz planes respectively, u o*, vo , 0 x* and 0 y *
are the corresponding higher order terms in the Taylor’s series expansion.
A total Lagrangian approach is adopted and stress and strain descriptions used

are those due to Piola-Kirchhoff and Green respectively. In the present theory
large displacements in the sense of von Karman with small strains and rotations
are considered. The following are the strain displacement relations.
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The total potential energy of the system II with the middle surface area A en-
closing the space of the volume V and loaded with an equivalent load vector q
corresponding to nine degrees of freedom per node of a point on the middle sur-
face can be written as

where d’ = (uo, vo, wo, 0~ , 0~ , u:, v* , 0*, 6’*).
By substituting the expression for the strain components in the above expres-

sion for total potential energy and minimizing the function while carrying out ex-
plicit integration through the shell thickness leads to the stress resultant vector g
[ref. Kant and Pandya (1988) and Kant and Menon (1989)]. 6 = (Nx , A~,, Nx,, ,
A~* A~* N* ~ Mx~ My~ MXY~ ~f* My ~ M* ~ Qx~ Qr~ <0* Q*~ Sx~ S’y~ S*~ S*).
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Then the laminate constitutive relations are obtained as

where the coefficients Dm,~ , D~,~ , D,,, and DS,~ are respectively in-plane, bending
in-plane coupling, bending and transverse shear stiffness coefficients respectively
and &euro;~ and &euro;~, are generalized linear and non-linear strains respectively defined
in the following manner.
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and 1 ’ = (e~e~e:).
As the basic equilibrium equation, the virtual work equation for laminated

shell under the assumption of small strain and large displacement in total La-
grangian coordinate system is considered and can be written in compact form as

3. C ° FINITE ELEMENT FORMULATION

The finite element used here is a nine-noded isoparametric quadrilateral
(Lagrangian family) element. The laminate displacement field in the element can
be expressed in terms of the nodal variables as
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where NN is number of nodes per element, N, (~,,q) contains interpolation func-
tions associated with node i in terms of the local coordinates ~ and ~, d, is nodal
displacement vector. The generalized strain vector E can be expressed in terms
of mid surface nodal displacements d, displacement gradient 0,,,, Cartesian de-
rivatives of shape function matrix N and its variation 6e can be written in the
form of

where Bo is the strain matrix giving linear strains. B,,, is linearly dependent upon
the nodal displacements d such that d’ = (d i, d 2, d 3, ... , d;, ) and substituting
Equations (12) and (13) in Equation (11), the following discrete equation is ob-
tained.

where Ko is linear elastic stiffness matrix, F is force vector, H (d) is generalized
non-linear stiffness matrix which is given by

where q nl is non-linear stress vector, the stresses are induced by the non-linear
part of the strain and F is force vector due to external loads.

4. NUMERICAL RESULTS

In order to demonstrate the versatility of the refined theory and C finite ele-
ments developed, several examples drawn from the literature are evaluated and
discussed. Computer programs have been developed for first order shear defor-
mation theory (FOST) with five degrees of freedom (Mo, vo, wo, 6x, 0,) and a new
higher order shear deformation theory (HOST) with nine degrees of freedom (Mo,
Vol wo9 ox9 oy 9 U o* v* , 9 0 x , 0 y *) per node for both linear and geometrically non-
linear analysis of doubly curved shells. All the computations were carried out in
single precision with a 16-significant digit word length on CDC CYBER 180/840
computer at Indian Institute of Technology, Bombay, India.
The results to be discussed are grouped into two categories, viz., 1) linear anal-

ysis and 2) non-linear analysis. Due to biaxial symmetry only one quadrant of
shell was modeled with 2 x 2 uniform mesh to model cross-ply shells whereas
to model the angle-ply shells a 4 x 4 uniform mesh in full shell is adopted. In
the present study the nine-noded Lagrangian quadrilateral isoparametric element
was employed. Selective integration scheme, based on Gauss quadrature rules
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viz. 3 x 3 for integration of membrane, flexure and coupling between mem-
brane and flexure terms, and 2 X 2 for shear terms in the energy expression, was
employed in the evaluation of element stiffness property. All the stress values are
reported at the Gauss points nearest to their maximum value locations. The shear
correction coefficient used in first order shear deformation theory (FOST) is as-
sumed as 5/6.
The material properties, unless otherwise specified are assumed as

These properties do not satisfy the symmetry condition, i.e., v,zlEl ~ P21/E2
is selected to facilitate the comparison of present results with available results
[see Pagano (1970)].
The boundary conditions used in the present investigation are classified and ex-

plained in Table 1.

4.1 Linear Analysis

4.1.1 COMPARISON OF PRESENT RESULTS WITH 3-D ELASTICITYRESULTS

Example 1: A square simply supported (Sl) cross-ply (0°/90°) laminate under
sinusoidal transverse load is considered. The present results are compared with
Pagano (1970) as well as corresponding higher order results presented by Pandya
and Kant (1988) and these are presented in Table 2. The following non-dimen-
sional quantities are used

Example 2: An infinite long orthotropic cylindrical shell of radius and arc
lengths respectively 10 in, 10.472 in subjected to sinusoidal transverse load of
q = qo sin (7rx/l) is considered. The boundaries are free along circumferential
direction and simply supported along longitudinal direction. A 1 X 10 mesh dis-
cretization for one quadrant of shell is taken. The results are compared with exact
solution given by Ren (1987), finite element higher order theory and classical
lamination theory given by Dennis and Plazotto (1991) and all these are presented
in Table 3. The following non-dimensional quantities are used

Example 3: A simply supported (Sl) cross-ply (0°/90°) cylindrical shell of
length equal to 4 times radius of shell, subjected to an internal sinusoidal pres-
sure of intensity q = qo sin (7rx/1) cos [4(ylR)l is considered. A 2 x 2 mesh
discretization in 1/8 along circumference and 1/2 along longitudinal is adopted.
The following non-dimensional quantities are used for presenting the results
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Table 1.

Table 2. Maximum displacement and in-plane
stresses for a simply supported (Sl) square

cross-ply (0°/90°) laminate under
sinusoidal transverse load.

 © 1992 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at INDIAN INSTITUTE OF TECHNOLOGY BOMBAY on June 26, 2007 http://jrp.sagepub.comDownloaded from 

http://jrp.sagepub.com


1059

Table 3. Maximum displacement and circumferential stress for an
orthotropic infinite long cylindrical shell under sinusoidal transverse load.

Values m parentheses give percentage difference mth respect to the elasticity solution [Ren (1987)]
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The present results for displacement and stresses are compared with Varadan and
Bhaskara (1991) and are presented in Table 4.

4.1. 2 COMPARISON OF PRESENT RESULT WITH
2-D CLOSED FORM RESULTS
To show further the validity of present higher order theory the following spher-

ical shells with different boundary conditions are considered.
Example 4: A square simply supported (Sl) cross-ply (0°/90°) spherical shell

subjected to uniform/sinusoidal transverse load is considered. The results are
compared with Reddy and Liu (1985) and are presented in Table 5. The non-
dimensional quantity for representing displacement is as follows.

Example S: A simply supported (S2) cross-ply (0°/90°) and a clamped (C)
angle-ply spherical shell with R/a = 10 subjected to uniform transverse load are
considered. The non-dimensional quantities used are as follows

Table 4. Maximum displacement and extreme fibre stresses of an
unsymmetric cross-ply (0°/90°) cylindrical shell of finite length subjected to

sinusoidal transverse load.

Exact result given by Varadan and Bhaskar (1991).

 © 1992 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at INDIAN INSTITUTE OF TECHNOLOGY BOMBAY on June 26, 2007 http://jrp.sagepub.comDownloaded from 

http://jrp.sagepub.com


1061

::i0
t
go

eo.cj
r.0
tQ,H
o

6

~
0

0
~
a

2
(i

.
w
4)
e

t
en

c
-11

~
&dquo;C
?

to
Q,go
co

~

Q.
E
B
cc

10

c4)
E
a
0

1
!2

E
=

E
S
i
ui
?

.Q

1!

 © 1992 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at INDIAN INSTITUTE OF TECHNOLOGY BOMBAY on June 26, 2007 http://jrp.sagepub.comDownloaded from 

http://jrp.sagepub.com


1062

The results for maximum displacement and stress resultants are compared with
Kabir (1990) and are plotted in Figures 2a-2c.
From the above results it is clear that all the theories predict the same results

in the case of geometrically thin shells, but as the thickness increases the classi-
cal thin shell theory (CLT) and first order shear deformation theory (FOST)
underpredict displacements and stresses, whereas present HOST predicts the dis-
placement and stresses very close to the 3-D elasticity as well as closed form
results. This indicates that as the shear deformation increases, the present simple
C° higher order finite element theory is the best alternate to the classical thin
shell theory and first order shear deformation theory.

4.2 Non-Linear Analysis

4.2.1 COMPARISON OF PRESENT RESULTS WITH FEM RESULTS
To the authors’ knowledge there is no closed form solution available for geo-

metrically non-linear analysis of shells in open literature. Hence to check the va-
lidity of present theories in non-linear analysis the following problems which are
having finite element two-dimensional (2-D) as well as three-dimensional (3-D)
solutions are considered.

Figure 2a. Displacement vs. alh ratio for a simply supported (S2) cross-ply (0°/90°) spher-
ical shell under uniform load.
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Figure 2b. Stress resultant vs. alh ratio for a simply supported (S2) cross-ply (0°/90°)
spherical shell under uniform load.

Figure 2c. Displacement vs. alh ratio for a clamped (C) angle-ply spherical shell under uni-
form load.
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Firstly, an unsymmetric cross-ply (0°/90°) spherical shell of Rla = 10, alh =
100 with different simply supported boundaries subjected to uniform load is con-
sidered. This problem is considered to show the validity of present theories by
comparing present results with tabulated results of Chandrasekhara (1985) and
also to study the effect of boundary conditions. The results are presented in Table
6. It is clear from the results that the transverse deflection is sensitive to the

boundary conditions on the in-plane displacements of simply supported shells.
Boundary conditions S2 and S3 give almost same deflection. Boundary condi-
tions Sl and Cl give deflection of an order of magnitude higher than that given
by S2 and S3. Thus, boundary condition S2 and S3 make the shell quite stiff.
A clamped (C) unsymmetric cross-ply (0 ° /90 ° ) cylindrical shell of R = 2540

in, a = b = 508 in, h = 2.54 in, and subjected to uniform load is considered.
The present results are compared with finite element first order shear deforma-
tion theory given by Reddy and Chandrasekhara (1985a) and three-dimensional
(3-D) finite element result given by Kim and Lee (1988) and these are plotted in
Figure 3a. Even though the present results are very close to the Reddy and Chan-
drasekhara (1985a) results, there is marginal difference when compared with 3-D
finite element results. This may be due to 2-D and 3-D models of the problem.
A clamped (C) 8-layer quasi-isotropic cylindrical shell with two different

types of laminations of (0°/45°/90°/-45°)S and (0°/=)=45°/90°)., geometry
a = b = 508 in, h = 2.54 in, R = 2540 in and the material properties are
E1 = 25 * 106 psi, E2 = 2 * 106 psi, G12 = G13 = 106 psi, G23 = 0.4 * 106
psi, v = 0.25 is considered. The one quarter of the shell is descretized using the
2 x 2 uniform mesh and the results are compared with Reddy and Chandra-
sekhara (1985b) and are plotted in Figure 3b.
From the above results it can be concluded that the present simple C displace-

ment models are valid in geometrically non-linear analysis.

4.2.2 UNSYMMETRIC CROSS-PLY (0°/90°) SPHERICAL
SHELL UNDER UNIFORM LOAD

This problem is selected to carry out the convergence study by taking 2 x 2,
3 x 3 and 4 x 4 uniform meshes in a quadrant of the shell. A simply supported
(Sl) unsymmetric cross-ply (0°/90°) spherical shell of Rla = 10, alh = 5 sub-
jected to uniform load is considered. The plots for displacement and stresses ver-
sus load, respectively, are shown in Figures 4a and 4b. Since the variation in
results seems to be very marginal, it is concluded that a 2 x 2 mesh gives
reasonably converged results. The following non-dimensional quantities are used

4.2. 3 A SIMPLY SUPPORTED SPHERICAL SHELL
A simply supported (SI) spherical shell of Rla = 10, a/h = 10 with different

laminations (0°/90°) and (45°/-45°) subjected to sinusoidal transverse load is
considered. The non-dimensional quantities are as per Equation (22). The results
are plotted in Figures 5a and 5b. The results show that the angle-ply shell gives
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Figure 3a. Displacement vs. load curves for an unsymmetric cross-ply (0° /90°) clamped
(C) cylindrical shell under unlform load.

Figure 3b. Displacement vs. load curves for quasi-lsotropic clamped (C) cylindrical shells
under uniform load.
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Figure 4a. Displacement vs. load curves for a simply supported (Sl) cross-ply (0°/90°)
spherical shell under uniform load.

Figure 4b. Stress vs. load curves for a simply supported (S1) cross-ply (0°l90°) spherical
shell under uniform load.
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Figure 5a. Displacement vs. load curves for a simply supported (Sl) spherical shell under
sinusoidal transverse load.

Figure 5b. Stress vs. load curves for a simply supported (S1) sphencal shell under sinu-
soidal transverse load.
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stiffer solution when compared to the cross-ply shell. The maximum stress pre-
dicted in the case of angle-ply shell is far lower than the cross-ply shell for the
same load, geometry and boundary conditions.

4. 2.4 ANGLE-PLY SPHERICAL SHELL
A simply supported (Sl) angle-ply spherical shell of Rla = 10, alh = 5 with

different laminations subjected to uniform load is considered. The non-dimen-
sional quantities used are as per Equation (22). The results are presented in
Figures 6a-6c. It is observed from the results that as the lamination angle in-
creases the shell is observed to be stiffer until 0 = 45 ° ; a further increase in the
lamination angle makes the shell flexible. This difference is observed to be more
as the magnitude of load increases.

4.2.5 SANDWICH SPHERICAL SHELL
A clamped (C) angle-ply sandwich (0°/45°/90°/CORE/90°/45°/30°/0°)

spherical shell of R/a = 5 subjected to uniform transverse load is considered.
The geometry and material properties taken from Allen (1969) are as follows

For face sheets, the assumed ply data is based on Hercules ASI/3501-6/graphite/
epoxy prepreg system [Mallikarjuna and Kant (1989)]

Figure 6a. Displacement vs. load curves for a simply supported (Si) angle-ply spherical
shell under uniform load.
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Figure 6b. Stress vs. load curves for a simply supported (S1) angle-ply spherical shell
under uniform load

Figure 6c. Displacement vs. ply-angle for a simply supported (Sl) sphencal shell under um-
form load (0°l~°).
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Thickness of each top stiff layer = 0.025 h

Thickness of each bottom stiff layer = 0.08125 h

Core material is of U.S. commercial aluminum honeycomb (1/4 inch cell size,
0.003 inch foil) [Allen (1969)]

The non-dimensional quantities are defined as per Equation (22). The results
for displacement and extreme fibre stresses are presented in Figures 7a and 7b for
different side to thickness ratios. It is observed that for alh = 100, the results

predicted by first order shear deformation (FOST) and higher order shear defor-
mation theory (HOST) are almost the same, whereas for alh = 10, the results

Figure 7a. Displacement vs. load curves for a clamped (C) sandwich spherical shell under
uniform load.
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Figure 7b. Stress vs. load curves for a clamped (C) sandwich spherical shell under uniform
load.

predicted by HOST and FOST differ considerably. This is due to predominant
shear deformation leading to warping of transverse cross sections. In earlier ex-
amples it was proven that as shear deformation effect increases, the results pre-
dicted by HOST are more reliable.

5. CONCLUSIONS

A refined shear flexible C ° finite element including the effect of geometric non-
linearity is employed in the static analysis of laminated doubly curved shells. The
theory accounts for parabolic variation of transverse shear strains through the
thickness and large displacements in the sense of von Karman and therefore no
shear correction factors are needed in the present theory.
Numerical results are presented for both linear and geometrically non-linear

analysis. Deflections, stresses and stress resultants of square/rectangular doubly
curved shells subjected to various loadings, edge conditions, laminations, etc.,
are presented. The present results are compared with the closed-form two-dimen-
sional laminate solutions, 3-D elasticity solutions and other available finite ele-
ment solutions in open literature. The results presented here have proved the sim-
plicity and accuracy of this element in geometrically non-linear analysis.
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