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Abstract-This paper presents a refined higher-order shear deformation theory for the linear and 
geometrically non-linear finite element analysis of fibre reinforced composite and sandwich laminates. 
Laminae material is assumed to be linearly elastic, homogeneous and isotropic/orthotropic. This theory 
accounts for parabolic distribution of the transverse shear strains through the thickness of the laminate 
and higher-order terms in Green’s strain vector in the sense of von Karman. A simple Co finite element 
formulation is presented with a total Lagrangian approach and a nine-node Lagrangian quadrilateral 
element is chosen with nine degrees of freedom per node. Numerical results are presented for linear and 
geometric non-linear analysis of multi-layer cross-ply laminates and sandwich plates. The present theory 
predicts displacements and stresses more accurately than the first-order shear deformation theory. The 
results are compared with available closed-form and numerical solutions of both three-dimensional 
elasticity and plate theories. 

1. INTRODUCI’ION 

Advanced composite structures include laminated 
plates and shells which are composed of layers of 
fibre reinforced composite (FRC) material oriented in 
an optimal manner. A major purpose of lamination 
is to tailor the directional strength and stiffness of 
the material to match the loading conditions of the 
structural element. The choice of variation of the 
orientation for each lamina and stacking sequence 
gives an added degree of flexibility to the design 
engineer. 

In the early days, the classical lamination 
theory [1], based on the Kirchhoff hypothesis, was 
adopted for the analysis of laminated composite 
plates. Later it was recognized that classical lami- 
nation theory ought to be modified to include certain 
higher-order effects like warping of the transverse 
cross-section. The first generalization of the classical 
theory, with inclusion of first-order transverse shear 
deformation effects was given by Reissner [2] and 
Mindlin [3]. The first lamination theory including 
bending-stretching coupling is apparently due to 
Reissner and Stavsky [4]. Yang et al. [5] presented 
a generalization of the Reissner-Mindlin thick plate 
theory for homogeneous and isotropic plates to arbi- 
trarily laminated anisotropic plates. Whitney and 
Pagan0 [6] and Reddy and Chao [7] presented closed- 
form solutions to the theory when applied to certain 
cross-ply and angle-ply rectangular plates. Reddy [8] 
presented a finite-element analysis of the first-order 
shear deformation lamination theory. 

t To whom all correspondence should be addressed. 

The origin of higher-order theories goes back to the 
work of Hilderbrand et al. [9] who made significant 
contributions by dispensing with all Kirchhoff’s as- 
sumptions. They assumed a three-term Taylor series 
expansion of the displacement vector. The minimum 
potential energy principle along with full elasticity 
matrix was used in the derivation. 

However, a formal plate higher-order theory, 
based upon the principle of stationary potential 
energy, resulting in eleven second-order partial 
differential equations to determine the eleven func- 
tions in the assumed displacement model, is credited 
to Lo et al. [lo, 111. A sub-set of the displace- 
ment model used in [lo] which neglects the strain 
energy due to transverse normal stress-strain and 
higher-order in-plane modes of deformation has 
been adopted by Levinson [12], Murthy [13] and 
Reddy [14]. Later Reddy along with co-workers 
presented the displacement-based [ 151 and the 
mixed [16] finite element models of the theory 
developed earlier. The displacement formulation, 
however, requires C’ continuous shape functions 
which are computationally inefficient and are 
not amenable to the popular and widely used iso- 
parameteric formulation in present-day finite element 
technology. 

Kant [17] derived the complete set of equations of 
an isotropic version of the Lo et al. theory and 
presented extensive numerical results with a numeri- 
cal integration technique. Kant et al. [18] are the first 
to present a Co finite element formulation of this 
higher-order displacement model. Later, Kant along 
with co-workers extended this work for application to 
FRC and sandwich plates [19-281. 
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Pagan0 [29-311 presented three-dimensional (3D) 
elasticity solutions for composite laminates of 
finite width and infinite length [30] as well as 
square and rectangular composite and sandwich 
laminates [29,31 J subjected to sinusoidal loads with 
simply supported boundary conditions for cylindrical 
and bidirectional bending problems. 

Much of the previous research in the analysis of 
composite plates is limited to linear problems. This 
may have been due to the complexity of the non- 
linear partial differential equations associated with 
the large-deflation theory of composite plates. Ap- 
proximate solutions to the large-deflection theory (in 
the von Karman sense) of laminated composite plates 
were attempted by Stavsky [32,33], Habip [34], Whit- 
ney and Leissa [35], Chia and Prabhakara [36,37], 
Noor and Hartly [38], Reddy [39,40], etc. Chia and 
Prabhakara [36,37f employed the Galkerin method 
to reduce the governing non-linear partial differential 
equations to an ordinary differential system of 
equations. They used the perturbation technique to 
solve the resulting equation. In all these stud- 
ies [32-371, the transverse shear effects were neg- 
lected. Although the finite element employed by 
Noor and Hartly f38] includes the effect of transverse 
shear strains, it involves 80 degrees of freedom per 
element. Use of such elements in the non-linear 

analysis of composite plates inevitably leads to 
large storage requirements and computational costs. 
The same is true even in the case of 3D FEM 
analysis [40]. 

Recently, Kant and Mallika~una 1411 presented 
dynamic large-deflection response of laminated com- 
posite plates using a refined theory and Co finite 
elements. 

The aim of this paper is to provide a geometrically 
non-linear (GNL) higher-order formulation under 
the assumption of large displacement but small 
rotations and strains. In the present investigation 
square/rectangular FRC and sandwich laminates are 
considered. Numerical results for linear as well as 
non-linear analysis are presented for several cross-ply 
and sandwich plates. Comparisons are made with 
available results and conclusions on the use of the 
proposed refined theory are drawn. 

2. NON-LINEAR HIGHER-ORDER THEORY 
OF ANISOTROPIC LAMINATES 

We consider a composite laminate consisting of 
thin homogeneous and orthotropic/isotropic layers 
oriented arbitrarily and having a total thickness of h 
(h, , h2, h, . , etc. are thicknesses of individual layers 
such that h = h, + h, +. .) (see Fig. 1). 

YPICAL LAMINA 

f 1,2.3)- LAMINA REFERENCE AXES 

L=NL’- 

(X y 2 )- LAMINATE REFERENCE AXE5 

Fig. 1. Laminate geometry with positive reference set of lamina/laminate reference axes displacement 
components and fibre orientation. 
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The x-y plane coincides with the middle plane of 
the laminate with the z-axis oriented in the thickness 
direction such that x, y and z form a right-handed 
screw coordinate system. In the present theory, the 
displa~ment components of a generic point in the 
laminate are assumed to be of the form {see Kant and 
Pandya [21] and Reddy [ 143) 

w,Y,z)=%(x,Y) (1) 

in which U, , v, and W, are Ed-piane displa~ments of 
a generic point having displacements a, v and w in x, 
y and z directions, respectively. The parameters uJ’ 
and v$ are higher-order terms corresponding to u and 
v, respectively. The parameters 0, and (3, are rotations 
of the transverse normal cross-section in the xz and 
yz planes, respectively. The parameters 0: and f?J! 
are the corresponding higher-order terms in Taylor’s 
series expansion. A total Lagrangian approach is 
adopted and stress and strain descriptions used are 
those due to Piola-Kirchhoff [42] and Green [43], 
respectively. For GNL analysis alone, undergoing 
large displa~ments with small rotations and strains 
is considered here, the stress-strain relationship is in 
terms of total values. 

Both isotropic and anisotropic situations can 
be accommodated with arbitrary thicknesses for 
different layers. By invoking von Karman large 
deflection assumptions, we have the following 
Green-Lagrangian strain displacement relations 

au 1 aw 2 
%=a,+, z 

( > 

dv 1 aw 2 
“i=&+r dy 

0 

au au awaw -- 
y”=&J+aX+axay 

au aw 
Y w=,+, 

ati aw 
Ym = z +z. (2) 

To develop the finite element equations, we con- 
sider the virtual work equations for a continuum 
written in total Lagrangian coordinate system under 
the assumption of small strain and conservative 
loading [43] as 

where v is the undeformed volmne, e is the 
Piola-Kirchhoff stress vector, SC is the virtual Green’s 
strain vector due to virtual displacement 60, p is 
mass density, q is the body force per unit mass 
and P is surface traction acting over the undeformed 
area A. 

The laminate constitutive relations, details of 
which are given elsewhere [19-281 are 

or symbolically 

In eqns (4) and (5) N, M and Q are vectors of 
in-plane stress resultants, stress moments and trans- 
verse shear forces, respectively. The coefficients D,, 
D,,, Dbii and Dsg are respectively the in-plane, bend- 
ing-in plane coupling, bending and transverse shear 
stiffness c~fficien~[l~28] and et and enrL are the 
generalized linear and non-linear strains, respectively. 

3. C’ FJNlTE ELEMENT 
FORMULATION 

The finite element used here is a nine-node iso- 
parameteric quadrilateral element. The laminate dis- 
placement field in the element can be expressed in 
terms of nodal variables, such that 

(6) 

where NJ? represents number of nodes in the element, 
N,(& rl) defines interpolation function associated 
with node i in terms of normalized coordinates l, q 
and di is generalized displacement vector of the 
mid-plane, such that 

The generalized vectors of Green strain and its 
variation L and Be, respectively, are written in terms 
of nodal displacements d, displacement gradient f?,, 
and Cartesian derivatives of shape functions [42] 

ci=(B,-tfBNi)di 

ck=(B,+B,,)d, 

t%r=DB&d, (7) 

where B,, is the linear strain displacement matrix [21] 
and BNL non-linear strain displacement matrix which 
is linearly dependent upon the nodal displacement 
d [42]. 
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Simplifying eqn (3) 

6d’ N’pq dv + 6d’ 
s 

N’P,, dA = 6d’ B’u du. 
A 

(8) 

From this the fundamental equilibrium equation can 
be established as 

Sfd)=P-R=O, 

where 

P=IB$d and R=J:N’pqdu+ JAN’PodA. 
(9) 

4. SOLUTION TECHNIQUE 

The solution algorithm is established for solving 
the discrete assembled non-linear equilibrium 
equation (9) based on the Newton-Raphson 
method [42] which is summarized by the recurrence 
reIationship 

d ,+,-di=Adi= --Kg’&, 

where 

atti,,ti2...3+, 1 a(d,,d,...,d,, ’ 

where n is total number of degrees of freedom. 
Equation (10) means that the solution to the 

non-linear equation (9) is achieved by a series of 
linear solutions carried out until #, known as the 
residual force vector, is su~ciently close to zero. To 
assist the numerical stability of this process the load 
R is applied in a series of steps from 1 to n, a typical 
step having a total applied load R”, where 

R”= x ARJ (11) 
J= I 

and equilibrium is established for each R”. The total 
displacements d” are similarly defined within each 
load step n; a number of iterations i take place until 
convergence is achieved, consequently the total 
incremental displa~ment Ad” is made up as follows: 

A#‘= 2 Ad;. 02) 
i=i 

5. NUMERICAL RESULTS 

5.1. Preliminary remarks 

In the present study the laminate is discretized with 
four nine-noded Lagrangian quadrilateral isoparame- 

teric elements in a quarter plate. Selective integration 
scheme based on Gauss quadrature rules, namely 
3 x 3 for membrane, flexure and coupling between 
membrane and flexure terms, and 2 x 2 for shear 
terms in the energy expression, is employed in 
the evaluation of the element stiffness property. 
For the numerical computations two computer pro- 
grams FOST and HOST with five and nine degrees 
of freedom per node, respectively, are developed. 
All the computations were carried out in single 
precision CDC Cyber 180/840 computer with 64.bit 
word length. All the stress values were evaluated at 
the Gauss points. To facilitate the comparison of 
present results with existing results, the following 
property sets are adopted, even though they are 
not satisfying the symmetry condition, that is, 

ME, f VU IJ%. 

Material 1. The dimensionless material properties, 
taken from [29], are 

El 
E,=25y 

G,, E = 0.2, v = 0.25. 
2 

~u~erial2. The dimensionless material properties, 
taken from [46], are 

El F=;40, ~=$0.5. +, VZO.25. 
2 2 2 

Material 3. The properties, taken from [29] are 
given below. Face sheets 

E2 = lo6 psi, i’ = 0.25. 

Thickness of each face sheet = 0.10/z. Core of 
sandwich plate 

E, = E2 = 0.04 x IO6 psi, 

E3 = 0.5 x 10” psi, 

Gn = G,, = 0.06 x 10 6 . PSI, 

G,, = 0.016 x lo6 psi, 

Y = 0.25. 

Material 4. The properties, taken from 1471, are 
given below 

E, = 1.8282 x 106psi, E2= 1.8315 x 106psi, 

Gn = Gn = GZ3 = 3.125 x 10’ psi, v = 0.23913. 
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Table 1. Non-dimensional displacement values for cress-ply ~~~~~~~OR~ laminate (Material I) 

Square laminate Rectangular Iaminate (b = 3~) 
IiUST 

Exact 3EEFEM (4 x 41 Exact 3D-FEM 
#291 WI FOST HOST mesh 1291 I4QJ FOST HOST 

5.075 5.051 4.4621 5.2582 5.2561 8,170 8.410 6.3127 8.0271 
1.937 1.906 1.7102 1.9035 1.9023 2.820 2.905 2.2855 2.6425 
0.737 0.728 0.6631 0.7209 0.7204 0.919 0.915 0.8019 0.8481 
0.513 0.506 0.4915 0.5082 0.5078 0.61Q 0.589 0.5783 0.5956 
0.445 0.438 0.4332 0.4440 0.4440 a.520 0.494 0.5156 0.5180 
0.435 0.429 0.4290 0.4346 0.4344 0.508 0.481 0.5065 0.5070 

The boundary conditions used for simply sup- 
ported and clamped plates are as follows: 

S&p& ~p~~~ed (SI) 

along x-axis: u0 = w, = 0, = ua* = 0: = 0 

along y-axis: v0 = w, = fiy =; oo* = 0: = Cl. (13) 

Simply supported (S2) 

alongx-axis: ~=vo=wo--~,=u~=v,*=e,+=o 

along y-axis: U, = 0, = w, = tiy = tr$ = ~8 = ef = 0. 
WI 

along all edges: u, = u,, = w, = e, = e, = uo* 

*- =00 - e,*=e;=o. (1% 

Along the oentre line in case of quarter plate 
symmetry 

along x-axis: a, = S, = f$ = e; 

along y-axis: u, = S, = ua* = a:. W5) 

5.2. Ex~~~e~ mrd disctission 

52.1. Linear ~~y~~. In this section we show the 
validity of the present formulation by comparing 

linear analysis results with the corresponding 3D 
elasticity results &E-31]. The following cases are 
considered for this purpose 

(a) a three layer symmetric cross-ply t~5~~~~O~j 
laminate and 
(b) a square sandwich plate. 

In both the cases, the loading considered is sinu- 
soidal load with 

ij = q0 sin(:) (17) 

and boundary conditions are simply supported (Slj. 
The foltowing non-dime~ional factors are used for 
the displacements and stresses 

Table 1 shows the non-dimensional displacements 
for square laminate (O”/9W/oO) with unequal thick 
layers of h, = h3 = h/4, h2 = h/2 and rectangular 
laminate (b = 3~7, oO/90”~O”) of equal thick layers, 
along with the exact (3D elasticity) values given by 
Pagano [29-311. The material properties used are 
given by material set 1, TabIe 2 shows the non- 
dimensional stresses for square cross-ply laminates 
~O”~~O~O~~ of unequal thick layers, hi = h3 = h/4, 
h2 = h J2 and equal thick layers, along with exact 
solution (JD eiasticityj values given by pagano [29]. 

Table 2. Non-dimensional stress values for a square cross& (0”/90”/0”) laminate (material 1) 

a/h 

2 

Stress 
type 

Cr 
f 

Unequal thick laminae 
Exact 
1311 FOST HOST 

1.3880 - I Xl943 
0.0863 - 0.0790 

EXtW 

1291 

0.9380 
0.7020 

Equal thick laminae 

FOST HOST 

0.3625 1.1083 
0.0494 0.0808 

HSDT 

WI 

0.7206 0.4093 0.7161 0.7550 0.4405 0.768I 0*7345 
0.0467 0.031 L 0.0464 0.0505 0.0373 0.0502 

0.5590 0.5063 0.5687 0.5900 0.5212 OS929 0.5684 
0.0275 0.0242 0.0274 0.0289 0.0252 0.0282 

0.5430 0.5345 0.5506 0.5520 0.5392 0.5579 
o.o230 0.0222 0.023 1 0.0234 0.0224 0.0232 

0.5390 0.5424 0.5432 0.5410 0.5430 0.5460 
0.0216 0.0216 0.0217 0.0216 0.0216 0.0217 

0.5390 0.5362 0.5369 O.5390 0.5364 0.5373 0.5390 
0.0214 0.0218 0.0218 0.0213 0.0218 0.021& 

GAS 45l3-0 
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Table 3. Non-dimensional displacement and stress values 
for sandwich plate (material 3) 

o/h 

2 

4 

10 

20 

50 

100 

Exact 
[291 

21.6531 
2.6530 
0.2338 

7.3017 
1.5120 
0.1480 

2.2440 
1.1520 
0.0717 

1.2022 
1.1100 
0.0511 

0.9063 
1.0990 
0.0446 

0.8903 
1.0980 
0.0437 

FOST HOST 

14.9369 21.3707 
0.7435 2.79852 
0.3192 0.2371 

4.7691 7.1502 
0.899 1 1.4989 
0.0917 0.1428 

1.5612 2.0864 
1.0619 1.1657 
0.0553 0.0692 

1.0530 1.1947 
1.0985 1.1246 
0.0467 0.0506 

0.9772 0.9299 
1.1070 1.1118 
0.0442 0.0448 

0.8856 0.8915 
1.1044 1.1058 
0.0439 0.0440 

Table 3 shows the non-dimensional displacement and 
stresses for a three-layer sandwich plate with each 
facing of h/10 thickness and the material properties 
used is given by material set 3, along with exact 
solutions given by Pagan0 [29]. 

The following observations are made from the 
numerical results presented in Tables 1-3. For a thick 
plate with a/h = 4 and less, displacement and stresses, 
are close to 3D elasticity result [29]. The stress com- 
ponents evaluated are more accurate for moderately 
thick to thin plates (a/h > 10) with either of the two 
theories, i.e. FOST or HOST. 

5.2.2. Non-linear analysis. We show here the val- 
idity and credibility of the present higher-order the- 
ory in non-linear analysis by comparing our present 
results with available closed form solutions [46,48], 
finite element results [47] and our own first-order 
shear deformation theory (FOST) results. The follow- 
ing non-dimensional parameters are used for load 
Q displacement E,, and stress (6) in the non-linear 
analysis 

a. (19) 

Example 1. We consider first a clamped isotropic 
plate with material properties E = 3 x 10’ lb/in2, 
v = 0.316 and a/h = 100. This example has 
become a standard one, used by many authors, 
e.g. Levy [49], Pica et al. [50], Reddy [Sl], etc., to 
check the GNL analysis of plate formulations. The 
analytical solution given by Levy [49], who solved 
von Karman’s equations using a double Fourier 
series, is quoted as having a possible error of less 
than 2%. The comparative results for displace- 
ment and stresses are presented in Table 4. From 
these results it can be concluded that the use 
of present formulation in the GNL contest is 
acceptable. 

Example 2. We consider a square clamped (C) 
four-ply (O”/900/900/Oo) symmetric laminate with 
a/h = 125, material properties set four- and an eight- 
ply (O”/90”/Oo .900) unsymmetric laminate with 
a/h = 10 and material properties set 1, subjected to 
an uniformly distributed load. The present HOST 
results are compared with higher-order shear defor- 
mation theory results given by Reddy [47]. These are 

Table 4. Non-dimensional displacement and stress values for a clamped square isotropic plate 
under uniformly distributed load 

Load Reddy Rica et al. Levy 
4 Variable 1511 [501 1491 FOST HOST 

17.79 G 0.2455 0.2368 0.2370 0.2385 0.2385 
d 2.4590 2.6319 2.6000 2.6723 2.6733 

38.33 G 0.4784 0.3699 0.4710 0.4725 0.4725 
d 5.1290 5.4816 5.2000 5.5733 5.5733 

63.40 KJ 0.7045 0.6915 0.6950 0.6948 0.6948 
d 7.8340 8.3258 8.0000 8.4833 8.4867 

95.00 G 0.9147 0.9029 0.9120 0.9065 0.9065 
d 10.4600 11.1030 11.1000 11.3433 11.3500 

134.90 C 1.1189 1.1063 1.1210 1.1100 1.1100 
Ci 13.0900 13.8270 13.3000 14.1633 14.1700 

184.00 G 1.3189 1.3009 1.3230 1.3046 1.3046 
d 15.7500 16.4970 15.9000 16.9266 16.9367 

245.00 G 1.5155 1.4928 1.5210 1.4963 1.4963 
d 18.4800 19.2250 19.2000 19.7533 19.7633 

318.00 GJ 1.7020 1.6786 1.7140 1.6820 1.6820 
B 21.2100 21.9940 21.9000 22.6233 22.6367 

402.00 @ 1.8760 1.8555 1.9020 1.8589 1.8590 
d 23.8900 24.7800 25.1000 25.5200 25.5367 



plotted in Figs 2 and 3, respectively for the sy~et~~ 
and uns~me~c l~~nates. 

~~~~p~e 3. We consider here a square simply 
supported (S2) four-p@ symmetric cross-ply 
~~O~9~~/~~~~~) laminate with material ~ro~~~es set 
1, subjected to an uniformly distributed load. The 
present results for various a/h ratios are compared 
with analytical results given by Gorji [48] and these 
are shown in Fig. 4. 

~~u~~~e 4. A symmetric three-layer ~~~~9~aJ~~~ 
simply supported @I) square cross&y laminate with 
a/h = IO, mate&I properties set f and subjected to 
an uniformly dist~b~ted load is considered. The 
present results are unpaid with 3D FEM results 
given by Reddy [40] and these are plotted in Fig. 5. 

~~~~~e 5. We analyse an uns~met~c two-layer 
fa”/90”) simply supported @I> square laminate with 
a/h = IO, material properties set 2 and subjected to 
an uniformly distributed load. The results of the 
present analysis are compared with double Fourier 
series result given by Chia [46] and these are plotted 
Figs 6 and 7. 

A HSDT(Reddy 47) 
- Present HOST 

Fig. 3, D~spla~ment vs load for a square damped unsym- 
metric cross-ply ~o~~~‘/~‘~ . f /90”) eight-layer iaminate, 

0.8~ 

It is seen from the results presented earlier that the 
present ~~er-order shear defo~ti~n theory results 
in non-finear analysis are in good a~ment with the 
results of higher-order shear deformation theory 
given by Reddy[UJ 3D FEM results given by 
Reddy [40]? first-order shear deformation theory 
given by Reddy I5 1 T 521, double Fourier series results 
given by Gorji [4$] and Levy [49] and with perturb 
bation solution given by Chia [46] under different 
support conditions, a/h ratios. This establishes the 
correctness and ~ff~tiv~~~s of our formufation. 

EXZPE& 6. A simply supported &Sl] square sand- 
wich laminate subjected to an unifo~iy distributed 
load with a,& = 10 and 100, and rnat~~a~ properties 
set 3 is con~dered~ The present results for displace- 
ment and stresses are ptotted in Figs 8 and 9, 
respectively. In the thin case the present IIUST resufts 
coincide with the FOST because of ne~i~b~ &ear 
deformation effects, Rut in the thick to moderate 
thick cases, the present HOST results differ from 
FOST because of transverse shear deformation effects 
and the way these are included in the formulation, 

401 
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L I 

200 400 600 

Load (ri1 

Fig, 6. Displacement vs load for a simply supported (Si) 
square ~nsymmetrjc cross-ply (O~j900) b&ate. 

Fig. 9. Stress vs load for a simply supported ISI) square 
sandwich laminate. 

5 

- Present HOST 

~~ 

0 Present FOST 

O0 

/ j 

200 400 600 

Load (ii) 

Rig. 7. Stress vs bad for a simply supported (Sl) square 
u~~rnrnet~c cross-ply @“/9w) laminate. 

o FOST(a/h=lOJ 
- HOST(a/h=lO) 

A FOST(a/h=lOO) 

Load CCj, 

Fig. 8. Dispiacement vs load for a simply supported (S1) 
square sandwich laminate. 

We have already shown earlier that the linear 
analysis results are close to 3D elasticity solution. 
Thus, we can conclude that the resuits of the present 

0 FOST(a/h;lO) 
- HOST(a/h~lOl 

A FOST (a/h = IOU) 
----HOST(a/h:lOO) 

HOST formulation will be more reliable in the non- 
linear regime in all situations. 

6. a3NCLUSiONS 

A geometricalfy non-finear formulation for com- 
posite and sandwich laminates is proposed with the 
help of a simple Co isoparametric formulation of 
an assumed higher-order displacement model. The 
present shear deformable theory does not require tbe 
usual shear correction factors generally associated 
with the MindIin-Reissner type of theories. The 
present higher-order theory results are found to be 
in excellent agreement with exact 3D elasticity sol- 
ution [29] from thick to thin range in the linear 
analysis of composite and sandwich laminates, 

fn the non-linear analysis the present finite element 
results for displacements and stresses are in good 
agreement with available solutions. The difference 
between HOST and FOST solutions is significant in 
the case of thick sandwich laminates. 
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