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Different Numerical Techniques for the
Estimation of Multiaxial Stresses in

Symmetric/Unsymmetric Composite and
Sandwich Beams with Refined Theories

B. S. MANJUNATHA AND T. KANT*

Department of Civil Engineering
Indian Institute of Technology
Powai, Bombay-400 076

India

ABSTRACT: A set of simple but efficient and accurate higher-order displacement
models are used to evaluate the multiaxial stress behavior in symmetric and unsymmetric
composite and sandwich laminates. These theories incorporate a more realistic non-linear
variation of displacements through the beam thickness, thus eliminating the use of shear
correction coefficient(s). Constitutive relations are used to evaluate inplane stresses. The
computer program developed incorporates the realistic prediction of transverse stresses
from equilibrium equations. The integration of the equilibrium equations is attempted
through direct integration method, forward and central direct finite difference technique
and a new approach called an exact curve fitting method. The versatility of the present
higher-order theories is demonstrated by comparing the results with the available elasticity
and other closed-form solutions for cross-ply and sandwich laminates. The results show
that the exact curve fitting method gives good estimates of multiaxial stresses compared to
finite difference and direct integration methods.

1. INTRODUCTION

ELAMINATION, ALSO KNOWN as interlaminar cracking is widely recognizedas a critical failure mechanism for laminated composite materials or mul-
tilayered structures during their service. Delamination is the failure of laminate
in the form of separated laminae. This delamination can occur in a laminate sub-
jected to any or combination of mechanical or thermal loads or environmental ef-
fects. Most favorable sites for delamination cracks are the geometric boundaries,
such as cutouts, free edges, notches, and holes. One of the causes of delamination
is the existence of transverse/interlaminar stresses which develop near the free
edges or holes in composite laminates (Jones, 1975; Calcote, 1969). A theory
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which can predict all these stresses accurately becomes necessary for under-
standing the failure mechanism of fibre reinforced composite structures.

In the past, structural behavior of beams has been approximated by using the
elementary Euler-Bernoulli and Timoshenko theories. The main assumption in
the Euler-Bernoulli theory is that the transverse normal to the reference middle
plane remains so during bending, implying that the transverse shear strain
becomes zero. Thus the bending rotation becomes a first derivative of transverse
displacement w and hence the theory requires the transverse displacement field
to be C’ continuous (Zienkiewicz and Taylor, 1989). But this theory leads to
serious discrepancies in the case of composites where shear effects are significant
and further the resulting finite element formulation turns out to be computa-
tionally inefficient from the point of view of simple finite element procedures.
Timoshenko (1921) has improved the Euler-Bernoulli theory by incorporating

the effect of transverse shear strain into the governing equations. But the resulting
transverse shear stress remains constant through the beam thickness. Thus a
fictitious shear correction coefficient is used to correct the strain energy of defor-
mation. Many investigators (Cowper, 1966, 1968; Krishna Murty, 1970, 1970a;
Tessler and Dong, 1981; Heppler and Hansen, 1988; Suman and Dipak, 1988)
have given some new expressions for this coefficient for different cross-sections
of the beam. But for composite beams, the discrepancies between the
Timoshenko theory and elasticity solution is large even after modifying the
values of shear correction coefficient. As an improvement over the Timoshenko
theory, Stephen and Levinson (1979) have given a second-order beam theory. But
they have used two coefficients. One depends on cross-sectional warping while
the other includes terms dependent on the transverse direct stresses. As a further
improvement, Levinson (1981, 1981a, 1985) has given a fourth-order beam theory
which takes into account transverse shear deformation. Here shear correction

coefficient(s) is/are not used. Levinson’s theory however, fails to adequately
describe the two-dimensional displacement pattern.

Rychter (1987) has improved the consistency and accuracy of Levinson’s theory
by embedding in it the two-dimensional linear theory of elasticity. He has proved
that the corresponding relative mean square error is, in general, proportional to
the square of the beam depth. The shear contribution to the error, which is com-
prised of terms multiplied by the shear modulus G turns out to be proportional
to the cube of the beam depth. Bickford (1982) used Hamilton’s principle to
derive a consistent higher-order theory of the elastodynamics of the beam based
upon the kinematic and stress assumptions previously used by Levinson (1981,
1981a, 1985). Yuan and Miller (1988, 1989) have presented a new finite element
model which includes separate degrees of freedom for each lamina. The dis-
placements are expressed in a polynomial form, thus allowing the cross-section
to deform into a shape that can be described by a function which includes qua-
dratic and cubic terms as well as the linear one. Shear deformation is thus in-
cluded but not interfacial slip or delamination.
The discrepancies in the above theories are rectified by introducing the higher-

order functions in the Timoshenko theory leading to the development of higher-
order theories (Reissner, 1975; Lo et al., 1977, 1978; Kant, 1982). Kant (1982) and

 © 1993 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at INDIAN INSTITUTE OF TECHNOLOGY BOMBAY on June 26, 2007 http://jrp.sagepub.comDownloaded from 

http://jrp.sagepub.com


4

Kant et al. (1982) were the first to present a C finite element formulation of this
theory. Kant and Gupta (1988) and Kant and Manjunatha (1989, 1989a, 1990)
have extended this theory for symmetric and unsymmetric one-dimensional lami-
nates. Further, in stress evaluation of composite laminates, lamina stresses can be
accurately evaluated by using constitutive relations. But the same relations can
not be used for the evaluation of transverse stresses, as it violates the continuity
of transverse stresses at the interfaces. Thus, two-dimensional equilibrium equa-
tions are used in the present work to evaluate the transverse shear and normal
stresses. The integration of equilibrium equations is attempted through direct in-
tegration, finite difference methods and a new approach called &dquo;exact curve fit-
ting&dquo; method. The numerical results obtained by these methods are compared
with available elasticity (Pagano, 1969) and other finite element solutions (Eng-
blom and Ochoa, 1985; Spilker, 1982; Toledano and Murakami, 1987; Wen-Jinn
and Sun, 1987).

2. THEORY AND FORMULATIONS

The Taylor’s series expansion method is used to deduce a one-dimensional for-
mulation of a two-dimensional elasticity problem (Hilderbrand et al., 1949) and
the following set of equations are obtained by expanding the displacement com-
ponents u(x,z) and w(x,z) of any point in the laminate space in terms of the thick-
ness coordinate and these are designated as HOSTB3 to HOSTB8 (see Figure 1).
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Where the parameters u and w define the displacement components of a gen-
eral point (x,z) in the coordinate directions x and z respectively at any point in the
beam domain. Here only the formulation for unsymmetric laminate (HOSTB8)
is presented and other theoretical models become special cases of HOSTB8. The
variations in the cases of other models (HOSTB3 to HOSTB7) are given else-
where (Kant and Manjunatha, 1989, 1989a, 1990). The following relations are
obtained by substituting Equation (2d) into the linear strain displacement rela-
tions of two-dimensional elasticity (Timoshenko and Goodier, 1985).

where,

Each lamina in the laminate is in a two-dimensional stress state. The consti-
tutive relation for a typical lamina L is thus written simply as,

where,
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The relations given by Equation (5) are used to develop the theories based on
the displacement models HOSTB4 [Equation (lb)] and HOSTB6 to HOSTB8
[Equations (2b) to (2d)].
The stress-strain relation for the theory based on the displacement models

HOSTB3 [Equation (la)] and HOSTB5 [Equation (2a)] can be written as,

where (ax, an Txz) are the stresses and (Ex, 6~,, -yxZ) are the strain components
referred to the laminate coordinates (x,z).
The total potential energy n of the beam can be written as,

where,

The expressions for the strain components given by Equation (3) are substi-
tuted in Equation (8). The following relations result when an explicit integration
is carried out through the beam thickness.

where,

The stress-resultants in Equation (10) are defined as follows:
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Upon integration, these are written in matrix form as follows:

or,

where,

The inplane stress can be accurately evaluated by using constitutive relations.
But, the transverse stresses (Txz, oj cannot be accurately estimated by the same
relations. This is mainly due to the fact that the constitutive laws are discon-
tinuous whereas transverse stresses have to maintain continuity across the inter-
face of layers. For these reasons, the transverse stresses between the layers L and
L + 1 at z are obtained by integrating the two equilibrium equations of two-
dimensional elasticity for each layer over the lamina thickness and summing over
layer 1 to L as follows.
The equations of equilibrium representing the pointwise equilibrium can be

written as,

The integration of the equilibrium equations is attempted here through dif-
ferent novel approaches: direct integration method, forward and central direct
finite difference techniques and a new approach called an exact curve fitting
method. These techniques are explained below.

DIRECT INTEGRATION METHOD
The two differential equations of equilibrium given by Equation (16) gives two

relations, viz.,
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and

from which the transverse stresses Txz and Q= can be evaluated through integration
with respect to the laminate thickness z. The right-hand sides of Equations (17)
and (18) contain lamina inplane stress ax which is easily computed through con-
stitutive relations. Equation (17) is then essentially an initial value problem in Txz
requiring only a prescribed value of T., at either of the two boundary surfaces of
the laminate. However, this problem is vexing because Txz is normally known at
both top and bottom boundary surfaces of the laminate. Thus one obtains only a
non-unique solution for Txz as two prescribed conditions for Txz cannot be simulta-
neously enforced in the solution. Equation (18), on the other hand, represents a
second-order boundary value problem in a. requiring two prescribed values of 6Z
on the bounding planes of the laminate, which are available. Thus a unique solu-
tion for a. is obtained.
The computational algorithms for Tn and a,, take the form,

The constant C1 is obtained from the known values of Tn at either of the two
boundaries at z = t h/2 while constants C, and C3 are obtained from the
known values of aZ at z = :f: h/2. However, Equation (20) requires the use of
third derivatives of displacements. For this reason cubic four-noded quadrilateral
Lagrangian elements are used here. The presence of second and third derivatives
of displacements in the stress evaluation dictates the use of high degree
polynomial elements and thereby, increasing the numerical error in the estima-
tion of transverse shear and normal stresses.
To overcome these problems, forward and central direct finite difference

(FDM) methods and a new approach called exact curve fitting method (ESFM)
are proposed.

FINITE DIFFERENCE METHOD
The inplane stress Qx is first evaluated by using constitutive relations at dif-

ferent Gauss points in an element (four points). Then a forward difference opera-
tor (stresses are maximum at the edge of the laminate) is used to evaluate the de-
rivatives of inplane stress at a particular Gauss point inside the element and either
a forward difference or a backward difference operator is used for the evaluation
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of the same at the edges of the laminate depending on whether the edge is a posi-
tive or negative one. The following relations corresponding to Equation (17) is
obtained:

with

where GP is the Gauss point number at which stresses are evaluated and GP + 1
is the next Gauss point number in the x-direction.
The following equation is obtained by using a forward difference operator

along the thickness direction in Equation (19) for a particular layer and this we
designate as the &dquo;forward difference-direct method.&dquo;

An alternate equation is obtained by substituting a central difference operator
in Equation (21) and we designate this as the &dquo;central difference-direct method&dquo;
(Salvadori and Baron, 1961).

where,

The use of central difference operator gives a two-step, non-self starting
method, forward difference method is used to evaluate the transverse stress at the
first step and for subsequent steps central difference method is used. These
methods are very effective for isotopic laminates. However, in the case of lami-
nates having different isotropic, orthotropic or anisotropic laminae, the inplane
stress is discontinuous and two values are obtained at an interface of two layers.
As the transverse stresses are continuous through the interface of two layers, the
derivatives of inplane stress must also be continuous through the interface. Thus,
an average of the two values at the interface is used in the above techniques.

EXACT CURVE FITTING METHOD
An exact curve fitting method is proposed here. The inplane stress is evaluated

through constitutive relations at different Gauss points in an element. Having ob-
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tained the inplane stress acting on lower and upper surfaces of a particular layer,
the variation of this stress over a particular surface of an element can be ex-
pressed as a polynomial in x as follows:

Here four Gauss points are assumed. The parameter z in Equation (26) refers
to a particular surface in the laminate at a distance &dquo;z&dquo; from the middle surface
and this may be the top or bottom surface of a particular lamina or a subset of
particular lamina having same ply orientations. On substituting the inplane stress
values at different Gauss points in an element, the following equation results,

The above equation is solved and the four polynomial constants are obtained.
Equation (26) is differentiated with respect to x and thus derivatives of inplane
stress are obtained. These can be written as,

These derivatives are then used in Equations (19) and (20) and the same proce-
dure as used for direct finite difference method is used following Equations
(21)-(25).
The transverse normal stress is evaluated by using a central difference operator

in Equation (20) and the following difference equation is obtained:

The double derivative of inplane stress is substituted in Equation (30) and this
equation is solved as a boundary value problem by substituting the two boundary
conditions for a. at top and bottom surfaces of the laminate.

3. FINITE ELEMENT FORMULATION

The standard finite element technique is followed. The total solution domain Il
is subdivided into &dquo;NE’ subdomains (elements) Fli, fl 2 , ... , f1 NE , such that,
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in which, II and n&dquo; are the total potential energies of the system and the element,
respectively. The potential energy for an element e can be written as,

where Ue, We and a are the internal strain energy, external work done and gen-
eralized displacement vector, respectively, for an element e. In C° finite element
theory, the continuum displacement vector within an element is discretized such
that (Zienkiewicz and Taylor, 1989),

where N, is the interpolating function associated with node i, NN is the number
of nodes in an element and M, is the generalized displacement vector corre-
sponding to the ith node of an element. Here four-noded cubic elements are con-
sidered in numerical study.
Knowing the generalized displacement vector u at all points within the ele-

ment, the generalized strain at any point given by Equation (3) can be expressed
in matrix form as follows (Zienkiewicz and Taylor, 1989):

where,

The matrix B, has a dimension of (11 x 8) in which the non-zero elements
are,
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Upon evaluating the D and B, matrices as given by Equations (13) and (34)
respectively, the element stiffness matrix is computed by using the standard rela-
tion :

In isoparametric representation, the geometry and the displacement field are
interpolated using the same shape functions. The isoparametric concept allows
any arbitrary geometry to be closely approximated thereby reducing any error
associated with modelling the geometry and without resorting to use of fine mesh
along the boundaries. In this method the rigid body displacement as well as con-
stant strain criteria are satisfied and numerical integration can be carried out con-
veniently as a standard procedure for evaluating the integrals.
The final form of the Equation (37) after using the standard isoparametric rela-

tion to change the coordinate system from x to ~ coordinate system can be written
as,

The computation of element stiffness matrix K’ is economised by explicit
multiplication of the g:, D and B, matrices instead of carrying out the full
matrix multiplication of the triple product (Kant et al., 1982). In addition, due to
symmetry of the stiffness matrix only the blocks &,, lying on one side of the
main diagonal are formed. The integral is evaluated by using different Gauss
quadrature rules for membrane-flexure and shear parts as follows:

where W, is the weighting coefhcient, NG is the number of numerical quadrature
points in the ~-direction and 7 is the determinant of the standard Jacobian
matrix.
The consistent load vector p due to uniformly distributed transverse load P

can be written as, 
’

The integral of Equation (40) is evaluated numerically using the four Gauss
quadrature rule. The result is
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The consistent load vector for sinusoidal transverse load can be obtained by us-
ing the following substitution in expression Equation (41).

where a is the beam dimension, x is the Gauss point coordinate and m is the usual
harmonic number.

4. NUMERICAL RESULTS AND DISCUSSION

A set of computer programmes incorporating the present higher-order theories
are developed for the numerical computation of various types of examples in
symmetric and unsymmetric composite and sandwich laminates. All the compu-
tations are carried out on a CYBER 180/840 computer in single precision with
sixteen significant digits word-length. A computer programme based on the
Timoshenko theory has been developed to support the numerical evaluations of
the present formulations. A shear correction coefficient 5/6 is used for all the
materials in the Timoshenko theory to correct the transverse shear energy terms.
The numerical results obtained by the present higher-order theories are com-
pared with the Timoshenko theory for problems where the elasticity, closed-form
and other numerical solutions are not available. Lagrangian one-dimensional
four-noded cubic elements are used. Selective numerical integration techniques,
based on Gauss-Legendre product rules, namely 4 for flexure/membrane and 3
for shear terms, have been used in the analysis.

In the present numerical examples, the values of inplane and transverse stresses
are evaluated at the Gauss points, whereas the displacements are computed at the
nodal points. The displacements, as well as inplane and transverse stresses are
presented here in the non-dimensional form using the following multipliers.

The percentage difference in results are calculated as follows:

Percentage difference (PD)
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Boundary Conditions

These are clearly specified for simply supported beam as follows: 
’

SYMMETRIC LAMINATES
A simply supported symmetric 3-ply orthotropic beam with L-direction coin-

ciding with x in the outer layers while T is parallel to x in the central layer with
layers having equal thickness is considered. A sinusoidal load is applied and the
material properties as given below are used (Pagano, 1969).

where L signifies the direction parallel to the fibres, T is the transverse direction
and vLT is the Poisson’s ratio measuring strain in the transverse direction under
uniaxial normal stress in the L-direction.
The maximum transverse displacement Wa, inplane and transverse shear and

normal stresses are presented in Tables 1 and 2 for the two alh ratios (alh = 4,
10). The convergence of transverse displacement wo with alh ratio is shown in

Figure 2. The variation of transverse shear stress (Tn) through the laminate
thickness is shown in Figures 3 and 4 for the two alh ratios (alh = 4, 10). The
variation of inplane stress through the laminate thickness for alh = 4 is shown
in Figure 5.
A comparison of present results with the elasticity (Pagano, 1969) and other

solutions (Spilker, 1982) shows good convergence for transverse displacement wo
and in particular model HOSTB3 results ( - 22.2504 PD) are better compared to
other models. The CPT (classical plate theory) underestimates the values and
gives a very poor estimate for relatively low values of alh ( - 79.5919 PD) (Figure
1 and Table 1).
The transverse shear stress variation shows that the values obtained by the pres-

ent theory are better compared to the CPT and other solutions (Engblom and
Ochoa, 1985; Spilker, 1982) and in particular the results of central difference
direct method [3.3004 PD for alh = 4 (HOSTB4) and 3.0966 PD for alh = 10

(HOSTB3)] are in good agreement with elasticity solution results compared to
other methods and CPT (11.43108 PD) (Figures 3 and 4).

Table 2 shows that the transverse normal stress obtained by the present theory
are in good agreement with the elasticity and other solutions and in particular the
results obtained by model HOSTB4 are better compared to other model. The in-
plane stress variation (Figure 5 and Table 1) show that model HOSTB4 results are
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Figure 2. Convergence of transverse displacement Wo with a/h ratio for simply supported
laminate under smusoidal loadmg (0/90/0).

Figure 3. Variation of transverse shear stress (Txz) through the thickness of a simply sup-
ported laminate under sinusoidal loading (a/h = 4) (0/90/0) (HOSTB4).
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Figure 4. Variation of transverse shear stress (Txz) through the thickness of a simply sup-
ported lammate under sinusoidal loading (a/h = 10) (0/90/0) (HOSTB3).

Figure 5. Variation of mplane stress (äx) through the thickness of a simply supported laml-
nate under smusoidal loading (a/h = 4) (0/90/0).
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in good agreement with elasticity and other solutions ( - 24.2811 PD) compared
to model HOSTB3 and the CPT (-47.6323 PD).
A simply supported symmetric sandwich laminate under transverse loading is

considered. The following material properties are used (Khatua and Cheung,
1972).

The maximum transverse displacement Wa, inplane and transverse stresses for
different alh ratios (alh = 4, 10 and 25) are presented in Tables 3 to 5. The vari-
ation of inplane displacement and inplane stress through the laminate thickness
is shown in Figures 6 and 7 for alh = 4. The variations of transverse shear and
normal stresses through the laminate thickness for alh = 4 are shown in Figures
8 and 9, respectively.

Since the elasticity and other closed-form solutions are not available for the
present problem, the results obtained by the present theory are compared with
those based on the Timoshenko theory. These results show large differences in
the values of displacement ( - 11.9131 PD), inplane (-42.05276 PD) and trans-
verse shear (-44.4361 PD) and normal stresses for present theory compared to
the Timoshenko theory for thick laminates (alh = 4). This is due to the simpli-
fying assumption made in the Timoshenko theory. For relatively thin laminates
(alh >- 25), the discrepancies between the results of present theory and the
Timoshenko theory are seen to decrease and for very thin laminates almost the
same results are obtained for all the models. Figure 6 shows the actual warping
of the cross-section of the laminate. But the Timoshenko theory gives an
unrealistic straight line variation through the thickness of the laminate. The trans-
verse normal stress variation shows that the central difference exact curve fitting
method gives a good estimate of the stress compared to the direct integration
method in which the stress changes its sign (Figure 9).

UNSYMMETRIC LAMINATES
A simply supported bidirectional orthotropic laminate with the T and L direc-

tion aligned parallel to x-axis in the top and bottom layers respectively is con-
sidered. The layers are of equal thickness. The beam is subjected to sinusoidal
loading and the material properties as defined in Equation (45) are used (Pagano,
1969).
The maximum transverse displacement Wa, inplane and transverse stresses are

presented in Tables 6 to 8 for alh = 4 and 10. The variation of maximum trans-
verse displacement wa with alh ratio is shown in Figure 10. The variations of
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Figure 6. Variation of inplane displacement through the thickness of a simply supported
symmetnc sandwich laminate under uniformly distributed loading (a/h = 4).

Figure 7. Variation of inplane stress (ax) through the thickness of a simply supported sym-
metric sandwich laminate under umformly distributed loadmg (a/h = 4).
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Figure 8. Variation of transverse shear stress ( Txz ) through the thickness of a simply sup-
ported symmetnc sandwich lammate under uniformly distributed loadmg (a/h = 4)
(HOSTB4).

Figure 9. Variation of transverse normal stress (az) through the thickness of a simply sup-
ported symmetric lammate under uniformly distributed loadmg (a/h = 4) (HOSTB4).
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Table 7. Transverse normal stress (o-z) for simply supported laminate under
sinusoidal loading (direct integration method) (a/h = 4) (0/90).

Table 8. Transverse normal stress (a.) for simply supported laminate under
sinusoidal loading (exact curve fitting method) (a/h = 4) (0/90).
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Figure 10. Convergence of transverse displacement w-, with a/h ratio for simply supported
lammate under smusoidal loadmg (0/90).

Figure 11. Variation of transverse shear stress (T xz) through the thickness of a simply sup-
ported lammate under smusoidal loadmg (alh = 4) (0/90) (HOSTB8).
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transverse shear and inplane stresses through the laminate thickness are shown in
Figures 11 and 12, respectively for alh = 4.

Figure 10 shows that the maximum transverse displacement wo obtained by the
present theory follows closely the elasticity solution (Pagano, 1969) and, in par-
ticular, the model HOSTB8 gives a better estimate ( - 0.860226 PD) compared to
other models and the CPT. As seen in previous problems, the CPT underesti-
mates the values here also and gives a very poor estimate for relatively low value
of alh ( - 39.4422 PD). The transverse shear stress results show that (Table 6)
model HOSTB8 gives good estimates of this stress compared to other models.
Thus, in Figure 11, the variation of transverse shear stress obtained by different
methods for model HOSTB8 is compared with elasticity and CPT solutions. This
shows that the results obtained by central difference direct finite difference
method are better (3.81481 PD) compared to other methods and the CPT (7.7778
PD). The inplane stress variation shows that (Table 6 and Figure 12) model
HOSTB5 (3.5435 PD) gives good estimates of this stress compared to other
models and the CPT ( -14.2873 PD) in comparison with the elasticity solution.
The transverse normal stress results (Tables 7 and 8) show that the present
models give a very good estimate of this stress, when compared with the elas-
ticity solution and all the methods give almost the similar variation through the
thickness of the laminate.
A simply supported unsymmetric sandwich laminate under transverse loading

is considered. The following material properties are used (Allen, 1969; Cairns
and Lagace, 1987).

Figure 12. Variation of inplane stress (-a,) through the thickness of a simply supported
laminate under sinusoidal loading (a/h = 4) (0/90).
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Stiff layers

Core layers below middle plane

Core layers above middle plane

The maximum transverse displacement wo, inplane and transverse stresses for
different alh ratios are presented in Tables 9 to 11 (alh = 4, 10 and 25). The vari-
ations of inplane displacement and inplane stress through the thickness of the
laminate are shown in Figures 13 and 14, respectively for alh = 4. The varia-
tions of transverse shear and normal stresses through the laminate thickness for
alh = 4 are shown in Figures 15 and 16, respectively.

In this problem, the displacement and stresses obtained by various models are
compared with the displacement model based on Timoshenko theory, as the
results of elasticity and other closed-form solutions were not available. It can be
observed from Tables 9 to 11 and Figures 13 to 16 that large variation in displace-
ment ( - 73.005 PD), inplane ( - 56.193 PD) and transverse shear stresses

(10.6047 PD) are seen between the present theory and the Timoshenko theory for
thick laminates (a/h = 4). This is due to the simplifying assumption made in the
latter theory. But it can be seen that, as the laminate thickness is reduced

(alh >- 25 and above), all the theories almost give the same results ( - 20.808
PD), thus showing the validity of the present higher-order theory.
The variation of inplane displacement (Figure 13) shows the actual warping of

the cross-section and it can be seen from the same figure that the Timoshenko
theory gives an unrealistic straight line variation through the laminate thickness.
The transverse normal stress results show that the exact curve fitting method
gives a good estimate of this stress and the direct integration method gives a very
high value and follows a different path. This error may be due to the use of third
derivative of displacements in the evaluation of the transverse normal stress
(Figure 16).

5. CONCLUSIONS

A set of simple but efficient and accurate higher-order theories with C finite
elements is presented with a view to provide accurate evaluation of inplane and
transverse shear and normal stresses in composite and sandwich beams. These
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Table 10. Transverse normal stress (0’7 ) for simply supported unsymmetric
sandwich laminate under transverse loading (direct integration method)

(a/h = 4).

Table 11. Transverse normal stress (o-z) for simply supported unsymmetric
sandwich laminate under transverse loading (exact curve fitting method)

(a/h = 4).
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Figure 13. Variation of inplane displacement through the thickness of a simply supported
unsymmetric sandwich laminate under uniformly distributed loading (a/h = 4).

Figure 14. Variation of inplane stress (ax) through the thickness of a simply supported un-
symmetnc sandwich laminate under uniformly distributed loading (a/h = 4).
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Figure 15. Variation of transverse shear stress (Txz) through the thickness of a simply sup-
ported unsymmetrical sandwich laminate under uniformly distributed loading (a/h = 4)
(HOSTBB).

Figure 16. Variation of transverse normal stress (az) through the thickness of a simply
supported unsymmetrical sandwich laminate under uniformly distributed loadmg (a/h = 4)
(HOSTBB).
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theories do not require the use of shear correction coefficient(s) which is/are gen-
erally used in the Timoshenko theory. The results obtained by the present theory
show excellent agreement with the elasticity and other closed-form solutions for
thick-to-thin beams. In the case of sandwich beams, large difference in results
were obtained between present higher-order theory and Timoshenko theory
which uses an arbitrary shear correction coefficient with a linear longitudinal dis-
placement variation through the beam thickness. While here the discussion is
limited to a particular type of loading and boundary conditions, these theories
can be used to tackle any type of loading and boundary conditions. The numeri-
cal estimate of transverse normal stress, which is of paramount importance in the
design of composite and sandwich laminate is presented and compared with the
available elasticity solution. But this requires the use of higher-order numerical
differentiation (third derivative) in the longitudinal direction associated with the
integration of the elasticity equilibrium equations. The use of the proposed new
methods with cubic C elements seems to have given fairly accurate estimates of
this stress.
The proposed forward difference exact curve fitting method can be efficiently

employed for evaluating the transverse shear stresses, and central difference exact
curve fitting method is recommended for evaluation of transverse normal stress,
as the results obtained by these methods are close to the available elasticity and
closed-form solutions when compared to direct integration and direct finite dif-
ference methods. The results of transverse normal stress are also presented for
new problems where elasticity solutions are not available. These can be used for
future reference.
The models HOSTB3 and HOSTB5 (with the inbuilt condition that the trans-

verse normal strain in the z-direction is negligible) yield encouraging results.
However, these models cannot be used for the accurate modelling of composite
and sandwich laminates by one-dimensional beam model. This is because, one
has to necessarily use only isotropic stress-strain constitutive relation [Equation
(7)] with these models. We are not in a position to use two-dimensional consti-
tutive relation in x-z plane and therefore the orthotropic properties with reference
to x- and z-directions cannot be incorporated. But generally in composite and
sandwich laminates, the material properties are different in different directions
(orthotropic or anisotropic). Thus, to account for the variation in the directional
properties, two-dimensional stress-strain constitutive relation must be used. This
problem does not arise in the modelling of laminates by two-dimensional plate
models.
From the numerical study, it can be seen that the results obtained by HOSTB4

are close to the results of elasticity solution for symmetric composite and sand-
wich beams compared to other models. Thus, HOSTB4 model is recommended
for one-dimensional symmetric composite and sandwich laminates.

In case of unsymmetric composite and sandwich beams, the results of
HOSTB8 match well with the elasticity and other closed-form solutions com-
pared to other models, as the transverse displacement and its higher-order modes
also play a paramount role in the modelling. Thus, this model should be used to
tackle unsymmetric composite and sandwich beams.
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