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Pseudo-Transient Analysis of Composite
Shells Including Geometric and

Material Non-Linearities

J. R. KOMMINENI* AND T. KANT**

Department of Civil Engineering
Indian Institute of Technology
Powai, Bombay 400-076

India

ABSTRACT: An unified approach is presented for the pseudo-transient (static) linear,
geometric, material and combined geometric and material non-linear analyses of lami-
nated composite shells. A nine-noded isoparametric quadrilateral finite element belonging
to the Lagrangian family is used in space discretization. An explicit time marching scheme
is employed for time integration of the resulting discrete ordinary differential equations
with the special forms of diagonal fictitious mass and/or damping matrices. The elasto-
plastic material behaviour is incorporated using a flow theory of plasticity. In particular,
the modified version of Hill’s initial yield criterion is used in which anisotropy parameters
of plasticity are introduced. The shear deformation is accounted for using an extension of
Sander’s shell theory, and the geometric non-linearity is considered in the sense of von
Karman strains. The layered element approach is adopted for the treatment of elasto-
plastic behaviour through the thickness. A wide range of numerical examples are pre-
sented to demonstrate the validity and efficiency of the present approach. The results for
combined non-linearity are also presented. The variety of results presented here is based
on realistic material properties of more commonly used advanced composite materials.
The results of the combined non-linear analysis should serve as reference for future in-
vestigations.

1. INTRODUCTION

N RECENT YEARS composites, especially fibre reinforced laminated plates andshells, have found increasing application in many engineering structures. This
is mainly due to two desirable features of fibre reinforced composites, viz., the
high stiffness to weight ratio, and the anisotropic material property that can be
tailored through the variation of the fibre orientation and stacking sequence of
laminas, a feature that gives the designer an added degree of flexibility. Because
of the high modulus and high strength properties that composites have, structural
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composites undergo large deformations in elastic and inelastic ranges. Therefore,
an accurate response prediction is possible only when one considers the geomet-
ric and material non-linearities. In this article, an unified approach for the static,
linear, and geometric non-linear, elastic and elasto-perfectly plastic analyses of
laminated composite shells is presented.
The origin of this approach dates back to 1965, when the method of dynamic

relaxation was introduced by Day [1]. Since then, many research workers have
contributed to the development of this method by applying it to a variety of prob-
lems [2-5]. This method is essentially a step-by-step integration of critically
damped vibration using fictitious mass and/or viscous damping to ensure the at-
tainment of a steady-state solution as fast as possible. Even though the use of the
finite difference in space method compares well with the finite element method,
the difficulties encountered with complicated geometries make its use unattrac-
tive. Thus, maintaining the generality of the finite element method and the wide
spectrum of software available thereon, it is advisable to develop the relaxation
procedure with respect to space discretization by finite elements. Pica and Hinton
[6-7] used this approach for linear and geometrically non-linear analyses of iso-
tropic Mindlin plates. Kant and Patel [8] extended this approach to two-

dimensional small and large deformation elastic problems (plane stress/plane
strain and axisymmetric). To the authors’ knowledge, there exist no results in
open literature on non-linear pseudo-transient analysis of composite shells. The
present investigation tries to fill this gap and is concerned with the pseudo-
transient (static) analysis of layered composite shells under the applied transverse
loads that includes both geometric and material non-linearities.

2. THEORY

The laminated shell considered here is composed of a finite number of ortho-
tropic layers, with principal material axes of elasticity oriented arbitrarily with
respect to the shell axes. The x, y coordinates of the shell are taken at the mid-
surface of the shell (see Figure 1), and the displacement model is assumed to be
of the form,

where the subscript &dquo;o&dquo; denotes mid-surface values, and 0. and 0, are the rotations
of the mid-surface normals in the xz and yz surfaces, respectively. In the present
investigation, large displacements are considered in the sense of von Karman,
which implies that the first derivatives of tangential displacement components
with respect to x, y, and z are small so that their particular products can be
neglected (see e.g., Reddy and Chandrashekhara [9]). The elasto-perfectly plas-
tic analysis is based on Huber-Mises yield criterion extended by Hill for aniso-

 © 1993 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at INDIAN INSTITUTE OF TECHNOLOGY BOMBAY on June 26, 2007 http://jrp.sagepub.comDownloaded from 

http://jrp.sagepub.com


103

Figure 1. Laminate geometry with positive set of laminallaminate reference axes, displace-
ment components and fibre orientation. ,

tropic materials. The yield function is generalized by introducing anisotropic
parameters of plasticity.
The strain expressions are derived by modifying the Sanders’ shell theory [10]

by including the first order shear deformation effects. The incremental strains can
be written as follows,
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in which

The elastic stress-strain relations for a typical layer L with reference to the
material axes (1,2,3) are given by

in which [aI, a2 , T12, T13, T23 are the elastic-stresses and [E, , &euro;2, ’Y 12 , ~y13 , ^y23 1
are the physical strain components referred to the material or lamina axes (1,2,3)
as shown in Figure 1. C,~s are the composite material stiffness coefficients of the
Dh lamina in the lamina axes (1,2,3), and j8 is the usual shear correction coeffi-
cient and is assumed here to take the usual value of 5/6.

Following the usual transformation rules of stresses/strains between the layer
and laminate coordinate systems, the stress-strain relations for the Lt&dquo; layer in
the laminate coordinates (x,y,z) are written in a compact form (see Kant and
Kommineni [11]) as:

in which 8Q = (6or.,, 6or,, 6T~~ , 8Tx= , BT,,Z )‘ is the elastic incremental stress vector
and 6e = (8Ex , 8Ey , 6-y,, 6y~~ , ö)’YZ Y is the incremental strain vector with respect
to shell axes. The superscript &dquo;t&dquo; indicates the transposition of a matrix/
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vector and the non-zero elements of Q matrix which is of size 5 x 5, and are
defined as follows,

where c = cos 0 and s = sin 0.
The laminate constitutive relations involving membrane forces, bending mo-

ments, and shear forces are defined as:

where

3. FINITE ELEMENT FORMULATION °

The finite element used here is a nine-noded quadrilateral element of the
Lagrangian family. The laminate displacement field in the element can be ex-
pressed in terms of nodal variables as:

where NN is number of nodes per element, N,(~,,q) contains interpolation func-
tions associated with node i in terms of local coordinates ~, q, and d, is nodal dis-
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placement vector such that d, = (u,,,, v~, wo, , 9X, , 0~, ) . The strain displacement
relations can be written as follows (see Zienkiewicz [13]):

also

where Bo is the strain matrix giving linear strains, BNL is linearly dependent upon
the nodal displacement vector a, such that a’ = (di,d2, ..., d, ). The non-zero
coefficients of the B, sub-matrix of size 8 x 5 are defined as follows:
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3.1 Layered Model Approach
The concept of the layered model approach is introduced in order to handle the

plasticity in the cross section of the element in which progressive yielding
through thickness of laminate is accounted for by depicting it as a collection of
thin layers (Owen and Hinton [12]). Accurate representation of the stress is par-
ticularly important in the plasticity analysis with variation of properties from
layer to layer accounted.

3.2 Plastic Correction

For the yielded Gauss points, the stresses are calculated so that the yielding
criterion is satisfied. If the actual stress is found greater than this permissible
value, then the portion of the stress greater than the yield value must be reduced
to the yield surface. Consider the situation for the r th iteration of any particular
load increment (see Figure 2a). On loading from point C, the stress point moves
elastically until yield surface is met at B. Elastic behaviour beyond this point will
result in a final stress state defined by point A. However, in order to satisfy the
yielding criterion, the stress point cannot move outside the yield surface and thus
can only traverse the surface until the yield criterion (see Appendix A) and con-
stitutive relations are satisfied.
To reduce the stress to the yield surface for the yielded Gauss points, the fol-

lowing steps are considered. -

STEP A

Compute the incremental changes, due,, where subscript &dquo;e&dquo; denotes that we
are assuming elastic behaviour.

STEP B
Accumulate the total stress for each element Gauss point as

STEP C
Calculate the effective stresses ae-1-1 and Ji~ and check for the following cases:

Case 1

Elastic point is still elastic. No reduction of stress is required.

Case 2

Elastic point now unloading. No reduction of stress is required.
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Figure 2a. Incremental stress changes at a point m an elasto-plastic continuum at initial
yield (taken from Owen and Hmton [12J).

Figure 2b. Refined process for reducing a stress point to the yield surface (taken from
Owen and Hinton (12J).
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Case 3

Elastic point becomes plastic. The portion of the stress greater than the yield
value must be reduced to the yield surface.

Case 4

Plastic point goes further plastic. Reduce the entire increase in stress to remain
on the yield surface. ,

STEP D
For the yielded Gauss points only, namely for cases (3) and (4), compute the

portion of the total stress which satisfies the yielding criterion as

STEP E
The remaining portion of stress, ~ dQe , must be effectively eliminated in some

way. Point A must be brought onto the yield surface by allowing plastic deforma-
tion to occur. Physically this can be described as follows. On loading from point
C, the stress point moves elastically until the yield surface is met at B. Elastic be-
haviour beyond this point would result in a final stress state defined by point A.
However, in order to satisfy the yield criterion, the stress point cannot move out-
side the yield surface and consequently, the stress point can only traverse the sur-
face until both equilibrium conditions and constitutive relations are satisfied. In
the case of elasto-plastics, the incremental stress can be expressed as (see Owen
and Hinton [12]):

which gives the total stress Q’ satisfying the elasto-plastic conditions when the
stresses are incremented from or,-. It is evident that if a finite sized stress incre-
ment is taken, the final stress point D, corresponding to Q’, may depart from the
yield surface. This discrepancy can be eliminated by ensuring that the load incre-
ments considered in solution are sufficiently small. However, point D can be
brought onto the yield surface by simply scaling the vector or’, denoting the effec-
tive stress due to stress or’ as or&dquo;, and noting that this value should coincide with
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ay = or,, + H~ E;I. If the point D lies on the yield surface, the appropriate scal-
ing factor is readily seen to be

This represents a scaling of the stress vector J~, which implies that the individ-
ual stress components are proportionally reduced. The normality condition for
the plastic strain increment is evident from

If relatively large load increment sizes are to be permitted, the process
described above can lead to an inaccurate prediction of the final point D on the
yield surface if the stress point is in the vicinity of a region of large curvature of
the yield surface. This is illustrated in Figure 2b, where the process of reducing
the elastic stress to the yield surface is shown to end in the stress point D, which
is then scaled down to the yield surface to give point D, which is then further
scaled down to the yield surface to give point D ~ . Greater accuracy can be
achieved by relaxing the excess stress to the yield surface in several stages. Figure
2b shows the case where excess stress is divided into three equal parts and each
increment reduced to yield surface in turn. After the reduction cycles, the stress
point drifting away from the yield surface can be corrected by simply scaling to
give final point E ~ . It is seen that the final points D and E ~ can be significantly
different. An additional refinement which can be introduced is to scale the stress

point to the yield surface after the reduction process for each cycle, not only after
the final cycle. Obviously, for the greater number of steps into which excess
stress AB is divided, the greater will be the accuracy. However, the computation
for each step is expensive since the vector a and d, have to be calculated (see
Appendix A) at each stage. Clearly, a balance must be sought and in this article,
the following criterion is adopted. The excess stress ~da’ is divided into &dquo;m&dquo;

parts, where m is given by the nearest integer value which is less than

where a~1 - Q,, gives a measure of the excess stress AB, and a,’ is the initial
yield stress.
However, for the elastic Gauss points, the stress Orr is as follows

The discrete static equilibrium equations can be written as
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and the discrete dynamic equations of motion as

The reader is urged to refer to standard tests [13,14]. The static problem repre-
sented by the discrete Equation (14a) can be solved in a variety of ways. This gen-
erally requires a direct or factorized solution of simultaneous equations. An alter-
nate solution procedure includes the transformation of Equation (14a) into

dynamic equations of motion represented by Equation (14b) by inclusion of
fictitious mass and/or damping matrices, and carrying out the dynamic analysis
until a steady state is reached. In the above equation, M is the mass matrix, C
is the damping matrix, P(a,t) is the vector of internal resisting forces, f is the vec-
tor of applied forces, a is the vector of nodal displacements, and a dot denotes
differentiation with respect to the time.

(a) Internal force vector P: . 

’

where Q is stress-resultant vector.

(b) Mass matrix M: in the pseudo-transient analysis, the real mass is very
seldom used. On the contrary, various forms of fictitious mass are introduced in
order to increase the convergence rate towards the static equilibrium solution.
Some commonly used forms in the literature are the following:

~ a unit mass [15]
~ a real mass matrix computed from different densities in u, v and w directions

[16]
~ a diagonal mass matrix obtained from the stiffness matrix K [4], in which the

element m&dquo; = E~ ~ ~ ~, where r is the order of K
~ a diagonal mass matrix obtained from the stiffness matrix K [4], in which the

element m&dquo; = K&dquo;

It is noted from the available literature [6,7] that the last alternative produces
the fastest convergence. Therefore, in the present investigation the diagonal terms
of the linear stiffness matrix are taken as diagonal coefficients of diagonal
fictitious mass matrix.

(c) Damping matrix C: the damping matrix is taken here as

where (Xc is the critical damping factor, such that a~ = 2w in which co is the
dominant frequency of the system. An eigenvalue analysis of the system for evalu-
ating M is generally avoided. In fact, it would be rather expensive and contrary
to the main philosophy of pseudo-transient methods in which the aims are easy
implementation and small computer core storage. In the present context, the
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damping effect is included by considering the adaptive damping [7]. The critical
damping factor a~ is given by,

Here, the damping factor is constantly updated on the basis of the information
gained during the current time step. It is thus possible to follow the behaviour of
the structure during the integration in time very closely. It consists of using the
Raleigh’s quotient

to estimate the lowest eigenvalue of the structure at the current time step. It is
worth adding that the predicted value of (Xc had to be scaled for maximum efh-
ciency by a correction factor cf.

Since the mass matrix M and damping matrix C are diagonal matrices, the set
of Equation (14b) are uncoupled to give new displacement values without requir-
ing the matrix factorization or any sophisticated solution techniques. The Equa-
tion (14b) can be written in a scalar form as:

where subscript &dquo;i&dquo; denotes the i th degree of freedom and the other symbols have
the usual meanings.

In the explicit time marching scheme used here, the velocities and accelera-
tions are approximated using the central difference formulae as:

where n - 1, n, and n + 1 denote three successive time stations. Using the
above approximation, Equation (18) can be rewritten as:

It becomes clear that the values of a,&dquo;’ can be determined from the two pre-
vious displacements, a&dquo; and a,&dquo;-’, by rewriting Equation (20):
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If the values a° and a° are specified as initial conditions, a special starting
algorithm can be written by noting that,

and ai~ can be eliminated from Equation (21a).
The algorithm defined by Equations (21a and 21b) is very simple and easy to

implement, but as is well-known, it is conditionally stable. This means that the
time step length At must not exceed a given critical value for the scheme to be
stable.
As a rough initial estimate, At for thin laminates of alh = 100 is 1.2, and that

for moderately thick laminates of alh = 10 is 0.75, with correction factor

cf = 0.75 in the latter case, regardless of the size of the element used. However,
the final value is based on economy and stability criteria.

4. SOLUTION TECHNIQUE

The essential steps in the computer code are as follows:

1. Read the input data.
2. Form the diagonal mass matrix M and external force vector f.
3. Apply the boundary conditions.
4. Evaluate the residual force vector P - p&dquo;, however, in the first step, internal

force vector P is taken to be zero.
5. Compute a&dquo;+1 from the a&dquo; and a&dquo;-’ .
6. Evaluate the new internal force vector p&dquo;+’ from a&dquo;+’.

7. Output the required values.
8. Introduce the time stepping procedure.

The following operations are carried out as explained below when damping ef-
fect is included by considering adaptive damping.

· The critical damping factor is determined in each step by using Equation (17).
It is worth noting that the technique does not involve much additional compu-
tational efforts, in that K(a) a&dquo; = p&dquo; is already available, and M is a diagonal
matrix.

The typical time history of a generalized displacement during the pseudo-
transient analysis by including damping effects by means of adaptive damping can
be seen in Figure 6.

· The convergence to static solution is checked, i.e., by using the convergence
check either in terms of residual forces, or in terms of displacements. Steps 4
to 8 are performed until the system reaches a steady-state.
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The convergence factors R and D, with respect to the residual forces and dis-
placements, respectively, are defined as follows (see Pica and Hinton [6,7]):

where NV represents the total number of degrees of freedom. The convergence
is achieved when the chosen parameter R or D becomes less than a given toler-
ance.

5. NUMERICAL EXAMPLES AND DISCUSSION

The validity and suitability of the present unified approach, especially for com-
posite laminated shells, is investigated by considering and evaluating a set of
problems. Two computer programs were developed which are based on pseudo-
transient analysis: PTFOST5 for predicting linear and geometrically non-linear
responses with non-layered approach, and PLPTSHE5 for predicting linear, geo-
metric, material and combined geometric and material non-linear analysis using
layered approach. The bi-quadratic nine-noded Lagrangian isoparametric ele-
ment is employed in the present investigation. The selective integration scheme,
namely the 3 x 3 Gauss quadrature rule, is used to integrate the membrane,
coupling between membrane, and bending terms, and a 2 x 2 Gauss quadrature
rule is used to integrate shear energy terms in non-layered approach, whereas in
layered approach, either full integration 3 x 3 or reduced integration 2 x 2 is
adopted for all energy terms. Zero initial conditions are assumed in all the ex-
amples of pseudo-transient analysis. All the computations were carried out in
single precision on a CDC Cyber 180/840 computer at Indian Institute of Tech-
nology, Bombay. Due to bi-axial symmetry of the problems discussed, only one
quadrant of shell was analyzed with 2 x 2 uniform mesh, except angle-ply lami-
nated shells, where the full shell with 4 x 4 uniform mesh is adopted.

MATERIAL SET 7
The material properties are taken from References [17-19].
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Plasticity parameters

MATERIAL SET 2
The material properties are taken from Reference [20].

MATERIAL SET 3
The material properties are taken from Reference [21] (Boran/Epoxy).

Plasticity parameters

MATERIAL SET 4
The material properties are taken from Reference [22] (Graphite/Epoxy).

Plasticity parameters
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The finite element displacement formulation developed in this article is based
entirely on assumed displacement functions and thus, only displacement bound-
ary conditions are required to be specified. The boundary conditions correspond-
ing to the present formulation are specified in Table 1.
The edge conditions, which have been derived in a variationally consistent

manner in the present theory, may not appear so (except in the case of fully
clamped edge specified by C), because the natural boundary conditions cannot be
prescribed in the displacement based finite element method.

EXAMPLE 1. LINEAR ANALYSIS

Simply supported (Sl) symmetric cross-ply (0 ° /90 ° /90 ° /0 ° ) spherical and
cylindrical shells with alh = 10, different R/h ratios, and material properties as
per material set I subjected to a sinusoidal transverse load, are considered. This
example is selected to estimate the number of layers in a laminate in the layered
approach for accurate results. The results are compared with closed-form and
finite element solutions presented by Reddy [18]. Further solutions with parallel
formulations based on Sander’s shell theory by including shear deformation
effects are also repeated. The number of equal thickness layers considered are 4,
8 and 12. The results are presented in Table 2.
A simply supported (Sl) unsymmetric cross-ply (0°/90°) spherical shell with

alh = 100, different Rla ratios, and the material properties as per material set 1

subjected to uniform transverse load is considered. The present results for 4, 6,
8 and 10 equal thickness layers are compared with Reddy and Liu [19], along with
present non-layered approach results. All the formulations are based on Sander’s
shell theory with constant/first-order shear deformation effects included. The
results are presented in Table 3.
From the results of Tables 2 and 3, it is clear that a sufficient number of sub-

layers are needed in order to obtain converged results close to non-layered ap-
proach results. In pseudo-transient analysis, it is observed that the computer cost
of internal force vector computation increases with the increase in the number of
sub-layers employed in the through thickness modelling. In the examples con-
sidered, 8 to 12 equal thickness sub-layers in a laminate appear to be optimal.

Table 1. Boundary conditions.
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Table 2. Non-dimensional displacement for symmetric laminated cross-ply
(0°/90°/90°/0°) shell subjected to sinusoidal transverse load.

&dquo;S&dquo; refers to spherical shell and &dquo;C&dquo; refers to cylindrical shell

Table 3. Non-dimensional displacement for an unsymmetric laminated
cross-ply (00/900) spherical shell subjected to a uniform transverse load.
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EXAMPLE 2. GEOMETRICAL NON LINEAR ANALYSIS (GNL)
A clamped (C) isotropic cylindrical shell with a = b = 508 mm, R = 2540

mm, E = 3103 N/ mm’ and v = 0.3 subjected to uniform transverse load, is
considered. The present layered approach results with full and uniform reduced
integrations are compared with the corresponding present non-layered approach
results and other available results in the literature for different alh ratios (Figure
3). For alh = 160, the displacements obtained with full integration rule are dras-
tically less than those obtained with reduced integration, and non-layered ap-
proach with selective integration. This is as expected due to the well-known phe-
nomenon of shear locking in the case of thin shells. Again as expected, shear
locking is not visible for alh = 100 and 10. This confirmed that full integration
may be employed for alh - 100 and reduced integration was necessary for
alh > 100 for achieving reasonable accuracy. The following non-dimensional
quantities are used in the presentation of results:

Next, a simply supported (SI) nine-layer symmetric cross-ply (0°/90°/
0°/ ... /0°) spherical shell with R/a = 10, alh = 100, a = b, h = 1, with
material properties as per material set 2 is considered. The present layered ap-
proach results are compared with non-layered approach results as well as other

Figure 3. Displacement vs. load curves for a clamped isotropic cylindrical shell subjected
to a uniform transverse load.
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Figure 4. Displacement vs. load curves for a nine-layered cross-ply (0°l90°l0°l ... /00)
spherical shell subjected to a uniform transverse load.

results of Chao and Reddy [20], and these are plotted in Figure 4. The non-
dimensional quantities are as per Equation (23) in these presentations.

Figures 3 and 4 show that all the results are in good agreement. It is to be noted
that the shells considered are geometrically thin with negligible shear deforma-
tion effects, but this comparison has certainly established the validity of present
formulations in the context of geometrically non-linear analysis.

EXAMPLE 3. MATERIALLY NON-LINEAR ANALYSIS (MNL)
A simply supported (S2) cross-ply (0°/90°) spherical shell with Rla = 10,

alh = 100, h = 1 in, and material properties as per material sets 3 and 4 is con-
sidered. The laminate is divided into ten equal thickness layers in the layered ap-
proach. The present results are compared with those of Reddy and Chandrashek-
hara [21] and Chandrashekhara [22]. All the computed results and those of others
are plotted in Figure 5. Good agreement between present results and other
available results, which are based on the Newton-Raphson approach, is evident.
Thus, the present computational model is seen to be reliable in linear, geomet-

rically non-linear, and materially non-linear analyses independently.

EXAMPLE 4. COMBINED NON-LINEAR ANALYSIS (CNL)
To the authors’ knowledge, no result is available for combined geometric and

material non-linearity. An attempt is made here to study this combined effect.
First, a clamped (C) angle-ply (45°/-45°) spherical shell with Rla = 10,

alh = 10 and h = 10 in, and material properties as per material set 4, is con-
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sidered. The laminate is divided into ten equal thickness layers in the layered ap-
proach.
The time history of displacement with various approaches is presented in

Figure 6, and the results are compared with the corresponding static results
which are based on the Newton-Raphson method. The C.P.U. times on CDC
Cyber 180/840, in single precision with 16-digit word length accuracy for pseudo-
transient linear, geometric non-linear, materially non-linear, and the combined
geometric and material non-linear analyses, are 53.4635, 57.7989, 69.1906 and
247.4352 CPU seconds, respectively. The corresponding static Newton-Raphson
approach times are 14.9828, 78.8899, 227.4057 and 775.6103 CPU seconds. This
clearly shows that there is considerable savings in computational costs, especially
in the non-linear analysis with the pseudo-transient method. Hence, the present
dynamic relaxation method is a very good alternative to the Newton-Raphson
iteration method. The non-dimensional time is defined in these comparisons as

Secondly, a simply supported (Sl) cross-ply (0 ° /90 ° /0 ° ) spherical shell with
R/a = 10, alh = 50 and the material properties given by set 1, is considered.
The laminate is divided into nine equal thickness layers. To study the conver-
gence of results, the laminate is divided into 3 x 3 and 4 x 4 uniform meshes
in addition to regular 2 x 2 mesh in a quarter laminate. The present results are
plotted in Figure 7, with the non-dimensional quantities as per Equation (23).

Figure 5. Dipslacement vs. load curves for a cross-ply (ool9oo) sphencal shell subjected to
a uniform transverse load.
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Figure 6. Time history of displacement for an angle-ply (45°/-45°) spherical shell sub-
jected to a uniform transverse load with adaptive damping

Figure 7. Displacement vs. load curves for a cross-ply (ool9ooloo) sphencal shell subjected
to a uniform transverse load.
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The present layered approach results are compared with the present non-layered
approach results in linear as well as geometric non-linear analyses. New results
are also presented in material as well as combined geometric and material non-
linear analyses. From Figures 6 and 7, it is clear that a 2 x 2 uniform mesh in
a quarter laminate gives the converged results. Further, the combined non-linear
response is more than that due to the individual effects, i.e., the shell softens due
to the non-linear effects.

6. CONCLUSIONS

The pseudo-transient analysis methodology, based on finite element space dis-
cretization, is an adaptation of the dynamic relaxation methodology, which is
based on finite difference space discretization and was originally developed in
1965 for solution of both linear and non-linear problems in an unified manner. A
comparison of this method with the standard Newton-Raphson method for the
solution of the non-linear equations of a problem is not available in literature. An
effort in this direction is made here, in the context of large deflection elasto-
static/perfectly plastic problems of general fibre reinforced composite shells.
The numerical examples presented in the previous section show a generally

good agreement of the present formulation with those from other sources. Thus,
this unified approach seems to be capable of solving linear, geometric, material,
and combined geometric and material non-linear problems of isotropic/ortho-
tropic and anisotropic material properties. It is important to note that the com-
puter code developed here requires very small core memory as compared to
other static programs. It is further noted that this method will give solutions of
very large linear and non-linear finite element problems on small computers.
Another important merit of the present unified approach is its easy implementa-
tion. The only computational effort involved is in the computation of internal
force vector P, in which any extent of non-linearity can be easily included.
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APPENDIX A

Flow Theory of Plasticity
Yield criterion: For the anisotropic materials to be considered in this work, the

yield criterion employed will be a generalization of the Huber-Mises law. The
yield criterion can be written in the general form as (see Hinton and Owen [25])
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in which f is some function of the deviatric stress invariants, and the yield level
y can be a function of hardening parameter, ~.

Defining the plastic potential, or effective stress, aej, in a similar manner to the
Huber-Mises yield function for isotropic materials, it can be written as,

where as (TS) are stress components, the as are parameters of anisotropy, and the
subscripts 1, 2, 3 refer to the direction of three principal axes of anisotropy. De-
veloping this expression by assuming Q3 = az = 0, the effective stress can be
written as,

where all, an, az2 , a33, a44 and ass are anisotropic parameters which can be de-
termined experimentally.

If the principal axes of anisotropy 1,2 do not coincide with the reference axes
x, y but are rotated by a certain angle 0, then the anisotropic parameters for the
new system are changed according to the stress transformation. In matrix form,
Equation (A2b) can be written as,

where

The equation of stress transformation is

where T is the transformation matrix. The effective stress, expressed in reference
system x, y and z, is then

in which X is the matrix of the new anisotropic parameters given by
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The coefficients of the matrix A corresponding to the L’~ layer are defined as
follows

The parameters of anisotropy can be determined by six independent yield tests.
The initial parameters (no hardening effects) are obtained by successively allow-
ing all stress components to be zero in the yield function Equation (A5a), except
the one under consideration. For a tensile test in the 1 direction,

where aoef is the uniaxial yield stress in the reference direction, and Qlo is the
uniaxial yield stress in the 1 direction. Taking the 1 direction as the reference
direction, a,o = 1.0.

Similarly,

To obtain al20, another uniaxial tensile test is required in which the specimen
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is taken from the 12 material surface. If the specimen axis is rotated by an angle
<~ to the 1 axis, and assuming Q~o as the uniaxial stress obtained by test, then

Substituting these stress components in Equation (A4a) and assuming
0 = 45 ° , the remaining parameter can be obtained as,

These parameters are functions of the current yield stress; therefore, they must
vary for a work-hardening material. Their subsequent values are obtained by in-
troducing the current yield stress values into Equations (Ala) to (A7b). However,
in the present investigations, the work-hardening effects are not included.
The flow vector is now defined as,
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