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Abstract. A C o finite element space discretization procedure is employed in a general fibre-reinforced 
composite cylindrical shell theory based on a higher-order displacement model. The displacement model 
incorporates non-linear variation of tangential displacement components through the thickness of the shell. 
The use of a shear correction coefficient thus becomes redundant. The discrete element chosen is a 
nine-noded Lagrangian quadrilateral with seven degrees of freedom per node. 

Two formulations, one in which ( h / R )  << 1 and another in which ( h / R )  2 << 1, are derived. After the nodal 
displacements are obtained from the global finite element analysis, the secondary quantities are determined 
element-wise. The planar lamina stresses are computed through the constitutive relations while the transverse 
shear stresses are estimated by making use of the equilibrium equations. A special finite difference scheme is 
developed to integrate the equilibrium equations with a view to estimate transverse/interlaminar stresses 
across the shell thickness. The transverse/interlaminar stresses computed by the above technique do maintain 
the continuity at the interface of two layers. The results obtained are compared with available elasticity, 
closed-form and other finite element solutions. 

Introduction 

Fibre-reinforced composite shells of revolution find applications in diverse branches of 
technology because of their high strength-to-weight and stiffness-to-weight ratios. The in- 
creased use of composites for high-performance design in aerospace applications has necessi- 
tated the need for a realistic prediction of the behaviour of these composite material 
structures. Experience has shown that accurate prediction of only the in-plane lamina stresses 
is just not adequate; the transverse and interlaminar stresses play an important role in 
initiating the separation of individual laminae thereby causing delamination. This results in 
structural and functional failure due to the destruction of the load transferring mechanism. It 
is thus essential to develop a theory and an associated computing algorithm which has the 
capability of predicting both the planar as well as the transverse stresses accurately. 

A three-dimensional elasticity solution of laminated shells is extremely complex. Further 
more such a solution lacks generality. To simplify the governing equation system, the 
three-dimensional equation system is generally reduced to a two-dimensional one by incorpo- 
rating certain assumptions regarding the kinematics of deformation in the thickness direction 
of the shell. In the classical shell theory based on the Love-Kirchhoff hypothesis [1,2], it is 
assumed that transverse normals remain straight and normal to the mid-surface and undergo 
no change in their length during deformation. The transverse strains, thus, become negligibly 
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small. The lamina is, further, assumed to be in a state of plane stress in the constitutive 
relation. Naghdi [3] has presented a survey of developments until 1956. Dong, Pister and 
Taylor [4] have extended Donnell 's  shallow shell theory for laminated anisotropic shells. A 
closed-form solution for an arbitrary laminated anisotropic cylindrical shell based on classical 
lamination theory is given by Chaudhuri  et al. [5]. Reuter  [6] has obtained closed-form 
solutions for balanced unsymmetric and unbalanced symmetric angle-ply cylindrical shells. 
The above works are based on Love's classical shell theory. The classical theory does not 
include the effects of transverse shear strains, transverse normal strain and transverse normal 
stress. A composite laminated shell should necessarily include all or at least some of thesc 
effects. 

Dong and Tso [7] are the first to incorporate the effects of transverse shear deformation 
through the shell thickness and developed a theory for analyzing a laminated orthotropic 
shell. However, only problems of cylindrical shells in which the orthotropic material axes of 
each layer coincided with the reference axes of shell could be solved. 

A number  of formulations, based on the Reissner-Mindl in  hypothesis of constant shear 
angle through the shell thickness, are presented in [8-10]. These are known as the first-order 
shear deformation theories. Seide and Chaudhuri  [11] have presented a formulation which 
allows for a layer-wise (piecewise) linear approximation of the non-linear cross-sectional 
deformations. In a constant shear angle theory or a layer-wise constant shear angle theory, the 
shear correction coefficient used is problem dependent  and its accurate prediction is very 
cumbersome. The effects of true cross-sectional warping, which is essential in laminated and 
sandwich shells, due to combined effects of thicknesses, lamination and anisotropy, are not 
taken into account in these formulations. 

A further ref inement  of the mathematical  model using assumed through-thickness dis- 
placement  variations which result in a parabolic distribution of the transverse shear strains 
becomes essential in order to estimate lamina stresses and interlaminar transverse stresses 
through the thickness accurately. Higher-order  shear deformation theories are formulated by 
expanding the continuum displacement components  in the form of a power series in the 
transverse coordinate. Depending on the number  of terms retained in the series expressions, 
various higher-order shell theories [12-18] have been developed. 

Here,  based on a higher-order displacement field a fibre-reinforced composite cylindrical 
shell theory, suitable for C ° finite element formulation, is developed. The interlaminar and 
transverse stresses are evaluated by integrating the equilibrium equations using suitable finite 
difference operators  through the thickness. The continuity of transverse stresses at the 
interface of layers is maintained in this computational algorithm. 

Theoretical formulation 

The displacement components  uT(O, x, z), i =  1, 2, 3, at any point in the shell, are 
expressed in the form of a power series, in powers of the thickness coordinate z. The 
coordinate system is shown in Fig. 1. The displacement component  u~ is assumed to be 
constant through the shell thickness. The theory is based on the displacement model, 

u T = U i + 2 a i + Z 3 a  * ( i =  1 ,2) ,  

u~=u3, (1) 

in which u~, u 2 and u 3 are the displacements of a point in the 0, x- and z-direction 
respectively and c~ l and a z are the rotations of the 0-axis and x-axis respectively. The other 
terms, a~  and a~ ,  correspond to higher-order terms in the Taylor 's  series expansion. These 
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Fig. 1. Laminate geometry and positive set of lamina/laminate reference axes, displacement components and fibre 
orientations. 

displacements are defined at the mid-surface reference plane. Thus the generalized displace- 
ment vector d of the reference plane is defined as: 

d = (Ul, u2, u3, o~1, 0/2, a~ ,  0/~)t. (2) 

By substituting eqn. (1) into the strain-displacement relations of the classical theory of 
elasticity particularized for a cylindrical shell [2,14], the following relationships are obtained. 

• Theory 1 (wherein terms of order (h /R)  and higher are assumed small compared to 
unity): 

4 = (,~ +zx~ +z3xt),  
z + Z 3  , ~  

"x = ( e°  + Zx  ° Xx ) ,  

"70 z = ( e L Jr-ZXO ° "t- Z3,)(~ ) ,  (3a) 

r : z ;  (6x + ~26x*), 

y0~ = (6o + z2~; ~), 
where Co, e~, e0~ etc. are the mid-surface strains and are defined in [18]. 
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• Theory 2 (wherein terms of order ( h / R )  2 and higher are assumed small compared to 

and 

e~ = (E o' + zx; '  + z3x• ) / ( 1  + z / R ) ,  

E~ = (E  ° + ZX.tt > + Z 3 X ?  ) ,  

z o Z o o , "/ox(eo, + xox + z 3 x L ) / ( 1  + z / R )  + (e,o + zx'2o + Z3Xx*o) (3b) 

2 , "/L = (6x+~ 62), 

eL = (6o + z : 6 ;  ~ + z360")/(1 + z / R ) ,  

where 6~' = 3a~ and all other terms are defined in [18]. 
The generalized strain vector ~ defining strain quantities on the middle surface may be 

written as: 

[ . . . . . . . . . .  6 :1~  
= e o, e~, Cox, Xo, Xx, Xox, X~,  X*,x X L ,  d)',!, 05~o ~, 6 " ,  (4a) 

in which, 

[ . . . . .  o o ,  x o 6 ; ,  x~*, xL 6x*0, 6~, 6~, 6" ,  6 : ,  ~,0"]', ~" = EO, Ex, EOx, ExO, XO, Xox re, 

(4b) 

corresponding to Theory 1 (eqn. 3a) and Theory 2 (eqn. 3b) respectively. 
The stress-strain relationship for the Lth  lamina of the composite laminate with reference 

to fibre-axes (1, 2, 3) (see Fig. 1) in a compacted form is as follows: 

t L t ~r i = C j j ,  (5a) 

in which 

( T ' =  [O ' l ,  0"2, '/ '12, 7"23, T13]tL , (5b) 

E'= [E l, E2, `/12, "/23, "/13]'L, 

and Ci~ is the standard material stiffness matrix [19] with respect to the principal material 
directions of the Lth lamina. These vectors (~r' and C)  are transformed to shell coordinates 
(0, x, z)  using the transformation rule of stresses and tensorial strains [20]. The stress-strain 
relation in the shell coordinates is written as 

¢ =  QL~, (6a) 

¢ =  [¢o, Cx, ~o~, ~x~, ~o~]',~, 

= [%, e~, YOx, Yxz, Yo~]~, (6b) 

QL = T - 1 C L ( T - 1 )  t, 

for the Lth  lamina. T is the transformation matrix and superscripts t and - 1  represent the 
transpose and the inverse of an ar ray/square  matrix, respectively. 

The total potential energy H for the present theory is given by 

unity): 
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where q represents the equivalent load vector corresponding to the seven degrees of freedom 
at a point on the middle surface defined by d t. The above expression can be rewritten as, 

H=ISA(Si~tor dz ) da-SAdtq dA. (7b) 

By substituting the strain components given by eqn. (3) in eqn. (7b) and carrying out explicit 
integration through the shell thickness, one obtains, 

1I= ½ fA[t~ d A -  fAdtq dA,  (8) 

in which 

and 

if= [N o, Nx, No. , Mo, M x, Mox, M : ,  M*x, M~,  Qx, Qo, Q*, Q~,]t (9a) 

= [ N o, N~, No~, Nxo, M o, M x, Mox, Mxo, Mg, M*, M~,  M D, 

Qx, Qo, Q*, Q~, S:  it (9b) 

are the stress-resultant vectors corresponding to the middle surface strain definitions given by 
eqn. (3a) and eqn. (3b) for Theory 1 and Theory 2 respectively. The relation between 
stress-resultant and generalized strain vectors can be concisely expressed as: 

= O~- (lOa) 

o r  

-- - [ - D m l  D¢ i O-I ~o- 
_ _ _ 1 _ _ _ 2 _ _ _  

t { I 
= D ¢ [ D b [  0 K* 

L T 
Q* ] 6* 

in which the components of the stress-resultant vector and generalized strain vector are: 

N= (N o, Nx, Nox) t, 

M= ( Mo, M x, Mox) t, M *  = ( M~', Mx*, Mo*x) t, 

Q = (Qx, Qo)t, Q,  = (Q . ,  Q:) t ,  

o t i[o = ( , o ,  , o ,  ffOx) , 

o o t , . t 
I¢ ° = (K~, Kx, KOx ) , K *  = (K~, Kx , KOx ) , 

6 O = ( 6 x ,  6 0 )  t, 6 "  = ( 6 ~ ,  6 ~ )  t, 

corresponding to the mid-surface strain definition given by eqn. (3a) for Theory 1, and 

N= (No, Ng, Nox, Nxo)', 

M= ( Mo, Mx, Mox, Mgo)*, 
Q = (Qx, Qo) t, 

o o t , o =  ( , ~ ,  , o ,  "Og, "gO) , 

o t 
o KxO) , ,o (~ '  : '  ~OX' 

6 ° = ( 6 ~ ,  6o)*,  

M* = (Mo*, Mx*, Mo* x , Mx;) t 
Q *  * * = (Q~, Qo, so*) t 

~ .  ( ~ t ,  . . t 
= ~ g , ~ L , ~ x 0 )  

6 "  = ( 6 ~ , 6 t , ~ : )  t 

(lOb) 

(10c) 

(lOd) 
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corresponding to the mid-surface strain definition given by Eq. (3b) for Theory 2. The 
different submatrices are defined as: 

Din--membrane,  D,.--membrane-flexure coupling, 

Dh--f lexure ,  D~--shear. 

The interlaminar stresses (rx~, %:) cannot be accurately estimated using eqn. (6a). This is 
because the interlaminar stresses evaluated by this constitutive relation lead to the discontinu- 
ity at the laminae interfaces and thus violate the equilibrium conditions. For this reason, the 
following equilibrium equations of elasticity for each layer are used to derive expressions for 
transverse shear stresses in the Lth lamina of a multilayered laminated shell. 

1 ~)~o 0 %  I ~)ro= 2 
- - - -  + - -  + - -  + - - - c o :  = O,  
AR O0 ~x ~z AR 

1 Orox ~to~ O r ,  = 1 
- -  + - -  + - -  + - - % :  = 0 ,  

AR ~0 Ox ~)z AR 

(lla) 

where A = 1 and (1 + z / R )  for Theory 1 and Theory 2 respectively. In the above equation, 
the body forces are neglected. The above equilibrium equations are rewritten as, 

~r0~ 2 { 1 ~cr 0 /~r0x 
- -  + - - % :  . . . .  ~ + - -  

~z AR AR ~0 ax ' 
at,.= 1 { 1 ~)ro, ~¢r ( l l b )  

- - +  7"r = - -  ~ + - -  ~z AR ~ AR aO ax 

Finite element discretization 

The generalized displacement vector d and the nodal displacement vector d i are related 
with the aid of shape functions as follows: 

NN 

a= Y'.N,(O, x)ai, t12) 

where NN stands for number of nodes per element. With the help of eqns. (4) and (12), thc 
generalized strain vector ~ at any point is expressed in discrete form as follows: 

NN 

g. = ~ Bidi, (13) 
i = 1  

in which B i represents the derivatives of the shape functions. The definition of the B matrix 
is given elsewhere [18]. 

Having obtained the elasticity matrix D as defined in eqn. (10a) and matrix B~ as defined 
in eqn. (13), the element stiffness matrix K e can be readily computed by using the standard 
relation [21], 

f / t  f + l  / " + 1  t Ki'~= B]DBj d A = J _ ~  j , n iDn / l J i ° '~Or l .  (14) 

The computation of the element stiffness matrix is economized by explicit multiplication of 
B], D and Bj matrices instead of carrying out the full matrix multiplication of the triple 
product and due to symmetry of the stiffness matrix, only the blocks Kij lying on one side of 
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the main diagonal are formed [22]. The formulation of a consistent element load vector P" is 
given in [18]. The discrete governing equilibrium equation is 

= e ,  (15) 

in which a is the global vector of unknown displacements, K is the global stiffness matrix and 
the global nodal force vector is given by P. The global stiffness matrix and global load vector 
are computed in the usual manner as follows: 

NE NE 

K= E K  e, p =  y ' p e  (16) 
e = l  e = l  

The governing equation given by eqn. (15) is solved for a discrete set of unknown 
displacements. From these the strains within a particular element and the corresponding 
stresses are calculated using eqns. (4) and (6) respectively. The transverse shear stresses thus 
obtained by eqn. (6) are found to be discontinuous at the interface of two layers of different 
properties. Thus as mentioned previously, a rational approach is to evaluate the transverse/ 
interlaminar stresses by eqn. (l lb).  

The first task in integrating these equilibrium equations is to obtain the derivatives of the 
in-plane stresses. This is proposed to be obtained here by an exact surface fitting method. In 
this method, the surface parallel components of the stresses ((r 0, ¢rx, ~'0x) are evaltiated 
through constitutive relations at different Gauss points on any surface of the shell at a 
distance z from the mid-surface. The variation of these stresses within the element are 
expressed using a polynomial in (0, x)-coordinates. Thus we have 

¢ro(z ) = C~ + C~RO + C~x + C~(RO) 2 + CJ(RO)x + C~x 2 + C17(RO)2x 

+ C~(RO)x 2 + Ct(RO)2x 2, 

o'x( z ) = C 2 + C~RO + C~x + C24(R0) 2 + C~( RO)x + C26 xz + C~( RO)2x 

+ C~(RO)x 2 + C~(RO)ax 2, 

ro~( z ) = C 3 + C3RO + C3x + C34(R0) 2 + C3( RO )x + C3x 2 + C3( RO )2x 

+ C3(RO)x 2 + C3(RO)Zx 2, (17) 

where C I to C~ (i = 1, 2, 3) are the constants of the polynomial to be evaluated. 
Here the polynomials are truncated after nine terms and hence have nine constants which 

are evaluated for each tangential stress by utilizing the stress values at nine known Gauss 
points. Having computed these constants of eqn. (17), the polynomial expressions are then 
differentiated with respect to (0, x) and the expressions for the first derivatives of the 
in-plane stresses are obtained. These are given as follows: 

100~o(Z ) 
C~ + 2C~RO + C~x + 2CZ7ROx + C~x 2 + 2C~ROx 2, 

R O0 

Ox = C2 + C~RO + 2C26 x + C2(RO) 2 + 2C~ROx + 2C2(RO)Zx, 

10ro.(z ) (18) 
R O0 - C3 + 2C3R0 + C3x + 2C3ROx + C3x2 + 2C3ROx2' 

a o (z) 
Ox = c3 + C3RO + 2C3x + C3(R0)2 + 2C3ROx + 2C39(RO)Zx" 
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Fig. 2. Typical cross section of a shell showing unequal spacing of pivot points. 

In the present study, the values of these derivatives are obtained at four Gauss points 
corresponding to a 2 × 2 Gauss quadrature rule for shear, thus evaluating the right-hand side 
of eqn. ( l lb) .  These are obtained for different pivot points at known intervals in the thickness 
directions (see Fig. 2) at each Gauss point. The transverse shear stress variations through- 
the-thickness are now evaluated by integrating the equilibrium equation ( l lb) ,  using a finite 
difference technique. Two well known finite difference schemes--(a)  forward difference 
technique and (b) central difference techn ique- -a re  used to evaluate the transverse shear 
stresses at different points in the thickness direction. The finite difference form of eqn. (1 lb) 
can be expressed as, 

Forward difference technique 

roz(I+l)-roz(I) + 2roz(')__ ( l O~° Or°~ 
A z  I A(IIR AR ~0 Ox (i) 

( l Otro Orox 2 ) 
r°~(l+l) = AZl AR ~0 ~x A R  ~oz + "ro~(+), (1) 

A z  I A(t)R AR ~0 ~x (i) 

Azt AR O0 Ox AR (t) Txz(l+ l) 

(19a) 

For shells with shear-free surfaces, we have ~'0~(~) and Zx~U) = 0. With this as the starting 
values, the values of the transverse shear stresses are evaluated at all the other points 
through-the-thickness of the shell. The other shear-free surface conditions are not utilized, 
although they are available, because we are dealing with first-order differential equations in 
Zx~ and z0z which need only one initial condition. This is a physical paradox. 

Central difference technique 

T O z ( I + I  ) - -  (1 - Z2)%z(t)-  Z2zoz(1_o 2"roz(l> 
+ - -  P(1) 

Z ( Z  + 1)Az t A(I)R 
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where 

1 &r o arox ) 
P( , ,  = _ - ~ -  + - -  

O0 ~x (t)' 

(1) 

where 

"l'xz(l+ l ) - -  ( 1  - -  Z 2 ) " i ' x z ( i )  - -  Z 2 " f x z ( i _ l )  "rxz(l ) 
+ - -  = Q(t), 

Z ( Z  + 1)Az I A(;)R 

(19b) 

1 Orox 0o" x 
a ( ' )  = - A R  00- + -~x x ](1)' 

( 1 ) 
=:*' - -  Z "i 'xz(l_ l) , " ~ z . + l ~  = z ( z  + 0 a z ,  Q ~ - ~ x z  + (1 - z 2 ) ~ z . )  + 2 

(I) 

Here, Z =  A Z , _ l / A Z  x [23]. Assuming that %z and %z at I =  1 are equal to zero for a 
shear-free surface, the values of %z and fez at I = 2 are calculated using eqn. (19a). Knowing 
the values now, at two points, the transverse shear stresses at all the other points through-the 
thickness of the shell are computed using eqn. (19b). At the interface, while setting up the 
equation, the values of P and Q taken are the averages of those at the top of the first layer 
and the bottom of the second layer. 

S S  

Fig. 3. Geometry and mesh pattern for a circular cylindrical roof. 
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N u m e r i c a l  r e s u l t s  a n d  d i s c u s s i o n  

T h e  p r o p o s e d  a l g o r i t h m s  d e v e l o p e d  in  t h e  e a r l i e r  s e c t i o n  a r e  t e s t e d  o n  a f e w  b e n c h - m a r k  

p r o b l e m s .  T h e s e  a r e  d e s c r i b e d  b e l o w .  

E x a m p l e  1 

A n  a n a l y s i s  o f  a l a y e r e d  l a m i n a t e d  c i r c u l a r  c y l i n d r i c a l  s h e l l  r o o f  w i t h  s i m p l y  s u p p o r t e d  

e d g e s  is  c a r r i e d  o u t  a n d  t h e  r e s u l t s  a r e  c o m p a r e d  w i t h  a v a i l a b l e  e l a s t i c i t y  s o l u t i o n  a n d  

Table  1 

Max imum d i sp l acemen t  and s t resses  

d i f f e r e n t  R / h  rat ios  

for a s imply suppor t ed  two- layered  9 0 ° / 0  ° l amina t ed  cyl indrical  shell  roof for 

Q u a n t i t y  R / h FOST Present  Ref, [24] 

Theory  1 Theory  2 Theory  I Theory  2 Exact  CLT 

~3 100 1.100 

( 1 . 0 )  " 

I0 4.477 

(5.3) 

5 0.152 

(6.5) 

2 16.637 

(3.5) 

~ ( z  = + t t / 2 )  100 - 0.597 

(0.8) 
10 2 . 0 8  I 

( - 6 . 1 )  
5 2,129 

( - 15.4) 

2 - 2 , 1 8 2  
( - 44.2) 

if,( z = - h / 2 )  l t)O I).481) 

( - 3 . 1 ) )  

t0 O.248 
( 1 8 . 6 )  

5 0.201 

( - 29.2) 

2 11.253 

( - 5O.9) 

,z o ,( z = + h / 2 )  II)O (L034 

( - 2 . 8 )  

0.050 
(0.0) 

10 0.011~ 
(60.0) 

0.045 

( - 6 . 2 )  

5 O.O28 

(40.0) 
0,045 
( -- 8 .6 )  

2 - O.O34 

( - 5 . 6 )  

0.064 
( - 14.6) 

1. t 08 1.1 O0 1.108 1.089 1.054 

( 1 . 7 )  (1.(t)  ( 1 . 7 )  ( 3 . 2 )  

4.7511 4.425 4.695 4.2511 3.626 

111.7) 14.1) 110.4) I -  14.7) 

6.9[)5 5.934 ~.662 5.774 3.5411 

( 19.6t (2.7) 115.3) ( - 3 8 . 6 )  

21.943 15.154 19.963 16.1162 3.092 

(35.6) ( - 5.6) (24.2) ( - 80.7) 

- 0.598 - 0.597 - 0.599 0.592 (I.5f) 1 

( 1 . 0 )  ( 0 . 8 )  (1.1)) ( 5 . 2 )  

- 2.126 2.118 - 2 . 1 6 6  -2 .217 2.023 
( -  4 .1 )  ( 4 . 4 )  ( - - 2 . 3 )  1 - - 8 . 7 )  

- 2.223 - 2.275 - 2 . 3 7 8  2.519 - 2.047 
- 1 1 . 7 1  1 - 9 . 7 )  I 5 .6 )  ( 18.7) 

- 2.440 2,85~ -3 .216  3,914 -- 1.990 

-- 37.6) ( 27.11) I --17.8) ~ 49 I) 

0.484 0.4811 I).484 11,495 11,480 

(-2,2)  ( - 3 . 0 )  ( - 2 . 2 )  1 - 3 . 0 )  
0.266 11.245 0.263 0.305 0.264 

( - 1 2 . 7 )  ( - 1 9 . 6 )  ( 13.7) i - 13,4) 

0.231 O. 194 0.223 1t.284 o. 183 
( - 1 8 . 6 )  ( - 3 1 . 7 /  ( 21.5) ( 35.5) 

0,359 0,229 0.325 11.516 Ik 123 
( - 311.4) ( - 55.6) ( 37.0) I 76.1 ) 

11.1)34 0,034 0,034 0.035 IL033 

( - 2 , 8 )  ( 2 .8 )  ( 2.;',;) { - 5 . 7 )  

11.(151) 0.050 0,050 (I.050 O.O49 

(0.[)) (0.0) (0.0) ( 2.1)) 
0.1)15 0.016 0.015 0,010 -0.01 I 

(50.11) (N).O) (50.0) (10.0) 

0.047 0.045 0.047 0.048 0.043 

( - 2 . 0 )  ( - 6 . 2 )  ( - 2 , 0 )  ( - 1 ( I . 4 )  

0.027 - 0.1)28 - 11.1/28 - 0.020 0.(11S 

(35.0) (41).0) (40.0) ( - I 0 . 1 ) )  

0.049 0.044 1).1)49 0.049 0.036 

( 0 . 0 )  ( - 11).2) (O.(I) ( 2 .6 )  

- 0.035 - 0.035 0.037 - 0.036 - [I.020 

( - 2.8) ( - 2.8) (2.S) ( - 44.4) 

0.088 0.064 11.089 0.075 (i.I)28 

117.3) ( - 1 4 . 6 )  (18.6) ( 6 2 , 7 )  

~' P e r c e n t a g e  d i f f e r e n c e .  
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Table 2 
Maximum transverse shear stress ('~e~) for a simply supported two layered 900 /0  ° laminated cylindrical shell roof for 
different R/h ratios at (z = h / 4 )  

R / h  Models Theory 1 Theory 2 

CD FD CD FD 

100 FOST 0.2424 0.2323 
(2.4) a ( -- 1.8) 

Present 0.2424 0.2323 
(2.4) ( -  1.8) 

Exact [24] 

10 FOST 0.8220 0.7859 
( - 5.4) ( - 9.6) 

Present 0.8241 0.7871 
( - 5 . 1 )  ( - 9 . 4 )  

Exact [24] 

5 FOST 0.9314 0.8936 
(2.6) ( -  1.4) 

Present 0.9339 0.8924 
(2.8) ( - 1.6) 

Exact [24] 

2 FOST 0.8623 0.8220 
( - 3 . 1 )  ( - 7 . 6 )  

Present 0.8723 0.8165 
( - 1.9) ( - 8.2) 

Exact [24] 

0.2367 

0.8691 

0.9076 

0.8900 

0.2424 0.2324 
(2.4) ( -  1.8) 
0.2424 0.2324 
(2.4) ( -  1.8) 

0.8216 0.7871 
( -5 .5 )  ( -9 .5 )  
0.8238 0.7882 
( - 5 . 2 )  ( - 9 . 3 )  

0.9302 0.8956 
(2.4) ( -  1.3) 
0.9328 0.8948 
(2.7) ( -  1.4) 

0.8849 0.8576 
( - 0 . 5 )  ( - 3 . 6 )  
0.9008 0.8523 
(1.1) ( - 4 . 2 )  

a Percentage difference. 

classical lamination theory solution (CLT) given by Ren [24]. The shell roof has a radius 
R - - 5 i n . ,  length L - - 3 0 i n .  and subtended angle ~bs=~-/3.  A sinusoidal load, p =  
P0 sin(~0/~bs) sin(rrx/L) is applied on the shell surface (see Fig. 3). Two fibre orientations, 
900/0 ° and 0 ° / 9 0 ° / 0  °, are considered. Their thicknesses are h/2 and h/2 and h/4, h/2 and 
h/4 respectively. The lamina material properties are: 

E 1 = 2 5 E 2 ,  E 3 = E2, GI2  -- Gl3  = 0 . 5 E 2 ,  G23 = 0 . 2 E 2 ,  

Vl2 = vl3 = v23 = 0 .25 .  

Numerical results are obtained for different R/h ratios, namely 100, 10, 5, and 2. For the 
90o/0  ° shell, the normalized transverse deflection and in-plane stresses are given in Table 1 
and the normalized transverse shear stresses are given in Table 2. For the 00 /90o /0  ° shell, the 
normalized transverse deflection and in-plane stresses are given in Table 3 and the transverse 
shear stresses are plotted in Figs. 4 and 5 for R/h = 10 and 5 respectively. The maximum 
deflections and the normal stresses at the center and transverse shear stresses at supports are 
normalized as follows: 

1 

1 0 E z u  3 1 0 0 E 2 u  l 

U3 = PohS 4 , Ul PohS 4 , s = R / h .  

The percentage difference between the present and the elasticity solutions is presented in 
the respective tables. It is observed from these results that for lower R/h ratios, both stress 
and displacement fields, given by the present formulation, are close to the exact three-dimen- 
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Tab le  3 

M a x i m u m  st resses  and  d i sp l acemen t  

for d i f fe ren t  R / h  ra t ios  

for a s imply s u p p o r t e d  th ree - l aye red  0 ° / 9 0 o / 0  ° l a m i n a t e d  cyl indrical  shel l  roof  

R / h  Theory  ~3 6 ~  6 ,  % ,  ÷ . ~ ( z  = - h / 4 )  ~'oz(z- - h / 4 )  
( z = + h / 2 )  ( z = + h / 2 )  ( z = + h / 2 )  FD C D  FD CD 

100 Presen t  Theory  1 0.542 

( -  1.9) 

Presen t  Theory  2 0.545 

( - 1.41 

Exac t  so lu t ion  [24] 0.553 

CLT [26] 0.538 

( - 2.7) 

10 P resen t  Theory  1 

Presen t  Theory  2 

Exac t  so lu t ion  [24] 1.577 

CLT [26] 

5 P re sen t  Theory  1 3.226 
( -  12.7) 

P re sen t  Theory  2 3.540 
( - 4 . 2 )  

Exac t  so lu t ion  [24] 3.694 

2 Presen t  Theory  1 13.852 
( -  17.2) 

P re sen t  Theory  2 17.062 
(1.99) 

Exac t  so lu t ion  [24] 16.728 

0.539 0.0153 0.0168 

( - 2 . 5 )  ~' ( - 2 . 5 1  ( - 3 . 5 )  
- 0.533 - 0.0031 0.0247 

( - 2 . 7 )  ( 3 . 1 )  ( 2.3) 

11.541 1t.11153 0.0170 

( - 2 . 1 )  ( 2.5) ( 2.2) 
- I).537 - 0.0031 0.0247 

( 2.0) ( - 3 . 1 1  ( 2.3) 

0.553 0.0157 0.0174 
0.548 11.0/132 0.0253 

0.543 1/.I)153 - 0.0168 

( -  1.81 ( - 2 . 5 )  ( - 3 . 4 )  

- I).537 - 0.0030 - 11.0248 

( - 2 . 0 )  ( 6.2) ( 1.9) 

1.450 0.915 1/.0136 0.0032 
( - 8.0) ( - 4.4) ( - 20.0) (3.22) 

0.997 0.0094 0.0145 

( - 5 . 7 )  ( -5 .0)  ( - 5 . 2 1  

1.522 11.9411 I).0140 - [).0028 

( - 3 . 5 )  ( - 1 . 8 )  (-17.11) ( - 9 . 7 )  

- 1.077 -(I.011/2 0.0151 

(I .79) 13.1/31 ( - 1.3) 

0.957 0.0 170 - 0.0031 

- 1.058 - 0.0099 0.0153 

0.843 (I.821 11.01118 - 0 . 0 0 3 0  

( - 4 6 . 5 )  ( -  14) ( - 3 6 )  ( - 3 . 2 )  
- 0.869 - 0.0084 0.0095 
( - 1 7 )  ( 15) ( - 3 7 . 9 )  

1.190 /).0191) - 0.0102 

( - 4 . 9 )  ( - 3 8 . 0 )  (6.25) 

- 1.323 - 0 . 0 1 4 6  0.0226 

( - 1 5 . 0 1  ( 14.01 ( - 1 1 . 7 )  

1.240 0.0200 - 0.0092 

( - 0.9) ( - 34.0) ( - 4.2) 
- 1.561 - 1/.0171 0.0251 

( - 0 . 1 1  ( - 0 . 6 )  ( -  1.9) 

1.252 0.11306 - 0.0096 
- 1.562 -1/.0171/ 0.0256 

2.307 1/.0426 - 0.1/389 
( - 12.01 ( - 6 2 . 0 )  i l l . l )  
- 2.610 - 0.0356 0.0605 
( - 33.0) ( - 27.1/) ( - 19.0) 

2.415 /).11485 - 0.0366 
( - 8.4) ( -- 57.0) ( - 4.6) 
- 4.136 - 0.0529 0.0845 
(4.68) (8.181 (12.7) 

2.637 0.1135 .-0.0350 
- 3.951 0.0489 0.0750 

11.11163 0.1/168 0.299 I).293 
( - 7 . 3 )  ( - 4 . 5 )  ( - 3 . 5 1  ( - 5 . 5 )  

11.0163 0.0169 1 1 . 2 9 9  0.289 
( - 7 . 3 )  ( - 3 . 9 )  ( - 3 . 5 )  ( - 6 . 7 1  

0.0176 0.311) 

0.0093 0.0091 0.455 0.438 
( - 1 2 . 2 )  ( - 1 4 . 1 )  ( - 1 0 . 8 1  ( - 1 4 . 1 )  

0.0095 0.0093 0.459 0.443 
( - 1 0 . 4 )  ( - 1 2 . 2 )  ( - 1 0 . 0 )  ( - 1 3 . 1 )  

0.0106 0.510 

0.0116 0.380 

( -  30.5) ( -  28.7) 

0.0121 0.388 

( - 2 7 . 5 )  ( - 2 7 . 2 )  

0.0167 11.533 

0.0361 0.212 
( 21.0) ( - 6 1 . 5 1  

0.0407 0.230 
( -  10.91 ( 5 8 . 3 )  

11.0457 0.552 

P e r c e n t a g e  d i f f e r e n c e .  
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0.5 h! 0.5 
R/h=lO 

-~ ~.~ . . . . . . .  Theory I 
-~ ~ _ _  Theory 2 
t " ~ * , , , E x o c t  Sol. 

N 0 . 0 p 0 ~ . ' % , 0 . 0 1 2  a 4 ' b.16 

-0.5 I ~.a..~... " " "  -0.5 
Fig. 4. Variation of transverse shear stresses through the thickness for a 0°/90°/0 ° shell with R / h  = 10. 

sional solutions, in general. Further,  the estimates of the transverse shear stresses are bet ter  
obtained with the central difference (CD) algorithm. 

Example  2 

A pressurized two-layer, circular cylindrical shell, which is supported at both ends in such a 
way that only the radial deflection and the circumferential rotation are restrained, is analyzed. 
The length and the inner radius of the shell are 20 in. and 10 in., respectively. The inner layer 
has a fibre orientation in the longitudinal direction 90 ° while the fibre orientation in the outer 
layer is varied. The layers are of equal thickness and the elastic properties of the lamina are 
given as follows: 

E 1 = 40 X 106 psi, E 2 = E 3 = 106 psi, /"12 = / " 2 3  = V i a  = 0.25, 

Gt2 = G23 = G13 = 0.5 X 106 psi. 

The thickness of shell h is taken as 0.2 in. and the fibre orientations of the outer  layer are 
kept at - 7 5  ° and 90 °. The variation of transverse shear stress (~x~ = r x z / P )  across the 
thickness, near  the support  is plotted in Fig. 6. The values given by Chaudhuri  [25] are also 
shown for comparison. 

0.5 ,,,:, R/h=5 
Theory 1 
Theory 2 
Exoct Sol. 

-0.5 ~ 

0.5 

t-- 

-0.5 

j r t ,  t I 

. . 0 6  

Fig. 5. Variation of transverse shear stresses through the thickness for a 00/90o/0 ° shell with R / h  = 5. 
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0 ,5  T h e o r y  1 

T h e o r y  2 
P, e f e r c n c o  

\ . . . . . .  :2L r 

i , /  

r ,J > ' 

i %\, 

i j ' 

0 -T,, g 

r 

r; 

- 0 . 5  . . . . . . . . . .  1 
'T~z 

(900/-750 ) (900/900 ) 

Fig. 6. Variation of t r a n s v e r s e  s h e a r  s t r e s s e s  t h r o u g h  t h e  t h i c k n e s s  of a pressurized two-layer shell. 

In the present analysis, half of the shell is discretized into 44 elements (four elements along 
the circumference and eleven elements along the length) in the case of non-axisymmetric 
behaviour. Only 1/16th of the shell is taken in the case of cross-ply laminates exhibiting 
axisymmetric behaviour and these are discretized with only 20 elements. As against this, 
Chaudhuri [25] has used 144 triangular elements in his analysis which uses another high-order 
theory. Our results are in close agreement with those of Chaudhuri. 

Table 4 

M a x i m u m  d i s p l a c e m e n t s  (K3) and normal stress (~70) for a simply supported three-layered sandwich cylindrical shell 
panel under sinusoidal transverse load for difference R / h  ratios 

R / h  ~3 i~ o (+_ h /2 )  

FOST Present 3-D FOST Present 3-D 

Theory Theory Theory Theory exact Theory Theory Theory Theory exact 
1 2 1 2 [ 2 6 ]  I 2 1 2 [26 ]  

100 1.561 1.554 2.085 2,075 2.211 1.048 

( - 29.31 a ( - 2 9 . 7 )  ( - 4 . 3 )  ( -6 .11  ( - 9 . 3 )  
- 1.1/5//  

( - 9.2) 

10 1.646 1.567 2.097 1.994 2.312 0.991 

( - 2 8 . 8 )  ( - 3 2 . 2 )  ( - 9 . 3 )  ( -  13.7) ( - 8 . 5 )  
-0 .997  

( - 7 . 9 )  

5 1.738 1.570 1.937 1.744 2.186 1/.718 
( - 2 0 . 5 )  ( - 2 8 . 2 )  ( - 1 1 . 4 )  ( - 2 0 . 2 )  (0.0) 

- 0.669 

(10.6) 

2 0.321 0.227 0.354 0.251 0.449 0.213 

( - 2 8 . 5 )  ( - 4 9 . 5 )  ( - 2 1 . 1 )  ( - 4 4 . 0 )  (52.11 
0.425 

( -14 .11  

1.042 
( - 9 . 8 )  

- 1.046 
( - 9 . 6 )  

0.939 

( - 13.31 
- 0.964 

( - 10.9) 

0.652 
( - 9.2) 

- 0.632 
(4.46) 

-0 .146  

(4.3) 
0.338 

( - 3 1 . 7 )  

1.153 1.146 1.156 
- 1/.3) ( - 11.8) 

- 1 . 1 5 2  - 1 . 1 4 8  - 1 . 1 5 7  

- 0.4) ( I ] . 8 )  

1.053 11.994 1.1183 

2.7) ( 8 . 2 )  
- 1.032 1.11/}2 - 1./183 
- 4 . 7 )  ( - 7 . 4 )  

1/.682 1/.616 0.7t8 
-3 .0 )  ( -14 .21  
-0 .592  - 11.568 -0 .605  
-2 .1 )  (- 6.11 

0.201 --- 0.132 -0.1411 

(43.5) ( 5 . 7 )  
0.398 I).323 (I.495 

( - 1 9 . 6 )  ( - 3 6 . 7 )  

a Percentage difference. 
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Table 5 
Maximum shear stress (?0z and ~xz) for a simply supported three-layered sandwich cylindrical shell panel under 
sinusoidal transverse load for different R/h ratios at (z = 0) 

S Models ~'0z rxz 

Theory 1 Theory 2 Theory 1 Theory 2 

FD CD FD CD FD CD FC CD 

100 FOST 0.319 0.303 0.316 0.300 0.0415 0.0394 0.0411 0.0391 
(5.9) a (0.6) (4.9) ( - 0.3) ( - 21.5) ( - 25.5) ( - 22.3) ( - 26.0) 

Present 0.311 0.293 0.308 0.290 0.0511 0.0485 0.0506 0.0480 
(3.2) ( - 2 . 6 )  (2.3) ( - 3 . 6 )  ( - 0 . 3 )  ( - 8 . 3 )  ( - 4 . 3 )  ( - 9 . 3 )  

3-D 
Exact [26] 0.301 0.0529 

10 FOST 0.294 0.278 0.267 0.253 0.0405 0.0384 0.0373 0.0355 
(4.2) ( - 1.4) ( - 5.3) ( - 10.3) ( - 25.2) ( - 29.2) ( - 31.2) ( - 34.5) 

Present 0.283 0.266 0.256 0.241 0.0477 0.0453 0.0440 0.0418 
(0.3) ( - 5 . 6 )  ( - 9 . 2 )  ( -  14.5) ( -  11.9) ( -  16.4) ( -  18.2) ( - 22 .8 )  

3-D 
Exact [26] 0.282 0.0542 

5 FOST 0.217 0.206 0.177 0.167 0.0373 0.0355 0.0326 0.0310 
(24.7) (18.3) (1.73) ( - 4 . 0 )  ( -21 .9 )  ( -25 .7 )  ( -31 .8 )  ( - 35 .1 )  

Present 0.193 0.181 0.156 0.146 0.0392 0.0372 0.0342 0.0325 
(10.9) (4.0) (10.3) (16.0) ( -17 .9 )  ( -22 .1 )  ( -28 .4 )  ( -32 .0 )  

3-D 
Exact [26] 0.174 0.0478 

2 FOST 0.030 0.029 0.024 0.022 0.0026 0.0025 0.0027 0.0026 
(61.3) (55.9) (29.0) (18.2) ( - 36.5) ( - 39.0) ( - 34.1) ( - 36.6) 

Present 0.021 0.019 0.017 0.016 0.0040 0.0033 0.0033 0.0032 
(12.9) (2.1) ( -  8.6) ( -  13.9) ( -  2.4) ( -  19.5) ( -  19.5) ( -21 .9 )  

3-D 
Exact [26] 0.0186 0.0041 

a Percentage difference. 

Example 3 

An analysis of  a three-layered sandwich circular cylindrical shell panel with simple supports 
at all the four edges is carried out and the results obtained are compared with a three-dimen- 
sional elasticity solution obtained by Kant and Reddy [26]. The shell roof has an arc length 
a = 10in., a length L = 10in. and a thickness h = 1.0 in (see Fig. 3). A sinusoidal load, p =P0  
sin(~rRO/a) sin(~rx/L) is applied on the top shell surface. The material property coefficients 
for the facings are, 

E1 = 25E2 '  E2 --" E3; Gtz = G13 = 0"5Ez, G23 = 0 .2E2,  1"12 = / " 1 3  = / " 2 3  = 0.25, 
facing thickness tf = 0.1h. 

The properties of  the core are taken as follows: 

E 1 = E 2 = 0.04 × 106 psi, E 3 = 0.5 x 106 psi, 

G13 --- Gz3 = 0.6 × 106 psi, Gt2 = 0.016 x 106 psi, 

/-"12 = 0.25, P23 ~-- Pl3 = 0.02 
core thickness t c = 0.8h.  

Numerical results are obtained for different R/h ratios, namely 100, 10, 5 and 2. Normalized 
maximum deflection and stresses are given in Tables 4 and 5. The percentage difference 
between the present and the elasticity solutions is also given in these tables. The maximum 
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deflect ion and normal  stresses at the center  and transverse shear stresses at supports  are 
normal ized  as follows: 

h 2 
~r0, (~0: ~ , : )  = ( % : ,  r x : ) h / P , " ,  ~o P ° a  2 

E2 h3 
u3 = - -  100 u 3. 

po a4 

The  results are seen to be very close to the th ree -d imens iona l  solut ions even for low values of 

the R / h  ratio. 

Conclusions 

The  results from two higher-order  theories  of a l amina ted  composi te  cylindrical shell 

subjected to different  loadings and boundary  condi t ions  are presented.  The  d isplacement  
model  conta ins  the m i n i m u m  n u m b e r  of d isp lacement  parameters  so as to incorporate  
non- l inea r  var ia t ion of displacements ,  stresses and strains through the thickness. These 

theories  do not  require  the use of a shear  correct ion factor. The  finite e lement  method  is 
employed for global analysis involving evaluat ion of the d isplacements  and in-p lane  stresses. 
In the post-processing phase,  two special f in i te-di f ference-based algori thms are developed 

and  p resen ted  here for the first time. These are imp lemen ted  in the general  software for the 
direct in tegra t ion  of the th ree -d imens iona l  stress equi l ibr ium equat ions.  This methodology 
has led to a rel iable evaluat ion  of t r a n s v e r s e / i n t e r l a m i n a r  stresses in a rout ine  manner .  

The  results ob ta ined  show excellent ag reement  with the elasticity solutions. It is also 
observed that  the Theory  2 provides more  rel iable and accurate  results compared  to Theory 1 
and  is general ly  closer to an elasticity solut ion for thick shells. Thus  the inf luence  of h / R  

ratio in the s t r a i n - d i s p l a c e m e n t  relat ions is establ ished especially for thick shells. 

References 

[1] W. FLOGGE, Stresses in Shells, Springer-Verlag, New York, 4th edn., 1967. 
[2] H. KRAUS, Thin Elastic Shells, Wiley, New York, 1967. 
[3] P.M. NAGHD1, "A survey of recent progress in the theory of elastic shells", Appl. Mech. Rev. 9, pp. 365-368. 

1956. 
[4l S.B. DONG, K.S. PISTER and R.L. TAYLOR, "On the theory of laminated anisotropic shells and plates", Z Aerosp. 

Sci. 29, pp. 969-975, 1962. 
[5] R.A. CHAUDHURI, K. BALARAMAN and V. KUNI.JKKASSERIAI,, "Arbitrary laminated anisotropic cylindrical shells 

under internal pressure", AIAA J. 24, pp. 1851-1857, 1986. 
[6] R.C. REUTER, "Analysis of shells under internal pressure", J. Compos. Mater. 6, pp. 94-113, 1972. 
[7] S.B. DONG and F.K.W. Tso, "On a laminated orthotropic shell theory including transverse shear deformation". 

ASME J. AppL Mech. 39, pp. 1091-1097, 1972. 
[8] S.C. PANDA and R. NATARAJAN, "Finite element analysis of laminated shells of revolution", ('omput. Struct. 6, 

pp. 61-64, 1976. 
[9] J.N. REDDY, "Exact solution of moderately thick laminated shells", ASCE J. Eng. Mech. Div. 108, pp. 794-809, 

1984. 
[10] Abu-Arja KAMAL, Static analysis of laminated fiber reinforced plates and shells with shear deformation, Ph.D. 

Thesis, Department of Civil Engineering University of Utah, 1987. 
[11] P. SEIDE and R.A. CHAUDHURI, "Triangular finite element for analysis of thick laminated shells", Int. J. Numer. 

Methods" Eng. 24, pp. 1563-1579, 1987. 
[12] J.M. WmTNEY and C.T. SUN, "A higher-order theory for extensional motion of laminated anisotropic plates and 

shells", J. Sound Vib. 30, pp. 85-88, 1971. 



T. Kant, M.P. Menon / Stress analysis of  layered composite shells 71 

[13] J.M. WHITNEY and C.T. SUN, "A refined theory for laminated anisotropic cylindrical shells", ASME J. AppL 
Mech. 41, pp. 471-476, 1974. 

[14] T. KANT, Thick shells of revolution--Some studies, Ph.D. Thesis, Department of Civil Engineering Indian 
Institute of Technology Bombay, India, 1976. 

[15] A. BHIMARADDI, "A higher order theory for free vibration analysis of circular cylindrical shells", Int. J. Solids 
Struct. 20, pp. 623-630, 1984. 

[16] A. BHIMARADDI and L.K. STEVENS, "On the higher-order theories in plates and shells", Int. J. Struct. 6, pp. 
35-50, 1986. 

[17] A.V.K. MURTY and T.S.R. REDDY, "A higher-order theory for laminated composite cylindrical shells", J. 
Aeronaut. Soc. India, pp. 161-171, 1986. 

[18] T. KANT and M.P. MENON, "Higher-order theories for composite and sandwich cylindrical shell with C O finite 
elements", Comput. Struct. 33, pp. 1191-1204, 1989. 

[19] L.R. CALCOTE, The Analysis of  Laminated Composite Structures, Von Nostrand Reinhold, New York, 1969. 
[20] B.N. PANDYA and T. KANT, "A refined higher-order generally orthotropic C O plate bending element", Comput. 

Struct. 28, pp. 119-133, 1988. 
[21] O.C. ZIENKIEWICZ and R.L. TAYLOR, The Finite Element Method, VoL 1: Basic Formulations and Linear Problems, 

McGraw-Hill, London, 1989. 
[22] T. KANT, D.R.J. OWEN and O.C. ZIENKIEWICZ, "A refined higher order C O plate bending element", Comput. 

Struct. 15, pp. 177-183, 1982. 
[23] M.G. SALVADORI and M.L. BARON, Numerical Methods in Engineering, Prentice-Hall, Englewood Cliffs, NJ, 

1961. 
[24] J.G. REN, "Analysis of simply supported laminated circular cylindrical shells", Compos. Struct. 11, pp. 277-292, 

1989. 
[25] R.A. CHAUDHURI, "On the prediction of interlaminar shear stresses in a thick laminated general shell", Int. J. 

Solids Struct. 26, pp. 1499-1510, 1990. 
[26] T. KANT and T.S. REDDY, "Three dimensional elastostatic analysis of fibre reinforced composite laminated 

shells", Res. Rep. I I T B / C E / R / 9 2 / 2 ,  Department of Civil Engineering, Indian Institute of Technology, 
Bombay, 1992. 


